1a Replacing x with $-x$ does not result in the same equation, nor does replacing y with $-y$. Replacing both x and y with $-x$ and $-y$ also does not result in the same equation. The graph has no symmetry.

1b Since $3 x=|-y|$ is the same as $3 x=|y|$, the graph is symmetric about the x-axis.
2a $f(x)=\sqrt{x-7}-4$
2b $\quad f(x)=-(x+3)^{2}+2$
3a $2 i \cdot 6 i=12 i^{2}=-12$.
3b $-6 i+24 i^{2}=-6 i-24=-24-6 i$.
3c $\quad(5-4 i)(1+2 i)=5+6 i-8 i^{2}=13+6 i$.
3d $\frac{i}{2+i} \cdot \frac{2-i}{2-i}=\frac{2 i-i^{2}}{4-i^{2}}=\frac{2 i+1}{5}=\frac{1}{5}+\frac{2}{5} i$.
4 Factoring gives $t(3 t-2)(t-1)=0$, and so the solution set is $\left\{0,1, \frac{2}{3}\right\}$.
5 We have

$$
x^{2}+6 x=-2 \Rightarrow x^{2}+6 x+9=-2+9 \quad \Rightarrow \quad(x+3)^{2}=7 \quad \Rightarrow \quad x+3= \pm \sqrt{7}
$$

and so the solution set is $\{-3-\sqrt{7},-3+\sqrt{7}\}$.
6 The quadratic formula gives

$$
x=\frac{-(-1) \pm \sqrt{(-1)^{2}-4(1)(1)}}{2(1)}=\frac{1 \pm \sqrt{-3}}{2}=\frac{1}{2} \pm \frac{\sqrt{3}}{2} i .
$$

7 Factoring yields:

$$
\left(y^{2}-16\right)\left(y^{2}+1\right)=0
$$

so either $y^{2}-16=0$ (giving the solutions ± 4) or $y^{2}+1=0$ (giving the solutions $\pm i$). Solution set is $\{-4,4,-i, i\}$.

8 Let ℓ be the length and w the width. We're given $2 \ell+2 w=28$ and $\ell w=48$, which implies $(14-w) w=48$, and hence $(w-6)(w-8)=0$. Thus we find that $w=6,8$. When $w=6$ we get $\ell=8$, and vice-versa. Therefore the dimensions are 6 ft by 8 ft .

9a Get into vertex form:

$$
f(x)=-3\left(x^{2}-8 x\right)-49=-3\left(x^{2}-8 x+16\right)-49-(-3)(16)=-3(x-4)^{2}-1
$$

So f has vertex at $(4,-1)$.

9b Maximum value is $f(4)=-1$.
9c Range: $(-\infty,-1]$.
9d Increasing on $(-\infty, 4)$, decreasing on $(4, \infty)$.
10 There are three sides of length x (perpendicular to the lake shore) and one side of length y (parallel to the lake shore). We have $3 x+y=240$, and so $y=240-3 x$. Area as a function of x is

$$
A(x)=x(240-3 x)=-3 x^{2}+240 x=-3\left(x^{2}-80 x\right)=-3\left(x^{2}-80 x+1600\right)+3(1600)
$$

and thus

$$
A(x)=-3(x-40)^{2}+4800 .
$$

Area is maximized when $x=40$. Largest total area is $A(40)=4800 \mathrm{~m}^{2}$.
11a Since $x^{3}+27=x^{3}+3^{3}=(x+3)\left(x^{2}-3 x+9\right)$, the equation simplifies to

$$
18(x+3)-x\left(x^{2}-3 x+9\right)=81 \Rightarrow x^{3}-3 x^{2}-9 x+27=0 .
$$

Factor by grouping:

$$
x^{2}(x-3)-9(x-3)=0 \Rightarrow(x-3)\left(x^{2}-9\right)=0 \Rightarrow(x-3)^{2}(x+3)=0
$$

Solutions to this last equation are ± 3; however, $x=-3$ is an extraneous solution. Solution set for the original equation is therefore $\{3\}$.

11b We have $\sqrt{a+3}=3$, and thus $a=6$. Solution set: $\{6\}$.
11c Write $\sqrt{2 y-5}=1+\sqrt{y-3}$, then square and isolate the radical to get $2 \sqrt{y-3}=y-3$. Square again and collect terms to obtain

$$
y^{2}-10 y+21=0
$$

which has solutions 7 and 3 . Both solutions are valid, and the solution set is $\{3,7\}$.
11d We have $5 x-3= \pm 12$, so $x=(3 \pm 12) / 5$, and hence $x=-\frac{9}{5}, 3$. Solution set: $\left\{-\frac{9}{5}, 3\right\}$.
12 We have

$$
\frac{A}{P}=(I+1)^{2} \Rightarrow \frac{P}{A}=\frac{1}{(1+I)^{2}} \Rightarrow P=\frac{A}{(1+I)^{2}}
$$

13a Either $2 x-4 \geq 8$ or $2 x-4 \leq-8$, and so either $x \geq 6$ or $x \leq-2$. Solution set: $(-\infty,-2] \cup[6, \infty)$.

13b This becomes $-4<x+6<4$, and hence $-10<x<-2$. Solution set: $(-10,-2)$.
13c Either $3 x+1>x-2$ or $3 x+1<-(x-2)$, giving $x>-\frac{3}{2}$ or $x<\frac{1}{4}$. Solution set is all reals: $(-\infty, \infty)$.

