1a Suppose f(a) = f(b). Then $(a - 60)^5 = (b - 60)^5$, which implies a - 60 = b - 60, and thus a = b. Therefore f is one-to-one.

1b By definition f(x) = y if and only if $f^{-1}(y) = x$. So, let y = f(x), so that $y = (x - 60)^5$. Then $x - 60 = \sqrt[5]{y}$, which implies that $x = 60 + \sqrt[5]{y}$, and therefore

$$f^{-1}(y) = 60 + \sqrt[5]{y}.$$

This is the formula for f^{-1} . (Replacing y with x in the formula is not necessary.)

2 Three examples are f(x) = x, g(x) = 1/x, and $h(x) = \sqrt{1-x^2}$ for $x \in [0,1]$. (The last example is the quarter of a unit circle in the first quadrant.)

3

4 $t^k = Q$ and $\log_p 3 = k$.

5 $\ln \sqrt[3]{ab^2} = \ln(ab^2)^{1/3} = \frac{1}{3}\ln(ab^2) = \frac{1}{3}\ln a + \frac{1}{3}\ln b^2 = \frac{1}{3}\ln a + \frac{2}{3}\ln b$.

6 We have

$$\ln x - \ln(x-5)^3 - \ln(x+5)^3 = \ln \frac{x}{(x-5)^3(x+5)^3} = \ln \frac{x}{(x^2-25)^3}$$

7a $4^{3x-5} = 16$ becomes $4^{3x-5} = 4^2$, so we must have 3x - 5 = 2, and therefore $x = \frac{7}{3}$.

7b Convert to an exponential equation: $5^3 = 8 - 7x$, which implies $x = -\frac{117}{7}$.

7c Rewrite as

$$\log\left(\frac{2x+1}{x-2}\right) = 1 \implies \frac{2x+1}{x-2} = 10 \implies 2x+1 = 10x-20,$$

and so $x = \frac{21}{8}$.

7d We have

$$\frac{e^x + e^{-x}}{e^x - e^{-x}} = 3 \implies \frac{e^x + e^{-x}}{e^x - e^{-x}} \cdot \frac{e^x}{e^x} = 3 \implies \frac{e^{2x} + 1}{e^{2x} - 1} = 3 \implies e^{2x} + 1 = 3e^{2x} - 3,$$

giving $e^{2x} = 2$. This implies that $\ln e^{2x} = \ln 2$, giving $2x = \ln 2$, and so $x = \frac{1}{2} \ln 2 = \ln \sqrt{2}$.

7e Square both sides to get

$$\ln x = (\ln \sqrt{x})^2 = (\frac{1}{2} \ln x)^2 = \frac{1}{4} (\ln x)^2,$$

and hence $(\ln x)^2 - 4 \ln x = 0$. Factoring gives

$$(\ln x)(\ln x - 4) = 0,$$

so that either $\ln x = 0$ (so x = 1) or $\ln x = 4$ (so $x = e^4$). Solution set is $\{1, e^4\}$.

8 Population at time t (in years) is given by

$$P(t) = 9,996,731(1.0108)^t$$

and so we must find the time t when P(t) = 32,961,561,600. We have

 $9,996,731(1.0108)^t = 32,961,561,600 \implies (1.0108)^t = 3297.2 \implies \ln(1.0108)^t = \ln 3297.2,$ and hence

$$t = \frac{\ln 3297.2}{\ln 1.0108} \approx 754.1.$$

It will take about 754 years.

9 Add 5 times the 1st equation to the 2nd equation to get 25x = 75, or x = 3. Now put x = 3 into either equation and solve to get y = -1. Solution to the system: (x, y) = (3, -1).

Add the 1st equation to the 3rd equation to obtain 2y = -4, or y = -2. Put this result into the 1st, 2nd, and 4th equations to get the system

$$\begin{cases} x + z + w = 4 \\ x + 2z + 4w = 5 \\ -x + z - w = 4 \end{cases}$$
 (1)

For this system add the 1st and 3rd equations to get 2z = 8, or z = 4. Put this result into the 1st and 2nd equations of the system (1) to get

$$\begin{cases} x + w = 0 \\ x + 4w = -3 \end{cases}$$

This system solves to give x = 1 and w = -1. The solution to the original system is therefore (x, y, z, w) = (1, -2, 4, -1).