Math 120 Exam \#2 Key (Spring 2013)

1a From $9 x^{2}-12 x+4=0$ we have $(3 x-2)(3 x-2)=0$, which leads to $3 x-2=0$ and thus $x=2 / 3$. Solution set: $\{2 / 3\}$.

1b We have $x+5= \pm \sqrt{-3}= \pm i \sqrt{3}$, and so $x=-5 \pm \sqrt{3} i$. Solution set: $\{-5-\sqrt{3} i,-5+\sqrt{3} i\}$.
1c Divide by -3 to get $x^{2}-3 x=-7 / 3$. Completing the square yields

$$
x^{2}-3 x+(-3 / 2)^{2}=-7 / 3+(-3 / 2)^{2}
$$

or $(x-3 / 2)^{2}=-1 / 12$. From this comes $x-3 / 2= \pm \sqrt{-1 / 12}= \pm i \sqrt{3} / 6$, and so the solution set is

$$
\left\{\frac{3}{2}-\frac{\sqrt{3}}{6} i, \frac{3}{2}+\frac{\sqrt{3}}{6} i\right\}
$$

2 Write as $-16 t^{2}+v_{0} t+\left(s_{0}-h\right)=0$, so

$$
t=\frac{-v_{0} \pm \sqrt{v_{0}^{2}-4(-16)\left(s_{0}-h\right)}}{2(-16)}=\frac{v_{0} \pm \sqrt{v_{0}^{2}+64\left(s_{0}-h\right)}}{32}
$$

3 Let x be the length of the sides of the square base. Once the corners are cut away and the flaps are folded up (see figure below), a box results with a square base of length $x-6$.

The volume of the box is $3(x-6)(x-6)=48$, or $(x-6)^{2}=16$. Solving the equation gives $x-6= \pm \sqrt{16}= \pm 4$, or $x=2,10$. However, we cannot have $x=2$ since it results in a flap width of -4 ! So we must have $x=10$. That is, the cardboard should be $10 \mathrm{~cm} \times 10 \mathrm{~cm}$.

4 Let x be the width of the lawn. The dimensions involved are as shown in the figure below.

We have

$$
\begin{aligned}
\text { Area of Lawn } & =\text { Area of Factory } \\
\text { Area of Lot }- \text { Area of Factory } & =\text { Area of Factory } \\
2(\text { Area of Factory }) & =\text { Area of Lot } \\
2(240-2 x)(180-2 x) & =(240)(180) \\
x^{2}-210 x+5400 & =0
\end{aligned}
$$

which becomes $(x-180)(x-30)=0$ and so $x=30,180$. We cannot have $x=180$, however, since that results in a lawn width that equals the width of the lot! So we must have $x=30 \mathrm{~m}$ as the width of the lawn. The dimensions of the factory are thus $180 \mathrm{~m} \times 120 \mathrm{~m}$.

5a Multiply by $x^{2}(x-1)$ to get $x^{2}=2(x-1)$, which becomes $x^{2}-2 x+2=0$. Solving using the quadratic equation (or completing the square), we obtain $x=1 \pm i$. Solution set: $\{1-i, 1+i\}$.

5b Multiply by $(x-2)(x+2)$ to get $(x+5)(x+2)=5(x-2)+28$, which becomes $x^{2}+2 x-8=0$. Factoring, we get $(x+4)(x-2)=0$, so that $x=-4,2$. But 2 is extraneous, so the solution set is $\{-4\}$.

5c We have $\sqrt{5-x}=x-3$. Squaring both sides yields $5-x=(x-3)^{2}$, or $x^{2}-5 x+4=0$. Factoring, we get $(x-4)(x-1)=0$, so that $x=1,4$. But 1 is extraneous, so the solution set is $\{4\}$.

5d Square both sides to get $(3-\sqrt{x})^{2}=2 \sqrt{x}-3$, or

$$
9-6 \sqrt{x}+x=2 \sqrt{x}-3
$$

This becomes $8 \sqrt{x}=x+12$, and squaring again yields $64 x=x^{2}+24 x+144$. So we have $x^{2}-40 x+144=0$, and factoring results in $(x-36)(x-4)=0$ and finally $x=4,36$. But 36 is extraneous, so the solution set is $\{4\}$.

5e Letting $u=x^{2 / 3}$, the equation becomes quadratic: $u^{2}-5 u+6=0$. Factoring yields $(u-2)(u-3)=0$, or $x^{2 / 3}=u=2,3$. Now,

$$
x^{2 / 3}=2 \Rightarrow x^{2}=8 \Rightarrow x= \pm \sqrt{8}= \pm 2 \sqrt{2}
$$

and

$$
x^{2 / 3}=3 \Rightarrow x^{2}=27 \Rightarrow x= \pm \sqrt{27}= \pm 3 \sqrt{3}
$$

Solution set: $\{-2 \sqrt{2}, 2 \sqrt{2},-3 \sqrt{3}, 3 \sqrt{3}\}$.
$5 f$ We have either $x-1=3 x+2$ or $x-1=-(3 x+2)$. The first equation solve to give $x=-3 / 2$, and the second equation solves to give $x=-1 / 4$. Solution set: $\{-3 / 2,-1 / 4\}$.

6a Simplifying yields $8 x-3 \leq 3 x-7$, and then $5 x \leq-4$, and finally $x \leq-4 / 5$. Solution set: $(-\infty,-4 / 5]$.

6b Multiply by 20 to get $-10<4(4-3 x) \leq 5$, whence

$$
-10<16-12 x \leq 5 \Rightarrow-26<-12 x \leq-11 \Rightarrow 13 / 6>x \geq 11 / 12
$$

Solution set: $\left[\frac{11}{12}, \frac{13}{6}\right)$.
6c Factoring, we get $(x+2)(x+3)>0$. There are two cases to consider.
Case 1: $x+2>0 \& x+3>0$. This gives $x>-2 \& x>-3$, which is equivalent to $x>-2$. Case 2: $x+2<0 \& x+3<0$. This gives $x<-2 \& x<-3$, which is equivalent to $x<-3$. Thus we may have $x<-3$ or $x>-2$. Solution set: $(-\infty,-3) \cup(-2, \infty)$.

6d Manipulate without multiplying by an expression involving x :

$$
\frac{2 x+1}{x-5} \leq 3 \Leftrightarrow \frac{2 x+1}{x-5}-3 \leq 0 \Leftrightarrow \frac{2 x+1-3(x-5)}{x-5} \leq 0 \Leftrightarrow \frac{16-x}{x-5} \leq 0 .
$$

There are two cases to consider.
Case 1: $16-x \geq 0 \& x-5<0$. This gives $x \leq 16 \& x<5$, which is equivalent to $x<5$. (Note that we cannot have $x=5$ since division by zero would result.)

Case 2: $16-x \leq 0 \& x-5>0$. This gives $x \geq 16 \& x>5$, which is equivalent to $x \geq 16$. (Letting $x=16$ results in no division by zero.)

Thus we may have $x<5$ or $x \geq 16$. Solution set: $(-\infty, 5) \cup[16, \infty)$.
6e We have

$$
|4-3 x|>2 \Leftrightarrow 4-3 x>2 \text { or } 4-3 x<-2 \Leftrightarrow x<2 / 3 \text { or } x>2
$$

Solution set: $(-\infty, 2 / 3) \cup(2, \infty)$.

6 f There is no solution (i.e. solution set is \varnothing) since absolute value is never negative.
6 g We have

$$
|5-x| \leq 12 \Leftrightarrow-12 \leq 5-x \leq 12 \Leftrightarrow-17 \leq-x \leq 7 \quad \Leftrightarrow \quad-7 \leq x \leq 17 .
$$

Solution set: $[-7,17]$.

7 We find the distance between the points:

$$
\begin{aligned}
& d(P, Q)=\sqrt{4^{2}+8^{2}}=\sqrt{80}=4 \sqrt{5} \\
& d(P, R)=\sqrt{6^{2}+12^{2}}=\sqrt{180}=6 \sqrt{5} \\
& d(Q, R)=\sqrt{2^{2}+4^{2}}=\sqrt{20}=2 \sqrt{5}
\end{aligned}
$$

Since $d(P, Q)+d(Q, R)=d(P, R)$ (i.e. the two smaller distances equal the largest distance), the points are collinear.

8 Several solutions are: $(3,0),(4,1),(5, \sqrt{2}),(7,2),(12,3),(19,4)$.

9 Complete the square for each variable as follows:

$$
\left(x^{2}-12 x+36\right)+\left(y^{2}+10 y+25\right)=-25+36+25 .
$$

Thus we have $(x-6)^{2}+(y+5)^{2}=36$, which is a circle with center at $(6,-5)$ and radius 6 .

10 Employ a graphical approach as in the example in the textbook: at coordinates $(7,4)$ graph a circle of radius 5 , at $(-9,-4)$ graph a circle of radius 13 , and at $(-3,9)$ graph a circle of radius 10 . Looking at the graph below, only the one point $(3,1)$ lies on all three circles, and so the epicenter of the earthquake must be at $(3,1)$.

EC Let r be the radius of the smaller circle and $r+d$ the radius of the larger circle. See the figure at right below.

We have a right triangle with hypotenuse of length $r+d$, and so by the Pythagorean Theorem

$$
r^{2}+1^{2}=(r+d)^{2},
$$

or $d^{2}+2 r d-1=0$. Use the quadratic formula to solve for d :

$$
d=\frac{-2 r \pm \sqrt{(2 r)^{2}-4(1)(-1)}}{2(1)}=-r \pm \sqrt{r^{2}+1}
$$

Since d cannot be negative we obtain $d=\sqrt{r^{2}+1}-r$, and hence $r+d=\sqrt{r^{2}+1}$ is the radius of the larger circle. If A is the area of the shaded region, then

$$
\begin{aligned}
A & =\text { Area of Large Circle }- \text { Area of Small Circle } \\
& =\pi\left(\sqrt{r^{2}+1}\right)^{2}-\pi r^{2} \\
& =\pi\left(r^{2}+1\right)-\pi r^{2} \\
& =\pi
\end{aligned}
$$

