1 Complete squares to get $(x-2)^{2}+(y+1)^{2}=9$. Center is at $(2,-1)$, radius is 3 .

2a It's at the midpoint between the given points, so use the midpoint formula to get $(4,5)$.

2b It's the distance between the center $(4,5)$ and either of the given points. Use the distance formula to get $r=\sqrt{2}$.

2c With center $(4,5)$ and radius $\sqrt{2}$ the equation is $(x-4)^{2}+(y-5)^{2}=2$.

3 With $-\frac{b}{2 a}=\frac{5}{4}$, vertex is at $\left(\frac{5}{4}, f\left(\frac{5}{4}\right)\right)=\left(\frac{5}{4},-\frac{73}{8}\right)$. The domain is $(-\infty, \infty)$ and the range is $\left[-\frac{73}{8}, \infty\right)$.

4 Have $f(x)=a(x-h)^{2}+k$ with $(h, k)=(-3,-1)$, so $f(x)=a(x+3)^{2}-1$. Now use the fact that $f(-2)=-3$ to find that $a=-2$. Therefore $f(x)=-2(x+3)^{2}-1$.

5 From the long division

$$
\left.x^{2}-x+2\right) \begin{array}{r}
x^{2}+x+1 \\
\frac{x^{4}+2 x^{2}-5 x-16}{-x^{4}+x^{3}-2 x^{2}} x^{3}-5 x \\
\frac{-x^{3}+x^{2}-2 x}{x^{2}-7 x-16} \\
\frac{-x^{2}+x-2}{-6 x-18}
\end{array}
$$

we have

$$
\frac{x^{4}+2 x^{3}-4 x^{2}-5 x-6}{x^{2}-x+2}=x^{2}+x+1-\frac{6 x+18}{x^{2}-x+2} .
$$

6 The model is $f(x)=C(x+2)[x-(3-i)][x-(3+i)]$, where $3+i$ must also be a zero in order to have real coefficients. Expanding yields $f(x)=C\left(x^{3}-4 x^{2}-2 x+20\right)$, and to satisfy $f(1)=-24$ we must have $C=-\frac{8}{5}$. Therefore

$$
f(x)=-\frac{8}{5} x^{3}+\frac{32}{5} x^{2}+\frac{16}{5} x-32
$$

7 With $f(x)=x^{4}-x^{3}+2 x^{2}-4 x-8$, equation is $f(x)=0$. Possible rational zeros of f are $\pm 1, \pm 2, \pm 4, \pm 8$. Through trial-and-error we find 2 is a zero of f, so that $x-2$ is a factor of $f(x)$, and with synthetic division we obtain $f(x) \div(x-2)=x^{3}+x^{2}+4 x+4$. Now

$$
f(x)=(x-2)\left(x^{3}+x^{2}+4 x+4\right)=(x-2)\left[x^{2}(x+1)+4(x+1)\right]=(x-2)(x+1)\left(x^{2}+4\right) .
$$

From this factorization we obtain the zeros of f, which are also the solutions to the given equation: $\{2,-1,2 i,-2 i\}$.

8 (1) $D_{R}=\{x \mid x \neq-3,1\}$; (2) No symmetry; (3) x-intercept is -1 , and y-intercept is $R(0)=-\frac{1}{3}$; (4) v.a. are $x=-3$ and $x=1$; (5) h.a. is $y=0$; (6) It's helpful to get, say, $R(-4)=-\frac{3}{5}, R(-2)=\frac{1}{3}, R(2)=\frac{3}{5}$ to fully ascertain where the graph is above the x-axis or below it. For (7) the sketch should resemble the graph below.

9a Write as $(x-4)(x+3)<0$. Solution set is $(-3,4)$.

9b Get 0 on one side and a single quotient on the other:

$$
\frac{2 x+1}{x-3}-3 \leq 0 \quad \hookrightarrow \quad \frac{10-x}{x-3} \leq 0
$$

Let $f(x)=\frac{10-x}{x-3}$, so inequality is $f(x) \leq 0$. Now, $f(x)=0$ only if $x=10$, and $f(x)$ is undefined only if $x=3$. Use 3 and 10 to partition the real line into subintervals $(-\infty, 3),(3,10)$, and $(10, \infty)$. Pick a test value in each subinterval to find where $f(x)<0$ using the IVT. Knowing where $f(x)<0$ and where $f(x)=0$ solves $f(x) \leq 0$. Solution set is $(-\infty, 3) \cup[10, \infty)$.

