MATH 120 EXAM #3 Key (Fall 2023)

1 Complete squares to get $(x-2)^2 + (y+1)^2 = 9$. Center is at (2, -1), radius is 3.

2a It's at the midpoint between the given points, so use the midpoint formula to get (4, 5).

2b It's the distance between the center (4, 5) and either of the given points. Use the distance formula to get $r = \sqrt{2}$.

2c With center (4,5) and radius $\sqrt{2}$ the equation is $(x-4)^2 + (y-5)^2 = 2$.

3 With $-\frac{b}{2a} = \frac{5}{4}$, vertex is at $(\frac{5}{4}, f(\frac{5}{4})) = (\frac{5}{4}, -\frac{73}{8})$. The domain is $(-\infty, \infty)$ and the range is $[-\frac{73}{8}, \infty)$.

4 Have $f(x) = a(x-h)^2 + k$ with (h,k) = (-3,-1), so $f(x) = a(x+3)^2 - 1$. Now use the fact that f(-2) = -3 to find that a = -2. Therefore $f(x) = -2(x+3)^2 - 1$.

5 From the long division

$$\begin{array}{r} x^{2} + x + 1 \\ x^{2} - x + 2 \end{array} \underbrace{x^{4} + 2x^{2} - 5x - 16}_{-x^{4} + x^{3} - 2x^{2}} \\ x^{3} - 5x \\ -x^{3} + x^{2} - 2x \\ \hline x^{2} - 7x - 16 \\ -x^{2} + x - 2 \\ \hline -6x - 18 \end{array}$$

we have

$$\frac{x^4 + 2x^3 - 4x^2 - 5x - 6}{x^2 - x + 2} = x^2 + x + 1 - \frac{6x + 18}{x^2 - x + 2}.$$

6 The model is f(x) = C(x+2)[x-(3-i)][x-(3+i)], where 3+i must also be a zero in order to have real coefficients. Expanding yields $f(x) = C(x^3 - 4x^2 - 2x + 20)$, and to satisfy f(1) = -24 we must have $C = -\frac{8}{5}$. Therefore

$$f(x) = -\frac{8}{5}x^3 + \frac{32}{5}x^2 + \frac{16}{5}x - 32.$$

7 With $f(x) = x^4 - x^3 + 2x^2 - 4x - 8$, equation is f(x) = 0. Possible rational zeros of f are $\pm 1, \pm 2, \pm 4, \pm 8$. Through trial-and-error we find 2 is a zero of f, so that x - 2 is a factor of f(x), and with synthetic division we obtain $f(x) \div (x - 2) = x^3 + x^2 + 4x + 4$. Now

$$f(x) = (x-2)(x^3 + x^2 + 4x + 4) = (x-2)[x^2(x+1) + 4(x+1)] = (x-2)(x+1)(x^2 + 4).$$

From this factorization we obtain the zeros of f, which are also the solutions to the given equation: $\{2, -1, 2i, -2i\}$.

8 (1) $D_R = \{x \mid x \neq -3, 1\}$; (2) No symmetry; (3) *x*-intercept is -1, and *y*-intercept is $R(0) = -\frac{1}{3}$; (4) v.a. are x = -3 and x = 1; (5) h.a. is y = 0; (6) It's helpful to get, say, $R(-4) = -\frac{3}{5}$, $R(-2) = \frac{1}{3}$, $R(2) = \frac{3}{5}$ to fully ascertain where the graph is above the *x*-axis or below it. For (7) the sketch should resemble the graph below.

9a Write as (x-4)(x+3) < 0. Solution set is (-3, 4).

9b Get 0 on one side and a single quotient on the other:

$$\frac{2x+1}{x-3} - 3 \le 0 \quad \longleftrightarrow \quad \frac{10-x}{x-3} \le 0.$$

Let $f(x) = \frac{10-x}{x-3}$, so inequality is $f(x) \le 0$. Now, f(x) = 0 only if x = 10, and f(x) is undefined only if x = 3. Use 3 and 10 to partition the real line into subintervals $(-\infty, 3)$, (3, 10), and $(10, \infty)$. Pick a test value in each subinterval to find where f(x) < 0 using the IVT. Knowing where f(x) < 0 and where f(x) = 0 solves $f(x) \le 0$. Solution set is $(-\infty, 3) \cup [10, \infty)$.