$1 f(-3)=-\frac{9}{2}, \quad f(-x)=\frac{x^{2}}{1-x}, \quad f(x+1)=\frac{(x+1)^{2}}{x+2}$.

2a $h(-1)=0, h(2)$ is undefined, $h(4)=4$.
$\mathbf{2 b} \quad D_{g}=(-3,-1] \cup[0,2) \cup(2,4], \quad R_{g}=[0,1) \cup[2,4]$.

3a Symmetric about origin only.
$\mathbf{3 b} \quad R(-x)=\frac{(-x)^{4}-2(-x)^{2}+3}{(-x)^{3}}=-\frac{x^{4}-2 x^{2}+3}{x^{3}}=-R(x)$, so R is odd.

4a

4b The graph may help: $D_{q}=(-\infty, 2) \cup(2, \infty), R_{q}=(-\infty, 0] \cup(1, \infty)$.
5 Slope is $\frac{8}{11}$, so $y-1=\frac{8}{11}(x+3)$ is the equation, which becomes $y=\frac{8}{11} x+\frac{35}{11}$.
6 Equation is $y-(-6)=-\frac{3}{2}(x-2)$, which in slope-intercept form is $y=-\frac{3}{2} x-3$. The y-intercept is -3 .
$7 y-2 x+5=0$ becomes $y=2 x-5$, so the given line has slope 2 , and hence L has slope $-\frac{1}{2}$. Equation for L is thus $y=-\frac{1}{2} x-3$.

8a $\quad D_{f}=(-\infty,-7) \cup(-7,7) \cup(7, \infty)$.

8b $\quad D_{r}=\{x \mid x \neq 0$ and $15 / x \neq 5\}=(-\infty, 0) \cup(0,3) \cup(3, \infty)$.

9a $\quad D_{F}=[2, \infty), D_{G}=\left[-\frac{5}{2}, \infty\right)$.

9b $\quad(F-G)(x)=\sqrt{x-2}-\sqrt{2 x+5}$ with $D_{F-G}=D_{F} \cap D_{G}=[2, \infty)$.

9c $\quad(F / G)(x)=\frac{\sqrt{x-2}}{\sqrt{2 x+5}}$ with $D_{F / G}=[2, \infty)$.

10a $(f \circ g)(x)=f(g(x))=\sqrt{\frac{5}{x-4}}$.

10b $D_{f}=[0, \infty)$ and $D_{g}=\{x \mid x \neq 4\}$, so

$$
\begin{aligned}
D_{f \circ g} & =\left\{x \mid x \in D_{g} \text { and } g(x) \in D_{f}\right\} \\
& =\left\{x \mid x \neq 4 \text { and } \frac{5}{x-4} \geq 0\right\} \\
& =\{x \mid x>4\}=(4, \infty) .
\end{aligned}
$$

11a Set $y=f(x)$, and solve for x :

$$
y=\frac{7-3 x}{3 x+2} \quad \hookrightarrow \quad 3 x y+2 y=7-3 x \quad \hookrightarrow \quad x=\frac{7-2 y}{3 y+3} \quad \hookrightarrow \quad f^{-1}(y)=\frac{7-2 y}{3 y+3}
$$

11b $\quad R_{f^{-1}}=D_{f}=\left(-\infty,-\frac{2}{3}\right) \cup\left(-\frac{2}{3}, \infty\right)$ and $R_{f}=D_{f^{-1}}=(-\infty,-1) \cup(-1, \infty)$.

