## MATH 120 EXAM #1 KEY (FALL 2023)

- **1a** Quadrants I, III.
- 1b Both inequalities are only happy simultaneously in quadrant III.



- **3a** Get 7x 2 = 4x 5, and then x = -1.
- **3b** Multiply by (x+3)(x-2) to get

$$6(x-2) + 20 = 5(x+3) \Rightarrow x = 7.$$

Solution set is  $\{7\}$ .

**4** Let x be the amount invested at 2.19%, so 30,000 - x is the amount invested at 2.45%. Then 0.0219x + 0.0245(30,000 - x) = 705.88, which solves to give x = \$11,200. So \$11,200 was invested at 2.19% and \$18,800 was invested at 2.45%.

**5** 
$$pm = T - D$$
, and so  $p = \frac{T - D}{m}$ .

- **6a** FOIL yields  $18 + 30i 3i 5i^2 = 23 + 27i$ .
- **6b**  $\frac{4i}{1+i} \cdot \frac{1-i}{1-i} = \frac{4i-4i^2}{1-i^2} = \frac{4+4i}{2} = 2+2i.$
- 7 See the long division work below. Since the remainder is 1, we have  $i^{613} = i^1 = i$ .

| 153             |
|-----------------|
| 4)613           |
| 4               |
| $\overline{2}1$ |
| 20              |
| $\overline{13}$ |
| 12              |
| 1               |

8a 
$$x = \frac{-1 \pm \sqrt{1^2 - 4(5)(-2)}}{2(5)} = \frac{-1 \pm \sqrt{41}}{10}.$$

**8b**  $x^2 - 6x = -10 \implies x^2 - 6x + 9 = -10 + 9 \implies (x - 3)^2 = -1 \implies x - 3 = \pm \sqrt{-1}$ , and so we obtain  $x = 3 \pm i$ .

**9** Let x be the length of the sides of the original square. Then x + 2 is the length of the sides of the new square, which has area 36, and so  $(x + 2)^2 = 36$ . Now we get  $x + 2 = \pm 6$ , or  $x = -2 \pm 6$ , which yields 4 cm as the only physically sensible answer.

**10a** Write  $\sqrt{2x+15} = x+6$ , so  $2x+15 = (x+6)^2$ , which becomes  $x^2+10x+21 = 0$ . Solving this quadratic equation yields x = -7, -3. But -7 is extraneous, so the solution set is  $\{-3\}$ .

**10b** Factor:  $(2x^{1/3} - 3)(x^{1/3} + 5) = 0$ , so  $2x^{1/3} = 3$  or  $x^{1/3} = -5$ , and hence  $x = \frac{27}{8}, -125$ . (The substitution  $u = x^{1/3}$  may help but is not essential.)

**10c** We get  $2x - 1 = \pm 5$ , and hence  $x = \frac{1 \pm 5}{2} = -2, 3$ .

**11a** Write  $5x \le -4$ , so that  $x \le -\frac{4}{5}$ . Solution set:  $(-\infty, -\frac{4}{5}]$ .

**11b** We get |-2x+7| > 4, implying -2x+7 > 4 or -2x+7 < -4, and thus  $x < \frac{3}{2}$  or  $x > \frac{11}{2}$ . Solution set is  $(-\infty, \frac{3}{2}) \cup (\frac{11}{2}, \infty)$ .

**11c** Divide by -3 to get  $|x+7| \le 9$ , so  $-9 \le x+7 \le 9$ , and therefore  $-16 \le x \le 2$ . Solution set is [-16, 2].