Math 120 Exam \#1 Key (Fall 2023)

1a Quadrants I, III.

1b Both inequalities are only happy simultaneously in quadrant III.

2

3a Get $7 x-2=4 x-5$, and then $x=-1$.

3b Multiply by $(x+3)(x-2)$ to get

$$
6(x-2)+20=5(x+3) \Rightarrow x=7 .
$$

Solution set is $\{7\}$.

4 Let x be the amount invested at 2.19%, so $\$ 30,000-x$ is the amount invested at 2.45%. Then $0.0219 x+0.0245(30,000-x)=705.88$, which solves to give $x=\$ 11,200$. So $\$ 11,200$ was invested at 2.19% and $\$ 18,800$ was invested at 2.45%.
$5 \mathrm{pm}=T-D$, and so $p=\frac{T-D}{m}$.

6a FOIL yields $18+30 i-3 i-5 i^{2}=23+27 i$.

6b $\frac{4 i}{1+i} \cdot \frac{1-i}{1-i}=\frac{4 i-4 i^{2}}{1-i^{2}}=\frac{4+4 i}{2}=2+2 i$.

7 See the long division work below. Since the remainder is 1 , we have $i^{613}=i^{1}=i$.

$$
\begin{gathered}
153 \\
4 \longdiv { 6 1 3 } \\
\frac{4}{21} \\
\frac{20}{13} \\
\frac{12}{1}
\end{gathered}
$$

$8 \mathbf{a} \quad x=\frac{-1 \pm \sqrt{1^{2}-4(5)(-2)}}{2(5)}=\frac{-1 \pm \sqrt{41}}{10}$.

8b $\quad x^{2}-6 x=-10 \hookrightarrow x^{2}-6 x+9=-10+9 \hookrightarrow(x-3)^{2}=-1 \hookrightarrow x-3= \pm \sqrt{-1}$, and so we obtain $x=3 \pm i$.

9 Let x be the length of the sides of the original square. Then $x+2$ is the length of the sides of the new square, which has area 36 , and so $(x+2)^{2}=36$. Now we get $x+2= \pm 6$, or $x=-2 \pm 6$, which yields 4 cm as the only physically sensible answer.

10a Write $\sqrt{2 x+15}=x+6$, so $2 x+15=(x+6)^{2}$, which becomes $x^{2}+10 x+21=0$. Solving this quadratic equation yields $x=-7,-3$. But -7 is extraneous, so the solution set is $\{-3\}$.

10b Factor: $\left(2 x^{1 / 3}-3\right)\left(x^{1 / 3}+5\right)=0$, so $2 x^{1 / 3}=3$ or $x^{1 / 3}=-5$, and hence $x=\frac{27}{8},-125$. (The substitution $u=x^{1 / 3}$ may help but is not essential.)

10c We get $2 x-1= \pm 5$, and hence $x=\frac{1 \pm 5}{2}=-2,3$.

11a Write $5 x \leq-4$, so that $x \leq-\frac{4}{5}$. Solution set: $\left(-\infty,-\frac{4}{5}\right]$.

11b We get $|-2 x+7|>4$, implying $-2 x+7>4$ or $-2 x+7<-4$, and thus $x<\frac{3}{2}$ or $x>\frac{11}{2}$. Solution set is $\left(-\infty, \frac{3}{2}\right) \cup\left(\frac{11}{2}, \infty\right)$.

11c Divide by -3 to get $|x+7| \leq 9$, so $-9 \leq x+7 \leq 9$, and therefore $-16 \leq x \leq 2$. Solution set is $[-16,2]$.

