Math 120 Exam \#4 Key (Fall 2022)

1a $D_{f}=\{x \mid 4-6 x>0\}=\left(-\infty, \frac{2}{3}\right)$.
1b $\quad D_{f}=\left\{x \left\lvert\, \frac{x+3}{8-x}>0\right.\right\}=(-3,8)$.
$2 \log \frac{x\left(x^{2}-1\right)}{7(x+1)}=\log \frac{x(x-1)}{7}$.
$3 \log _{b} \sqrt[3]{\frac{25}{16}}=\frac{1}{3} \log _{b}\left(\frac{25}{16}\right)=\frac{2}{3} \log _{b}\left(\frac{5}{4}\right)=\frac{2}{3}\left(\log _{b} 5-2 \log _{b} 2\right)=\frac{2}{3}(\beta-2 \alpha)$.

4a $\quad 2^{3(1-x)}=2^{2(x+2)}$ implies $3(1-x)=2 x+4$, and so $x=-\frac{1}{5}$.

4b Let $u=2^{x}$ to get $u^{2}+u-12=0$, and thus $u=-4$ or $u=3$. Now, $2^{x}=-4$ has no solution, but $2^{x}=3$ gives $x=\frac{\ln 3}{\ln 2}$.

4c Write $\log _{3}(x+6)(x+4)=1$, so $(x+6)(x+4)=3$ and hence $x=-7,-3$. But $x=-7$ is extraneous. Solution set is $\{-3\}$.

4d $|\ln x|=4$ implies $\ln x= \pm 4$, and hence $x=e^{ \pm 4}$.

5 For $A(t)=A_{0} e^{-k t}$ we have $\frac{1}{2} A_{0}=A(7340)=A_{0} e^{-7340 k}$, so $e^{-7340 k}=\frac{1}{2}$, and hence $k=0.00009443$. The completed model is now $A(t)=A_{0} e^{-0.00009443 t}$, and we find t such that $A(t)=0.01 A_{0}$. This implies

$$
A_{0} e^{-0.00009443 t}=0.01 A_{0}
$$

or $e^{-0.00009443 t}=0.01$. Solving, we get $t \approx 48,768$ years.

6 Growth rate is 0.82%. As for the doubling time, it is given by $(\ln 2) / k=(\ln 2) / 0.0082=84.5$ years.

7 Solution is $(-6,-2)$.

8 Letting x be the first number and y the second number, we obtain the system

$$
\left\{\begin{array}{l}
3 x+2 y=8 \\
2 x-y=3
\end{array}\right.
$$

Solving yields $x=2$ and $y=1$.

9 Adding the last two equations gives $4 x+3 y=4$. Use this and the first equation to solve for x and y, and finally get the solution $(x, y, z)=(1,0,-3)$.

