Math 120 Exam \#4 Key (Fall 2021)

$1 A=6000(1+0.0088 / 4)^{16}=\$ 6214.72, A=6000 e^{0.0084(4)}=\$ 6205.03$. The quarterly compounded investment reaps the greater reward.

2a $(-\infty, 9)$
2b Need $x^{2}-4 x-12>0$, so domain is $(-\infty,-2) \cup(6, \infty)$.
$3 \log _{4} \frac{x^{1 / 3}(x+1)^{2}}{y^{1 / 3}}$.
$4 C-2 A$

5a $\quad 5^{2-x}=5^{-3}$ implies $2-x=-3$, so $x=5$.

5b Let $u=e^{x}$, so $u^{2}-2 u-3=0$, giving $e^{x}=u=-1,3$. But $e^{x}=-1$ has no solution, leaving $e^{x}=3$ to yield the final solution $x=\ln 3$.

5c $\quad 2^{5}=4 x+1$, giving $x=\frac{31}{4}$.

5d Write $\log (x+3)(x-2)=\log 14$, so $(x+3)(x-2)=14$, giving $x=-5,4$. But -5 is extraneous, so solution set is $\{4\}$.

6 For $A(t)=A_{0} e^{-k t}$ we have $\frac{1}{2} A_{0}=A(7340)=A_{0} e^{-7340 k}$, so $e^{-7340 k}=\frac{1}{2}$, and hence $k=0.00009443$. The completed model is now $A(t)=A_{0} e^{-0.00009443 t}$, and we find t such that $A(t)=0.18 A_{0}$. This implies

$$
A_{0} e^{-0.00009443 t}=0.18 A_{0}
$$

or $e^{-0.00009443 t}=0.18$. Solving, we get $t \approx 18,159$ years.
7 Solution is $(-6,-2)$.
$8 x \mathrm{~m} \ell$ of 34% solution added to $y \mathrm{~m} \ell$ of 4% solution are to be mixed to give $x+y=100 \mathrm{~m} \ell$ of 7% solution. Equations in the system are $x+y=100$ and $0.34 x+0.04 y=0.07(100)=7$. Solution: $10 \mathrm{~m} \ell$ of 34% and $90 \mathrm{~m} \ell$ of 4%.

9 Solution is $(0,1,2)$.

10 Solution set is $\{(0,0),(-2,2),(2,2)\}$.

11 Two equations result: $2 x+2 y=26$ and $x y=40$. Solving gives a $5 \mathrm{~m} \times 8 \mathrm{~m}$ rectangle.

