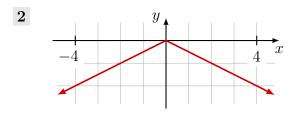
- **1a** Quadrants III, IV
- 1b Quadrant IV



3a Multiply by 2(x+3)(x-2) to get $6(x-2) = 5(x-2) + 2(x+3) \Rightarrow 6x - 12 = 7x - 4 \Rightarrow x = -8.$

3b Equation becomes 4x + 7 = 4x + 7, which is satisfied for any real x, and so the solution set is \mathbb{R} (the set of real numbers).

4 Say x was invested at 15%, so that 15,000-x was invested at -7%, and then 0.15x - 0.07(15,000 - x) = 1590.

Solving gives x = 12,000, so \$12,000 was invested at 15% and \$3000 was invested at -7%.

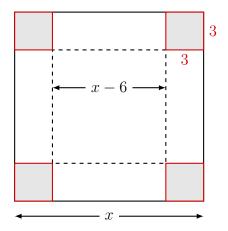
$$5 \quad b = \frac{2A}{h} - a.$$

- **6a** FOIL procedure gives 21 20i.
- **6b** $\frac{2+4i}{2-i} \cdot \frac{2+i}{2+i} = \frac{4+10i+4i^2}{4-i^2} = \frac{10i}{5} = 2i.$
- 7 The division 513/4 has remainder 1, and so $i^{513} = i^1 = i$.
- 8a Factors as (4x 1)(x 3) = 0, so that $x = \frac{1}{4}, 3$.

8b We get $x^2 - 2x + 1 = \frac{3}{2}$, or $(x - 1)^2 = \frac{3}{2}$, so that $x = 1 \pm \sqrt{\frac{3}{2}} = 1 \pm \frac{\sqrt{6}}{2}$.

8c
$$x = \frac{2 \pm \sqrt{(-2)^2 - 4(1)(17)}}{2(1)} = \frac{2 \pm 8i}{2} = 1 \pm 4i$$

9 Let the original sheet metal have sides of length x. Referring to the figure below, the volume V of the resultant box will be $3(x-6)^2$, which must equal 80, and so $3(x-6)^2 = 80$. Solving this equation leads to $x = 6 \pm \sqrt{\frac{80}{3}}$. Since $x = 6 - \sqrt{\frac{80}{3}}$ results in x - 6 being negative, we must have $x = 6 + \sqrt{\frac{80}{3}}$. The dimensions of the box are thus $\sqrt{\frac{80}{3}}$ cm $\times \sqrt{\frac{80}{3}}$ cm $\times 3$ cm.



10a Write $\sqrt{2x-3} = 1 + \sqrt{x-2}$, square to get $2x - 3 = 1 + 2\sqrt{x-2} + (x-2)$, and then isolate the remaining radical to get

 $2\sqrt{x-2} = x-2 \Rightarrow 4(x-2) = (x-2)^2 \Rightarrow x^2 - 8x + 12 = 0.$

The trinomial factors, giving (x-6)(x-2) = 0, and therefore x = 2, 6.

10b Factor: $(2x^{1/3} - 3)(x^{1/3} + 5) = 0$, so $2x^{1/3} = 3$ or $x^{1/3} = 5$, and hence $x = \frac{27}{8}, -125$. (The substitution $u = x^{1/3}$ may help but is not essential.)

10c We get |x+1| = -4, which is impossible and so the solution set is \emptyset .

11a Solving leads to $x \ge 8$, so the solution set is $[8, \infty)$.

11b We get |2x + 2| < 8, implying -8 < 2x + 2 < 8, and finally -5 < x < 3. Solution set is (-5, 3).

11c Divide by -3 to get $|x+7| \le 9$, so $-9 \le x+7 \le 9$, and therefore $-16 \le x \le 2$. Solution set is [-16, 2].