Math 120 Exam \#3 Key (Fall 2014)

1 Solve $-6 x+2 y=3$ for y to get $y=3 x+\frac{3}{2}$, which shows the slope for the line given by $-6 x+2 y=3$ to be 3 . Since the line L through $(5,-3)$ is parallel to this line, its slope must also be 3 . So the equation for L is $y-(-3)=3(x-5)$, or

$$
y=3 x-18
$$

2 Solve $4 x-3 y=6$ for y to get $y=\frac{4}{3} x-2$, which shows the slope for the line given by $4 x-3 y=6$ to be $\frac{4}{3}$. Since the line L through $(1,9)$ is perpendicular to this line, its slope must be $-\frac{3}{4}$. So the equation for L is $y-9=-\frac{3}{4}(x-1)$, or

$$
y=-\frac{3}{4} x+\frac{39}{4} .
$$

3 Domain is $(-\infty, \infty)$ and range is $(-\infty, \infty)$. The relation is not a function.
4a Domain is $[0, \infty)$ and range is $[3, \infty)$
4b Domain is $(-\infty, \infty)$ and range is $[-25, \infty)$
$5 \mathbf{a} \operatorname{Dom}(\varphi)=(-\infty, 4) \cup(4, \infty)$

5b $\operatorname{Dom}(\omega)=\{x: x+4 \geq 0\}=\{x: x \geq-4\}=[-4, \infty)$

5c $\operatorname{Dom}(\psi)=\left\{x: 81-x^{2} \geq 0\right\}=\left\{x: x^{2} \leq 81\right\}=\{x:-9 \leq x \leq 9\}=[-9,9]$
6a By definition

$$
(\varphi+\psi)(x)=\varphi(x)+\psi(x)=\frac{x+1}{4-x}+\sqrt{81-x^{2}}
$$

and

$$
\operatorname{Dom}(\varphi+\psi)=\operatorname{Dom}(\varphi) \cap \operatorname{Dom}(\psi)=[(-\infty, 4) \cup(4, \infty)] \cap[-9,9]=[-9,4) \cup(4,9]
$$

6b By definition

$$
(\varphi / \omega)(x)=\varphi(x) / \omega(x)=\frac{x+1}{4-x} \cdot \frac{1}{\sqrt{x+4}}=\frac{x+1}{(4-x) \sqrt{x+4}}
$$

and

$$
\begin{aligned}
\operatorname{Dom}(\varphi / \omega) & =\{x: x \in \operatorname{Dom}(\varphi) \cap \operatorname{Dom}(\omega) \text { and } \omega(x) \neq 0\} \\
& =\{x: x \in(-\infty, 4) \cup(4, \infty) \text { and } x \in[-4, \infty) \text { and } x \neq-4\} \\
& =(-4,4) \cup(4, \infty)
\end{aligned}
$$

6c By definition

$$
(\omega \circ \omega)(x)=\omega(\omega(x))=\omega(\sqrt{x+4})=\sqrt{\sqrt{x+4}+4}
$$

and

$$
\begin{aligned}
\operatorname{Dom}(\omega \circ \omega) & =\{x: x \in \operatorname{Dom}(\omega) \text { and } \omega(x) \in \operatorname{Dom}(\omega)\} \\
& =\{x: x \geq-4 \text { and } \sqrt{x+4} \geq-4\} \\
& =\{x: x \geq-4\}=[-4, \infty)
\end{aligned}
$$

6d By definition

$$
(\omega \circ \psi)(x)=\omega(\psi(x))=\omega\left(\sqrt{81-x^{2}}\right)=\sqrt{\sqrt{81-x^{2}}+4},
$$

and

$$
\begin{aligned}
\operatorname{Dom}(\omega \circ \psi) & =\{x: x \in \operatorname{Dom}(\psi) \text { and } \psi(x) \in \operatorname{Dom}(\omega)\} \\
& =\left\{x:-9 \leq x \leq 9 \text { and } \sqrt{81-x^{2}} \geq-4\right\} \\
& =\left\{x:-9 \leq x \leq 9 \text { and } x^{2} \leq 81\right\} \\
& =\{x:-9 \leq x \leq 9\}=[-9,9] .
\end{aligned}
$$

7 Let $f(x)=\sqrt[5]{x}$ and $g(x)=2 x-9$. Then

$$
(f \circ g)(x)=f(g(x))=f(2 x-9)=\sqrt[5]{2 x-9}=H(x)
$$

8 Suppose that $f(a)=f(b)$. Then

$$
2 a^{3}-1=2 b^{3}-1 \Rightarrow 2 a^{3}=2 b^{3} \Rightarrow a^{3}=b^{3} \Rightarrow a=b
$$

Therefore f is one-to-one.
9 Since $g(1)=1^{6}-12=-11=(-1)^{6}-12=g(-1), g$ is not one-to-one.
10a Suppose that $f(x)=y$. Then

$$
y=\frac{x+2}{1-3 x} \Rightarrow y-3 x y=x+2 \Rightarrow 3 x y+x=y-2 \Rightarrow x=\frac{y-2}{3 y+1}
$$

and since $f^{-1}(y)=x$ by definition, it follows that

$$
f^{-1}(y)=\frac{y-2}{3 y+1} .
$$

10b $\operatorname{Ran}(f)=\operatorname{Dom}\left(f^{-1}\right)=(-\infty,-1 / 3) \cup(-1 / 3, \infty)$
10c $\operatorname{Ran}\left(f^{-1}\right)=\operatorname{Dom}(f)=(-\infty, 1 / 3) \cup(1 / 3, \infty)$

