1. 10 pts. each Solve each equation by the indicated method.
(a) $6 x^{2}+5 x=4$ (by factoring)
(b) $3 x^{2}=6 x+1$ (by completing the square)
2. 10 pts. Solve $h=-16 t^{2}+v_{0} t+s_{0}$ for t using the quadratic formula.
3. 15 pts. An inlet pipe can fill a pool in 7 hours, and an outlet pipe can empty the pool in 9 hours. How long would it take to fill the pool if both pipes are left open?
4. 15 pts . A can of pinto beans has surface area $371 \mathrm{~cm}^{2}$, and its height is 12 cm . What is the diameter of the circular top? Round to the nearest hundredth.
5. 10 pts. each Solve each equation.
(a) $\frac{1}{x-1}=\frac{2}{x^{2}}$
(b) $\frac{x+5}{x-2}=\frac{5}{x+2}+\frac{28}{x^{2}-4}$
(c) $\sqrt{5-x}+1=x-2$
(d) $3-\sqrt{x}=\sqrt{2 \sqrt{x}-3}$
(e) $3 x^{4}+10 x^{2}-25=0$
(f) $|x-1|=|11-5 x|$
6. 10 pts. each Solve each inequality. Write each solution set in interval notation.
(a) $6 x-(3-2 x) \leq 3 x-7$
(b) $-\frac{1}{2}<\frac{4-3 x}{5} \leq \frac{1}{4}$
(c) $x^{2}+5 x+6<0$
(d) $\frac{x+1}{x-5} \geq 4$
(e) $|4-3 x|>2$
(f) $|x-3|>0$
(g) $|5-x| \leq 12$
7. 10 pts. Write $x^{2}+5 x+y^{2}-6 y=3$ in Center-Radius form, then give the center and radius of the circle.
8. 10 pts. Suppose that receiving stations S_{1}, S_{2}, and S_{3} are located on a coordinate plane at the points $(2,4),(1,-3)$, and $(-3,-6)$, respectively. The epicenter of an earthquake is determined to be 5 units from $S_{1}, 5$ units from S_{2}, and 10 units from S_{3}. At what coordinates is the epicenter located?

EXTRA CREDIT. 10 pts .
A problem from the ancient Chinese work Arithmetic in Nine Sections: There is a bamboo 10 feet high, the upper end of which, being broken, reaches the ground 3 feet from the stem. Find the height of the break.

