3.1 - Quadratic Functions

We say f is a quadratic function if, for all real x and some constants a, b, c, with $a \neq 0$, we have

$$
f(x)=a x^{2}+b x+c \quad \text { (standard form of a quadratic function) }
$$

The graph of a quadratic function is always a parabola, a kind of conic section.

Given a quadratic function, we're concerned with finding the coordinates of the associated parabola's vertex. To do this, we get the quadratic function's expression into vertex form:

$$
f(x)=a(x-h)^{2}+k \quad \text { (Vertex form of quadratic function) }
$$

If we suppose for the sake of argument that $a>0$, then since $(x-h)^{2} \geq 0$ for all real x, we have $a(x-h)^{2} \geq 0$ for all x, and thus

$$
f(x)=a(x-h)^{2}+k \geq k
$$

for all $x \in D_{f}=(-\infty, \infty)$. This means that the points on the graph of f have y -coordinates that are no lower than k , and thus the vertex of the parabola has y-coordinate k. Since $f(h)=k$, we then find that the vertex has x-coordinate h. Note: $R_{f}=[k, \infty)$ if $a>0$.

Now to find h and k in terms of a, b, and c :

$$
\begin{aligned}
& f(x)=a x^{2}+b x+c \\
&=a\left(x^{2}+\frac{b}{a} x\right)+c \\
&=a\left(x^{2}+\frac{b}{a} x+\frac{\left(\frac{b}{2 a}\right)^{2}}{4}\right)+c-\frac{a}{a} \downarrow\left(\frac{b}{2 a}\right)^{2} \\
& \frac{b}{2 a} \\
&=a\left(x+\frac{b}{2 a}\right)^{2}+\left(c-\frac{b^{2}}{4 a}\right) \\
&= a(x-h)^{2}+l \\
& \downarrow \quad \downarrow=-\frac{b}{2 a} \quad k=c-\frac{b^{2}}{4 a}
\end{aligned}
$$

$f(x)=a x^{2}+b x^{2}+c$ has vertex at $(h, k)=\left(-\frac{b}{2 a}, c-\frac{b^{2}}{4 a}\right)$
Since $f(h)=k$, we can say vertex is at $(h, f(h))$, where $h=-\frac{b}{2 a}$.
Axis of Symmetry of a parabola with vertex (h, k) is the vertical line $\mathrm{x}=\mathrm{h}$.

16 Find the vertex \& axis of symmetry for $f(x)=-2 x^{2}+8 x-1$.
Here we have $a=-2, b=8$, and $c=-1$.
The x-coordinate of the vertex is $h=-\frac{b}{2 a}=-\frac{8}{2(-2)}=2$
The y-coordinate of the vertex is $k=f(h)=f(2)=-2(2)^{2}+8(2)-1=7$ Vertex is at $(\mathrm{h}, \mathrm{k})=(2,7)$.
Axis of symmetry is $x=2$.

If $f(x)=a x^{2}+b x+c$, then $D_{f}=(-\infty, \infty)$ in any case, and

$$
R_{f}=\left\{\begin{array}{ll}
{[k, \infty),} & \text { if } a>0 \\
(-\infty, k], & \text { if } a<0
\end{array} \quad\left(k=-\frac{b}{2 a}\right)\right.
$$

Ex Find the domain \& range for $f(x)=-2 x^{2}+8 x-1$.
$D_{f}=(-\infty, \infty)$ as always. Meanwhile: since $a=-2<0$ and we found that $k=7$ in the previous example, we have $R_{f}=(-\infty, k]=(-\infty, 7]$
$36 \quad f(x)=3 x^{2}-2 x-4$.
Here we have $a=3, b=-2, c=-4,50 \ldots$

- Vertex:

$$
\begin{aligned}
& h=-\frac{b}{2 a}=-\frac{-2}{2(3)}=\frac{1}{3} \\
& k=f(h)=f\left(\frac{1}{3}\right)=3\left(\frac{1}{3}\right)^{2}-2\left(\frac{1}{3}\right)-4=-\frac{13}{3}
\end{aligned}
$$

So vertex is at $(1 / 3,-13 / 3)$

- Axis of Symmetry: $x=\frac{1}{3}$

$$
\text { - } D_{f}=(-\infty, \infty)
$$

- Since $a=3>0$, range is $R_{f}=[k, \infty)=\left[-\frac{13}{3}, \infty\right)$
- x-intercepts: Find any real values of x for which $f(x)=0 \ldots$

$$
\begin{aligned}
& f(x)=0 \Rightarrow 3 x^{2}-2 x-4=0 \Rightarrow \\
& x=\frac{-(-2) \pm \sqrt{(-2)^{2}-4(3)(-4)}}{2(3)}=\frac{2 \pm \sqrt{4+48}}{6}=\frac{2 \pm \sqrt{52}}{6} \Rightarrow \\
& x=\frac{2 \pm 2 \sqrt{13}}{6}=\frac{1 \pm \sqrt{13}}{3}
\end{aligned}
$$

- y-intercept: $f(0)=-4$

3.2 - Polynomial Functions

We say f is a polynomial function if $f(x)$ equals some polynomial for all real x . More precisely, for n a whole number, f is a polynomial function if

$$
f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{2} x^{2}+a_{1} x+a_{0} \text {, (standard form) }
$$

for all $x \in(-\infty, \infty)$. Here $a_{0}, a_{1}, \ldots, a_{n}$ are constants called coefficients. If $a_{n} \neq 0$, then a_{n} is the leading coefficient of the polynomial

$$
a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{2} x^{2}+a_{1} x+a_{0},
$$

and we say the degree of the polynomial is n. The degree of a polynomial is thus the highest power of x in the polynomial that has a nonzero coefficient.

Ex. $f(x)=-2 x^{4}-3 x+11$ is a degree 4 polynomial function. We may write $\operatorname{deg}(f)=4$. \leftarrow If $f(x)$ is a degree 4 polynomial, we also say f is a degree 4 polynomial function.

- $g(x)=8-2 x^{3}+4 x-108 x^{5}$ is a degree 5 polynomial
function. That is, $\operatorname{deg}(g)=5$.
- $h(x)=2$. Since 2 is essentially the same as $2 x^{\circ}$, so that $h(x)=2 x^{\circ}$, we see that h is a degree 0 poly. func.; that is, $\operatorname{deg}(\mu)=0$.
- $q(x)=0$. By definition the zero function has degree $-\infty$. So $\operatorname{deg}(q)=-\infty$.

A number c is a zero for a function f if $\mathrm{f}(\mathrm{c})=0$. In this section and in sections 3.3 and 3.4 , which are all about polynomial functions, we will occasionally let a complex number to be put into a polynomial function f. A polynomial function is then viewed as having domain consisting of all complex numbers as well as all real numbers.

So, $\mathrm{f}(\mathrm{c})=0$ implies that c is an x -intercept for f only if c is real-valued.
(There are no complex numbers on the x -axis, after all.)
Given a polynomial function f , the multiplicity of a zero c is equal to the number of factors $\mathrm{x}-\mathrm{c}$ that the polynomial $\mathrm{f}(\mathrm{x})$ has in its full factorization.

The degree of a polynomial always equals the sum of the multiplicities of its zeros.

Ex Let $f(x)=6(x-1)(2 x+1)^{2}(x+3)^{5}$. Then f has
zeros $1,-\frac{1}{2},-3$:

- When $x=1$, we get $x-1=0$. Then $f(1)=0$
- When $x=-\frac{1}{2}$, we get $2 x+1=0$. \longrightarrow Then $f(-1 / 2)=0$
- When $x=-3$, we get $x+3=0$. \longrightarrow Then $f(-3)=0$
- Multiplicity of the zero 1 is 1 , since the factorization of $f(x)$ has only one $x-1$ factor.
- Multiplicity of the zero $-\frac{1}{2}$ is 2, since the factorization of $f(x)$ has 2 factors of $2 x+1$.
- Multiplicity of the zero -3 is 5, since the factorization of $f(x)$ hes 5 factors of $x+3$.
- $\operatorname{deg}(f)=1+2+5=8$ (the sum of the multiplicities)

If a zero c for f has odd multiplicity, then the graph of f will cross the x -axis at c. If zero c has even multiplicity, then the graph of f will touch but not cross the x-axis (we'll say the graph "bounces off" the x -axis).

Ex We found that $f(x)=6(x-1)(2 x+1)^{2}(x+3)^{5}$ has zeros $1,-\frac{1}{2},-3$. Multiplicity of 1 is 1 , which is odd, so graph of f crosses the x-axis at $x=1$. Multiplicity of $-1 / 2$ is 2 , which is even, so graph bounces off x-axis at $x=-1 / 2$. Multiplicity of -3 is 5 , which is odd, so graph crosses x-axis at $x=-3$.

Intermediate Value Theorem for Polynomial Functions (IVT):
Let f be a polynomial function, let $\mathrm{a}<\mathrm{b}$, and suppose $\mathrm{f}(\mathrm{a}) \neq \mathrm{f}(\mathrm{b})$. If M is a value that lies between $f(a)$ and $f(b)$, then there exists some $a<c<b$ such that $f(c)=M$.

40 Use the IVT to show that the polynomial function has a zero between 2 and 3: $\quad f(x)=3 x^{3}-8 x^{2}+x+2$.

- We have

$$
\begin{aligned}
& f(2)=3 \cdot 2^{3}-8 \cdot 2^{2}+2+2=-4<0 \\
& f(3)=3 \cdot 3^{3}-8 \cdot 3^{2}+3+2=14>0
\end{aligned}
$$

- So $M=0$ is a value that lies between $f(2)<0$ \& $f(3)>0$.

By the IVT there exists some c between 2 and 3 (i.e. $2<c<3$) such that $f(c)=0$. \square (Note: we're not supposed to find c exactly.)

Ex Consider $f(x)=3 x^{3}-8 x^{2}+x+2$ again.

- $f(2.5)=3(2.5)^{3}-8(2.5)^{2}+2.5+2=1.375 \Rightarrow f(2.5)>0$.

In \#40 we found $f(2)<0$, so IVT implies there is some $2<c<2.5$ such that $f(c)=0$.

- $f(2.25) \approx-2.08<0$, while $f(2.5)>0$. So IVT implies $f(c)=0$ for some $2.25<c<2.5$.
- Continuing this process, we can hone in on the zero c to an arbitrary degree of accuracy. This is the "bisection method," which is not as efficient as Newton's method, but Newton's method requires calculus.
3.3 - Dividing Polynomials

It is important to know how to do polynomial long division, so an example or two will be done by way of review.

6 Divide using long division: $\left(6 x^{3}+17 x^{2}+27 x+20\right) \div(3 x+4)$

$$
\begin{aligned}
& \qquad \begin{array}{l}
\text { divisor } \\
\qquad \begin{array}{r}
2 x^{2}+3 x+5 \\
3 x + 4 \longdiv { 6 x ^ { 3 } + 1 7 x ^ { 2 } + 2 7 x + 2 0 } \\
\frac{6 x^{3}+8 x^{2}}{9 x^{2}+27 x} \\
9 x^{2}+12 x \\
15 x+20
\end{array} \\
\frac{15 x+20}{0} \longleftarrow \text { quotient } \\
\\
\qquad \text { remaindend }
\end{array}
\end{aligned}
$$

$$
\text { So } \begin{aligned}
\frac{6 x^{3}+17 x^{2}+27 x+20}{3 x+4} & =2 x^{2}+3 x+5 \\
&
\end{aligned}
$$

Note that we thus have $6 x^{3}+17 x^{2}+27 x+20=(3 x+4)\left(2 x^{2}+3 x+5\right)$, so $6 x^{3}+17 x^{2}+27 x+20$ has been partially factored!

16 Divide $\frac{2 x^{5}-8 x^{4}+2 x^{3}+x^{2}}{2 x^{3}+1}$

$$
\begin{gathered}
2 x ^ { 3 } + 1 \longdiv { 2 x ^ { 2 } - 4 x + 1 } \\
\frac{2 x^{5}+2 x^{3}+x^{2}}{-8 x^{4}+2 x^{3}+0 x^{2}+0 x} \\
\frac{-8 x^{4}+4 x}{2 x^{3}+4 x \longleftarrow}+0 x-(-4 x) \\
\frac{2 x^{3}+1}{4 x-1} \\
\frac{2 x^{5}-8 x^{4}+2 x^{3}+x^{2}}{2 x^{3}+1}=x^{2}-4 x+1+\frac{4 x-1}{2 x^{3}+1}
\end{gathered}
$$

Synthetic division is a faster way to divide polynomials, but it is more specialized: the divisor must be of the form x-c for some constant c.

Say we want to do the division $\frac{f(x)}{x-c}$, where f is a polynomial function and so $f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{2} x^{2}+a_{1} x+a_{0}$, The set-up \& procedure:
(2)

Ex Divide using synthetic division:

$$
\left(5 x^{4}+2 x^{3}+x-4\right) \div(x-2)
$$

This is $\frac{f(x)}{x-c}$ with $f(x)=5 x^{4}+2 x^{3}+x-4 \& x-c=x-2$, so that $c=2$.

$$
\begin{aligned}
& \text { 2) } \begin{array}{l}
\begin{array}{lllll}
5 & 2 & 0 & 1 & -4 \\
\downarrow & 10 & 24 & 48 & 98
\end{array} \\
\begin{array}{l}
\text { quotient } \\
\begin{array}{lll}
5 & 12 & 24 \\
\hline
\end{array} \\
\underbrace{94}_{\text {remainder }}
\end{array} \underbrace{94} \\
\frac{5 x^{4}+2 x^{3}+x-4}{x-2}=5 x^{3}+12 x^{2}+24 x+49+\frac{94}{x-2}
\end{array}
\end{aligned}
$$

Contrast with the long division:

$$
\begin{aligned}
& x - 2 \longdiv { 5 x ^ { 4 } + 2 x ^ { 3 } + 1 2 x ^ { 2 } + 2 4 x + 4 9 } \\
& \frac{5 x^{2}+x-4}{\frac{5 x^{3}-12 x^{3}}{} \downarrow} \begin{array}{l}
\frac{12 x^{3}-24 x^{2}}{24 x^{2}+x} \\
\frac{24 x^{2}-48 x}{49 x-4}
\end{array}
\end{aligned}
$$

Ex Divide by synthetic division: $\frac{x^{5}+32}{x+2}$
This is $\frac{x^{5}+32}{x-(-2)}$, so $c=-2$

$$
\begin{aligned}
& \begin{array}{llllllll}
-2 & 1 & 0 & 0 & 32
\end{array} \\
& \begin{array}{cccccc}
\downarrow & -2 & 4 & -8 & 16 & -32 \\
\hline 1 & -2 & 4 & -8 & 16 & 0
\end{array} \\
& \frac{x^{5}+32}{x+2}=1 x^{4}-2 x^{3}+4 x^{2}-8 x+16+\frac{0}{x+2} \\
& \frac{x^{5}+32}{x+2}=x^{4}-2 x^{3}+4 x^{2}-8 x+16
\end{aligned}
$$

Note this means $x^{5}+32=(x+2)\left(x^{4}-2 x^{3}+4 x^{2}-8 x+16\right)$
Fact: when dividing a polynomial $f(x)$ by $x-c$, the quotient $q(x)$ is a polynomial with degree one less than $f(x)$, and the remainder is a constant.

Remainder Theorem (RT) Let f be a polynomial function. The remainder of the division

$$
\frac{f(x)}{x-c}
$$

is equal to $f(c)$.
Proof: By the fact above, $\frac{f(x)}{x-c}=q(x)+\frac{r}{x-c}$. Multiply both sides by $x-c$:

$$
\begin{aligned}
& (x-c) \frac{f(x)}{x-c}=\left(q(x)+\frac{r}{x-c}\right)(x-c) \\
& f(x)=q(x)(x-c)+r .
\end{aligned}
$$

Now we note that

$$
f(c)=q(c)(c-c)+r=q(c) \cdot 0+r=r . Q E D .
$$

Ex Let $f(x)=5 x^{4}+2 x^{3}+x-4$. Find $f(2)$.

- By RT, $f(2)$ equals the remainder of $\frac{f(x)}{x-2}$. In an earlier example we found the remainder to be 94 , so: $f(2)=94$
- Direct verification:

$$
\begin{aligned}
f(2) & =5(2)^{4}+2(2)^{3}+2-4=5 \cdot 16+2 \cdot 8-2 \\
& =80+16-2=96-2=94
\end{aligned}
$$

Let P and Q be two statements. To write "P if and only if Q" means: "If P, then Q; and if Q, then P."

Factor Theorem (FT) Let f be a polynomial function. Then $x-c$ is a factor of $f(x)$ if and only if $f(c)=0$.

Proof: This is in two parts:

- Proof that "If $x-c$ is a factor of $f(x)$, then $f(c)=0$ ": Suppose $x-c$ is a factor of $f(x)$. This means there exists a polynomial $p(x)$ such that $f(x)=(x-c) p(x)$. Then $f(c)=(c-c) p(c)=0 \cdot p(c)=0$.
- Proof that "If $f(c)=0$, then $x-c$ is a factor of $f(x)$." suppose $f(c)=0$. By RT, $f(c)$ is the remainder of
$\frac{f(x)}{x-c}$. Thus $\frac{f(x)}{x-c}=q(x)+\frac{0}{x-c}=q(x)$, where the polynomial $q(x)$ is the quotient. Now,
$\frac{f(x)}{x-c}=q(x) \Rightarrow f(x)=(x-c) q(x)$, which shows that $x-c$ is a factor of $f(x)$.

74 Find k so that $4 x+3$ is a factor of $20 x^{3}+23 x^{2}-10 x+k$.

- Let $f(x)=20 x^{3}+23 x^{2}-10 x+k$. To have $4 x+3$ be a factor of $f(x)$ means $f(x)=(4 x+3) p(x)$ for some polynomial $p(x)$. Then $f(x)=4(x+3 / 4) p(x)$, so $x+3 / 4$ is a factor of $f(x)$.
- Factor Theorem states: $x+3 / 4$ is a factor of $f(x)$ if \& only if $f(-3 / 4)=0$.
- B_{y} the Remainder Theorem $f(-3 / 4)$ is the remainder of $\frac{f(x)}{x+3 / 4}$.

| $-3 / 4$ | 20 23 -10 k
 -15 -6 12
 20 8 -16 $k+12$ |
| :---: | ---: | ---: | ---: | ---: |$\quad \rightarrow f(-3 / 4)=k+12$.

- We want $f(-3 / 4)=0$, or $k+12=0$, or $k=-12$

3.4 - Zeros of Polynomial Functions

Rational Zero Theorem (RZT)

Suppose $f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}$ has integer coefficients.
If r is a rational zero for f, the r has the form

$$
\frac{\text { factor of } a_{0}}{\mid \text { factor of } a_{n} \mid}
$$

22 Solve $2 x^{3}-5 x^{2}-6 x+4=0$. Let $f(x)=2 x^{3}-5 x^{2}-6 x+4$, so the problem is to find all x such that $f(x)=0$.
a) By the RZT, if r is a rational number and $f(r)=0$, then r must have the form

$$
\begin{aligned}
& \Gamma^{4=(1)(4)=(-1)(-4)=(2)(2)=(-2)(-2)} \\
& \frac{\text { factor of } 4}{\mid \text { factor of } 2 \mid}=\frac{ \pm 1, \pm 2, \pm 4}{| \pm 1, \pm 2|}=\frac{ \pm 1, \pm 2, \pm 4}{1,2} \\
& = \pm 1, \pm 2, \pm 4, \pm \frac{1}{2}
\end{aligned}
$$

The eight numbers in this list represent the only rational numbers that MIGHT be a zero for f .
b) Try rational numbers in the list until either a zero for f is found, or we find that the list contains no zeros for f .

We will try 1 to start. Is $f(1)=0$? We will determine this by dividing $f(x)$ by $x-1$. By the RT, if the remainder is 0 , then we will know that $f(1)=0$.

We do the division $\frac{f(x)}{x-1}$ to start: $\frac{2 x^{3}-5 x^{2}-6 x+4}{x-1}$

1 | 2 | -5 | -6 | 4 |
| ---: | ---: | ---: | ---: |
| 2 | -3 | -9 | |
| 2 | -3 | -9 | -5 |\(\quad \longrightarrow \begin{aligned} \& So:

\& f(1)=-5 \neq 0\end{aligned}\)

$$
\begin{aligned}
& \text { Try - 1: -1] } \left.\begin{array}{lrrr}
2 & -5 & -6 & 4 \\
\hline & -2 & 7 & -1 \\
\hline 2 & -7 & 1 & 3
\end{array}\right] \text { so } f(-1)=3 \neq 0 \\
& \text { Try 2: } \left.\frac{2]}{2} \begin{array}{rrrr}
2 & -5 & 4 \\
4 & -2 & -16
\end{array}\right] \text { So } f(2)=-12 \neq 0 \\
& \text { Try-2:-2] } \left.\begin{array}{cccc}
2 & -5 & -6 & 4 \\
-4 & 18 & -24
\end{array}\right] \text { So } f(-2)=-20 \neq 0 \\
& \text { Try } \left.\frac{1}{2}: \frac{1 / 21}{2} \begin{array}{rrrr}
2 & -5 & -6 & 4 \\
1 & -2 & -4 \\
2 & -4 & -8 & 0
\end{array}\right] \text { So } f\left(\frac{1}{2}\right)=0
\end{aligned}
$$

So we have $\frac{f(x)}{x-1 / 2}=2 x^{2}-4 x-8$, and thus:

$$
f(x)=\left(x-\frac{1}{2}\right)\left(2 x^{2}-4 x-8\right)=(2 x-1)\left(x^{2}-2 x-4\right)
$$

Factor 2 out of the trinomial for a nicer looking presentation.
c) Solve $f(x)=0$.

We have $(2 x-1)\left(x^{2}-2 x-4\right)=0$.
So

$$
\begin{aligned}
\begin{array}{c}
2 x-1=0 \\
x=1 / 2
\end{array} \text { or } \quad x^{2}-2 x-4=0
\end{aligned} \quad \begin{gathered}
\text { or } x
\end{gathered}=\frac{-(-2) \pm \sqrt{(-2)^{2}-4(1)(-4)}}{2(1)} \quad \begin{gathered}
\text { irrational } \\
\text { of } f
\end{gathered}
$$

Solution set is $\left\{\frac{1}{2}, 1 \pm \sqrt{5}\right\}$.

Conjugate Zeros Theorem Let f be a polynomial function with real coefficients. If the complex number $a+b i$ is a zero for f, then the conjugate a-bi is also a zero. (Note: conjugate of b_{i} is $-b_{i}$)

Theorem If f is a polynomial function of degree $\mathrm{n}>0$, then f has precisely n zeros if each zero is counted according to its multiplicity.

28 Find a degree 3 polynomial function f having 6 and -5+2i among its zeros, real coefficients, and $f(2)=-636$.

By the Conjugate Zeros Theorem -5-2i must also be a zero for f .
By the Factor Theorem we must have :

$$
f(x)=C(x-6)[x-(-5+2 i)][x-(-5-2 i)]
$$

Here C is some constant that we'll determine to make $f(2)=-636$.
Now we get f into the standard form (recall that $i=\sqrt{-1}$, so $i^{2}=-1$)

$$
\begin{aligned}
f(x) & =C(x-6)\left[x^{2}-(-5-2 i) x-(-5+2 i) x+(-5+2 i)(-5-2 i)\right] \\
& =C(x-6)\left(x^{2}+5 x+2 i x+5 x-2 i x+25+10 i-10 i-\underline{4 i^{2}}\right), 4 i^{2}=-4 \\
& =C(x-6)\left(x^{2}+10 x+29\right) \\
& =C\left(x^{3}+10 x^{2}+29 x-6 x^{2}-60 x-174\right) \\
f(x) & =C\left(x^{3}+4 x^{2}-31 x-174\right)
\end{aligned}
$$

$$
\text { Next, }-636=f(2)=C\left(2^{3}+4.2^{2}-31.2-174\right) \Rightarrow-212 C^{\prime}=-636 \Rightarrow
$$

$$
C=3 .
$$

Finally: $f(x)=3\left(x^{3}+4 x^{2}-31 x-174\right) \Rightarrow$

$$
f(x)=3 x^{3}+12 x^{2}-93 x-522
$$

(We always want the polynomial in standard form)

46 Solve the equation $x^{4}-x^{3}+2 x^{2}-4 x-8=0$.

- Let $f(x)=x^{4}-x^{3}+2 x^{2}-4 x-8$ (a degree 4 polynomial function)
- Any rational zero of f must be expressible as

$$
\begin{aligned}
& \frac{\text { Factor of }-8}{\mid \text { Factor of } 1 \mid}=\frac{ \pm 1, \pm 2, \pm 4, \pm 8}{| \pm 1|}=\frac{ \pm 1, \pm 2, \pm 4, \pm 8}{1} \\
& = \pm 1, \pm 2, \pm 4, \pm 8 \text {. }
\end{aligned}
$$

- To see if $f(1)=0$, we see if the remainder of $\frac{f(x)}{x-1}$ is 0 .

1

$$
\begin{array}{rrrrr}
1 & -1 & 2 & -4 & -8 \\
\downarrow & 1 & 0 & 2 & -2 \\
\hline 1 & 0 & 2 & -2 & -10
\end{array} \longrightarrow \text { So } f(1)=-10 \neq 0
$$

-1	1	-1	2	-4	-8

-1	2	-4	8
1	-2	4	-8

$$
\begin{aligned}
f(x) & =(x+1)\left(x^{3}-2 x^{2}+4 x-8\right) \\
& =(x+1)\left[x^{2}(x-2)+4(x-2)\right] \\
f(x) & =(x+1)(x-2)\left(x^{2}+4\right) \\
& -1 \text { is a zero } 2 \text { is a zero } \\
& \text { of } f
\end{aligned} \quad \text { of } f \text {. }
$$

So $f(x)=0$ if $x+1=0$ or $x-2=0$ or $x^{2}+4=0$

$$
x=-1 \quad x=2
$$

$$
\begin{aligned}
& x^{2}=-4 \\
& x= \pm \sqrt{-4} \\
& x= \pm i \sqrt{4}= \pm 2 i
\end{aligned}
$$

Zeros of f are $-1,2,-2 i, 2 i$
So equation has solution set $\{-1,2,-2 i, 2 i\}$

25 Find a degree 3 polynomial function f having 1 and 5i among its zeros, real coefficients, and $f(-1)=-104$.

- By the Conjugate Zeros Theorem -Si must also be a zero for f .
- By the Factor Theorem $f(x)$ has factors $x-1, x-5 i$, and $x-(-5 i)=x+5 i$.
- So $f(x)=C(x-1)(x-5 i)(x+5 i), C$ some nonzero constant.
- Multiply: $f(x)=C(x-1)\left(x^{2}+5 i x-5 i x-25 i^{2}\right)$

$$
f(x)=C(x-1)\left(x^{2}+25\right), \text { since }-25 i^{2}=-25(-1)=25
$$

$$
f(x)=C\left(x^{3}-x^{2}+25 x-25\right)
$$

- $-104=f(-1)=C\left[(-1)^{3}-(-1)^{2}+25(-1)-25\right]=C(-52)$, so we have $-52 C=-104$, or $C=2$.
- So $f(x)=2\left(x^{3}-x^{2}+25 x-25\right)$, or $f(x)=2 x^{3}-2 x^{2}+50 x-50$

3.5 - Rational Functions

A function R is a rational function if $R=f / g$, where f and g are both polynomial functions, g not the zero function. $\left(S_{0} R(x)\right.$ is a rational expression.)
4 Find the domain of $R(x)=\frac{2 x^{2}}{(x-2)(x+6)}$

$$
\text { Domain of } \begin{aligned}
R & =D_{R}=\{x \in \mathbb{R} \mid R(x) \in \mathbb{R}\}=\{x \in \mathbb{R} \mid(x-2)(x+6) \neq 0\} \\
& =\{x \in \mathbb{R} \mid x \neq-6,2\}=(-\infty,-6) \cup(-6,2) \cup(2, \infty)
\end{aligned}
$$

A vertical asymptote (v.a.) for a rational function R is any $x=c$, where $|R(x)| \rightarrow \infty$ as $x \rightarrow C$. That is, $|R(x)|$ can be made arbitrarily large by bringing x sufficiently close to c . So the graph of R appears to "blow up" on both sides of the vertical line $\mathrm{x}=\mathrm{c}$.

Let $R(x)=\frac{f(x)}{g(x)}$ be a rational function.
Theorem 1 Let $R(x)=f(x) / g(x)$ be a rational function.
If c is a zero for f and g with the same multiplicity, then the graph of R will have a hole at $x=c$. Canceling all $x-c$ factors out of the fraction $\mathrm{f}(\mathrm{x}) / \mathrm{g}(\mathrm{x})$ will yield a reduced fraction $\hat{\mathrm{f}}(\mathrm{x}) / \hat{\mathrm{g}}(\mathrm{x})$. The coordinates of the hole will be: ($\mathrm{c}, \hat{\mathrm{f}}(\mathrm{c}) / \hat{\mathrm{g}}(\mathrm{c})$).
Fully reduce $f(x) / g(x)$ to get $\hat{f}(x) / \hat{g}(x)$. If c is such that $\hat{g}(c)=0$, then the vertical line $\mathrm{x}=\mathrm{c}$ is a vertical asymptote for R .

34 Find all vertical asymptotes and holes for $h(x)=\frac{x+6}{x^{2}+2 x-24}$.
Factor wherever possible (the denominator in this case):

$$
h(x)=\frac{x+6}{(x+6)(x-4)} \Rightarrow h(x)=\frac{1}{x-4}, x \neq-6
$$

Equivalent ways of defining function h

$$
D_{h}=\{x \mid x \neq-64\}
$$

For $h(x)=\frac{x+6}{(x+6)(x-4)}$ we have -6 is a zero of the numerator with multiplicity 1 , and also -6 is a zero of the denominator with multiplicity 1. Therefore h has a hole as $x=-6$.

Reducing the fraction to get $h(x)=\frac{1}{x-4}$ (with $x \neq-6$), we we find that the only zero in the denominator of the (reduced) fraction is 4 . Therefore h has a vertical asymptote $\mathrm{x}=4$.

Rational function R has a horizontal asymptote (h.a.) $\mathrm{y}=\mathrm{b}$ if $R(x) \rightarrow b$ as $|x| \rightarrow \infty$ (ie. as $x \rightarrow \infty$ or $x \rightarrow-\infty$)
So the graph of R can be made arbitrarily close to the line $\mathrm{y}=\mathrm{b}$ by making $|x|$ sufficiently large.

Theorem 2 Let $R(x)=f(x) / g(x)$ be a rational function, so $f(x)$ and $g(x)$ are polynomials.
i) If $\operatorname{deg}(f)>\operatorname{deg}(g)$, then R will have no ha.
ii) If $\operatorname{deg}(f)=\operatorname{deg}(g)$, then R will have h.a. $y=\frac{\text { leading coefficient of } f(x)}{\text { leading coefficient of } g(x)}$ iii) If $\operatorname{deg}(f)<\operatorname{deg}(g)$, then R will have ha. $y=0$.

Ex Find the h.a. of $R(x)=\frac{x+6}{x^{2}+2 x-24}$.
Here $R(x)=\frac{f(x)}{g(x)}$ with $f(x)=x+6 \& g(x)=x^{2}+2 x-24$, so $\operatorname{deg}(f)=1<2=\operatorname{deg}(g)$, and thus R has h.a. $y=0$.

40 Find the ha. for $R(x)=\frac{15 x^{2}}{3 x^{2}+1}$
Here $f(x)=15 x^{2} \& g(x)=3 x^{2}+1$, so $\operatorname{deg}(f)=2=\operatorname{deg}(9)$, and thus $y=\frac{15}{3}$, or $y=5$, is the h.a. for R.

A line $\mathrm{y}=\mathrm{mx}+\mathrm{b}$ is a slant asymptote (s.a.) for rational function R if

$$
|R(x)-(m x+b)| \rightarrow 0 \text { as }|x| \rightarrow \infty
$$

So the graph of R can be made arbitrarily close to the line $\mathrm{y}=\mathrm{mx}+\mathrm{b}$ by making $|\mathrm{x}|$ sufficiently large.

Theorem 3
$R(x)=f(x) / g(x)$ has a slant asymptote if $\operatorname{deg}(f)=1+\operatorname{deg}(g)$. Then the s.a. is $y=$ (Quotient of the division $f(x) \div g(x)$).

Ex Find the s.a. for $R(x)=\frac{3 x^{4}-2 x^{2}+x-4}{x^{3}-x+1}$
Since the degree of the numerator is 1 greater than the degree of the denominator, there will be a slant asymptote. Find the quotient of the division...

$$
\begin{gathered}
\frac{3 x}{} x^{3}-x+1 \begin{array}{l}
3 x^{4}+0 x^{3}-2 x^{2}+x-4 \\
\frac{3 x^{4}-3 x^{2}+3 x}{} \downarrow \\
x^{2}-2 x-4 \longleftarrow-2 x^{2}-\left(-3 x^{2}\right)=-2 x^{2}+3 x^{2}=x^{2}
\end{array}
\end{gathered}
$$

Slant asymptote is $y=3 x$

Note: In the example above, the division tells us that

$$
R(x)=3 x+\frac{x^{2}-2 x-4}{x^{3}-x+1} \cdot \frac{1 / x^{3}}{1 / x^{3}}=3 x+\frac{\frac{1}{x}-\frac{2}{x^{2}}-\frac{4}{x^{3}}}{1-\frac{1}{x^{2}}+\frac{1}{x^{3}}}
$$

Now, as $|x| \rightarrow \infty$, we find that $\frac{1}{x} \rightarrow 0, \frac{2}{x^{2}} \rightarrow 0, \frac{4}{x^{3}} \rightarrow 0$, etc. So $\frac{\frac{1}{x}-\frac{2}{x^{2}}-\frac{4}{x^{3}}}{1-\frac{1}{x^{2}}+\frac{1}{x^{3}}} \rightarrow \frac{0}{1}=0$ as $|x| \rightarrow \infty$. Then $R(x) \rightarrow 3 x$ as $|x| \rightarrow \infty$. This is why the theorem above works.

Procedure for sketching the graph of a rational function

$$
R(x)=\frac{f(x)}{g(x)}
$$

1) Find the domain of R.
2) Check for symmetry: is R an even or odd function?
3) Find the intercepts for R.
4) Find any holes and vertical asymptotes (use Theorem 1).
5) Find any horizontal or slant asymptote (use Theorems 2 \& 3). Find any points where the graph crosses the asymptote, if any.
6) Use the x-intercepts, vertical asymptotes, and any holes on the x-axis to partition the x-axis into subintervals, then find a point on the graph of R in each subinterval.
7) Sketch the graph of $y=R(x)$.

88 Sketch the graph of $R(x)=\frac{x^{3}-1}{x^{2}-9}$

1) $D_{R}=\left\{x \mid x^{2}-9 \neq 0\right\}=\left\{x \mid x^{2} \neq 9\right\}=\{x \mid x \neq \pm 3\}$

$$
=(-\infty,-3) \cup(-3,3) \cup(3, \infty)
$$

2) $R(-x)=\frac{(-x)^{3}-1}{(-x)^{2}-9}=\frac{-x^{3}-1}{x^{2}-9}=-\frac{x^{3}+1}{x^{2}-9} \neq \pm R(x)$, so R is neither even nor odd. No symmetry!
3) $R(x)=0 \Rightarrow \frac{x^{3}-1}{x^{2}-9}=0 \Rightarrow x^{3}-1=0 \Rightarrow x^{3}=1 \Rightarrow x=1$ So 1 is an x-intercept

$$
R(0)=\frac{-1}{-9}=\frac{1}{9} \text {, so } \frac{1}{9} \text { is the } y \text {-intercept }
$$

4) Find holes and vertical asymptotes:

We have $\frac{x^{3}-1}{x^{2}-9}=\frac{(x-1)\left(x^{2}+x+1\right)}{(x-3)(x+3)}$, so the fraction is reduced already! By Theorem 1, the vertical asymptotes are located at the zeros of the denominator of the reduced fraction. Setting $x^{2}-9=0$ yields $x= \pm 3$. The vertical asymptotes are $x=-3 \& x=3$. There are no holes, since the only zero for the numerator of $R(x)$ is 1 , zeros of the denominator are -3 and 3 , and so there is no common zero for numerator and denominator.
5) Since $\log \left(x^{3}-1\right)=3$ and $\operatorname{deg}\left(x^{2}-9\right)=2$, so that the degree of the numerator is 1 greater than the degree of the denominator, there will be a slant asymptote.

$$
\begin{gathered}
x - 9 \longdiv { x ^ { 2 } - 9 \longdiv { x ^ { 3 } + 0 x ^ { 2 } + 0 x - 1 } } \begin{array} { c }
{ \text { quotient is } x , \text { so slant } } \\
{ \frac { x ^ { 3 } - 9 x } { 9 x - 1 } }
\end{array}
\end{gathered}
$$

Note: it is possible for the graph of a rational function to cross a horizontal or slant asymptote. We can check if R crosses the slant asymptote $\mathrm{y}=\mathrm{x}$ by seeing if there exists some x value for this $\mathrm{y}=\mathrm{R}(\mathrm{x})$ and $\mathrm{y}=\mathrm{x}$ yield the same y value. That is, see if there is an x for which $\mathrm{R}(\mathrm{x})=\mathrm{x}$.

$$
R(x)=x \Rightarrow \frac{x^{3}-1}{x^{2}-9}=x \Rightarrow x^{3}-1=x\left(x^{2}-9\right) \Rightarrow
$$

$$
x^{3}-1=x^{3}-9 x \Rightarrow-1=-9 x \Rightarrow x=1 / 9 \text {. So it looks like }
$$

the graph of $y=R(x)$ crosses the slant asymptote at the point $\left(\frac{1}{9}, R\left(\frac{1}{9}\right)\right)$

$$
=\left(\frac{1}{9}, \frac{1}{9}\right)
$$

6) With x-intercept 1 \& v.a.'s $x= \pm 3$, we partition the x-axis into subintervals $(-\infty,-3),(-3,1),(1,3),(3, \infty)$. We want a point $(x, R(x))$ plotted for at least one x value in each of the 4 subintervals.

We already found $R(0)=\frac{1}{9}, 50(0, R(0))=(0,1 / 9)$. This takes care of the interval $(-3,1)$.

$$
\begin{aligned}
& (-\infty,-3) \text { : pick }-4 \text {, so }(-4, R(-4))=\left(-4, \frac{(-4)^{3}-1}{(-4)^{2}-9}\right)=\left(-4,-9 \frac{2}{7}\right) \\
& (1,3) \text { : pick } 2 \text {, so }(2, R(2))=\left(2, \frac{(2)^{3}-1}{(2)^{2}-9}\right)=\left(2,-1 \frac{2}{5}\right) \\
& (3, \infty) \text { : pick } 4, \text { so }(4, R(4))=\left(4, \frac{4^{3}-1}{4^{2}-9}\right)=(4,9)
\end{aligned}
$$

7) Graph:

3.6 - Polynomial \& Rational Inequalities

A polynomial inequality is an inequality with a polynomial on each side; a rational inequality is an inequality with a rational expression (i.e. a ratio of polynomials) on each side. Remember that 0 is considered to be a polynomial as well as a rational expression.

| Intermediate Value Theorem for Rational Functions (IVT) | Let R |
| :--- | :--- | be a rational function, let $\mathrm{a}<\mathrm{b}$, and suppose [a, b] is in the domain of R. If M is a value between $f(a)$ and $f(b)$, then there exists some $\mathrm{a}<\mathrm{c}<\mathrm{b}$ such that $\mathrm{R}(\mathrm{c})=\mathrm{M}$.

Ex Solve $x^{2} \leq 2 x+2$

1) Get 0 on the right side, and find the zeros of $f(x)$ at left:

- $x^{2}-2 x-2 \leq 0$.
- Let $f(x)=x^{2}-2 x-2$, so inequality is $f(x) \leq 0$.
- Find all real x s.t. $f(x)=0$.

This means solving $x^{2}-2 x-2=0$
Quadratic formula: $\quad x=\frac{-(-2) \pm \sqrt{(-2)^{2}-4(1)(-2)}}{2(1)}=1 \pm \sqrt{3}$
2) Use the zeros of f to partition the real line into subintervals, then evaluate f at a test value chosen from each subinterval.

3) Use the IVT for polynomial functions to find all x for which $f(x)>0$ and $f(x)<0$.

- Since $f(-2)>0$, the IVT implies that $f(x)>0$ for all $x \in(-\infty, 1-\sqrt{3})$.
- Since $f(0)<0$, IVT implies $f(x)<0$ for all $x \in(1-\sqrt{3}, 1+\sqrt{3})$.
- Since $f(4)>0$, IVT implies $f(x)>0$ for all $x \in(1+\sqrt{3}, \infty)$.

4) Find the solution set of the inequality in interval notation.

- Inequality is $f(x) \leq 0$.
- Step 1 found $f(x)=0$ for $x=1 \pm \sqrt{3}$.
- Step 3 found $f(x)<0$ for $x \in(1-\sqrt{3}, 1+\sqrt{3})$.
- Putting $1 \pm \sqrt{3}$ together with $(1-\sqrt{3}, 1+\sqrt{3})$ yields the solution set $[1-\sqrt{3}, 1+\sqrt{3}]$
* Why this works: Suppose there is some $\mathrm{a}<1-\sqrt{3}$ such that $\mathrm{f}(\mathrm{a})<0$. Since $f(-2)>0$, the IVT implies there is some c between -2 and a such that $\mathrm{f}(\mathrm{c})=0$. Since $-2<1-\sqrt{3}$, we must have $\mathrm{c}<1-\sqrt{3}$:

$a<-2$ Case

$a>-2$ case

So, $C \in(-\infty, 1-\sqrt{3}) \& f(c)=0$. This is impossible: we have already found that $\mathrm{f}(\mathrm{x})=0$ if and only if $x=1 \pm \sqrt{3}$, yet here $f(c)=0$ for some $c \neq 1 \pm \sqrt{3}$. Therefore we mut have $f(x)>0$ for all $x \in(-\infty, 1-\sqrt{3})$.

64 Find the domain of $f(x)=\sqrt{\frac{x}{2 x-1}-1}$
By definition, $D_{f}=\{x \in \mathbb{R}: f(x) \in \mathbb{R}\}=\left\{x \left\lvert\, \frac{x}{2 x-1}-1 \geq 0\right.\right\}$. $\frac{x}{2 x-1}-1 \geq 0$ is a rational inequality.

Let $R(x)=\frac{x}{2 x-1}-1$, so the inequality is $R(x) \geq 0$. We solve it...

1) Get 0 on right side, find all x for which left side is 0 or undefined.

- $R(x)=0 \Rightarrow \frac{x}{2 x-1}-1=0 \Rightarrow(2 x-1)\left(\frac{x}{2 x-1}-1\right)=0 \Rightarrow$

$$
x-(2 x-1)=0 \Rightarrow x=1
$$

- $R(x)$ undefined $\Rightarrow 2 x-1=0$ (so a division by 0 occurs) \Rightarrow $x=1 / 2$

2) Use the values of x for which $R(x)$ is 0 or undefined to partition the real line into subintervals. At a test value t chosen from each subinterval determine whether $\mathrm{R}(\mathrm{t})>0$ or $\mathrm{R}(\mathrm{t})<0$.

$$
R(0)=-1<0 \quad R(3 / 4)>0 \quad R(2)<0
$$

3) Use the IVT to determine whether $\mathrm{R}>0$ or $\mathrm{R}<0$ on each of the subintervals.

- $R(0)<0$, so IVT implies $R(x)<0$ for all $x \in(-\infty, 1 / 2)$.
- $R(3 / 4)>0$, so IVT implies $R(x)>0$ for all $x \in(1 / 2,1)$.
- $R(2)<0$, so IVT implies $R(x)<0$ for all $x \in(1, \infty)$.

4) Find the solution set of the inequality in interval notation.

- Inequality is $R(x) \geq 0$.
- Step 1 found $R(x)=0$ when $x=1$.
- Step 3 found $R(x)>0$ when $x \in(1 / 2,1)$.
- Combining al values, solution set is $(1 / 2,1]$

Since $f(x)$ is real-valued if and only if $R(x) \geq 0$, it follows that the domain of f is $D_{f}=(1 / 2,1]$

Ex Solve $\frac{x}{x+2} \leq \frac{1}{x}$
Do NOT multiply by $x(x+2)$, as when solving $\frac{x}{x+2}=\frac{1}{x}$. The problem is that we can't treat $x(x+2)$ as being positive or negative, and so we can't know what to do with the inequality sign \leq if we were to multiply by $x(x+2)$.

1) Get 0 on right side, find all x for which left side is 0 or undefined.

$$
\begin{aligned}
& \frac{x}{x+2} \leq \frac{1}{x} \Rightarrow \frac{x}{x+2}-\frac{1}{x} \leq 0 \Rightarrow \frac{x^{2}-(x+2)}{x(x+2)} \leq 0 \Rightarrow \\
& \frac{x^{2}-x-2}{x(x+2)} \leq 0 . \quad \text { Let } R(x)=\frac{x^{2}-x-2}{x(x+2)}=\frac{(x-2)(x+1)}{x(x+2)} .
\end{aligned}
$$

So inequality is $R(x) \leq 0$.

- $R(x)=0$ implies $\frac{(x-2)(x+1)}{x(x+2)}=0$, which implies $x=-1$ or $x=2$.
- $R(x)=$ undefined implies $x=0$ or $x=-2$

2) Use the values of x for which $R(x)$ is 0 or undefined to partition the real line into subintervals. At a test value t chosen from each subinterval determine whether $\mathrm{R}(\mathrm{t})>0$ or $\mathrm{R}(\mathrm{t})<0$.

3) Use the IVT to determine whether $\mathrm{R}>0$ or $\mathrm{R}<0$ on each of the subintervals.

$$
\begin{aligned}
& R(x)>0 \text { on }(-\infty,-2), R(x)<0 \text { on }(-2,-1), R(x)>0 \text { on }(-1,0), \\
& R(x)<0 \text { on }(0,2), R(x)>0 \text { on }(2, \infty) .
\end{aligned}
$$

4) Find the solution set of the inequality in interval notation.

- Inequality is $R(x) \leq 0$.
- Step 1 found $R(x)=0$ when $x=-1$ or $x=2$.
- Step 3 found $R(x)<0$ when $x \in(-2,-1)$ or $x \in(0,2)$.
- Put together, solution set is $(-2,-1] \cup(0,2]$

