1a The mean $\mu$ is:

$$
\sum x \mathrm{P}(x)=0(0.358)+1(0.439)+2(0.179)+3(0.024)=0.869
$$

1b The standard deviation $\sigma$ is:

$$
\begin{aligned}
& \sqrt{\sum(x-\mu)^{2} \mathrm{P}(x)}=\sqrt{\sum(x-.869)^{2} \mathrm{P}(x)} \\
& =\sqrt{(0-.869)^{2}(.358)+(1-.869)^{2}(.439)+(2-.869)^{2}(.179)+(3-.869)^{2}(.024)} \\
& =\sqrt{0.615839} \approx 0.785
\end{aligned}
$$

1c Probability is $\mathrm{P}(1)+\mathrm{P}(2)+\mathrm{P}(3)=0.439+0.179+0.024=0.642$.

2a Letting $X$ denote the number of questions answered correctly,

$$
\mathrm{P}(X=4)={ }_{8} C_{4}(0.25)^{4}(0.75)^{4}=0.0865
$$

2b A score of at least $70 \%$ results from getting at least 6 questions right, so probability is

$$
\begin{aligned}
\mathrm{P}(X \geq 6) & =\mathrm{P}(X=6)+\mathrm{P}(X=7)+\mathrm{P}(X=8) \\
& ={ }_{8} C_{6}(0.25)^{6}(0.75)^{2}+{ }_{8} C_{7}(0.25)^{7}(0.75)^{1}+{ }_{8} C_{8}(0.25)^{8}(0.75)^{0} \\
& =0.003845+0.0003662+0.00001526 \\
& \approx 0.00423 .
\end{aligned}
$$

2c $\mathrm{P}(X \geq 1)=1-\mathrm{P}(X<1)=1-\mathrm{P}(X=0)=1-(0.75)^{8}=0.900$.

3a This is a Poisson experiment with parameter $\lambda=0.6$, and so if the random variable $X$ counts the number of hurricanes that strike the U.S. in a year, then

$$
\mathrm{P}(X=k)=\frac{\lambda^{k} e^{-\lambda}}{k!}=\frac{0.6^{k} e^{-0.6}}{k!}
$$

for $k=0,1,2, \ldots$ Thus the probability exactly two hurricanes strike is

$$
\mathrm{P}(X=2)=\frac{0.6^{2} e^{-0.6}}{2!} \approx 0.0988
$$

3b We have

$$
\begin{aligned}
\mathrm{P}(X>2) & =1-\mathrm{P}(X \leq 2)=1-\mathrm{P}(X=0)-\mathrm{P}(X=1)-\mathrm{P}(X=2) \\
& =1-\frac{0.6^{0} e^{-0.6}}{0!}-\frac{0.6^{1} e^{-0.6}}{1!}-\frac{0.6^{2} e^{-0.6}}{2!} \\
& =1-0.5488-0.3293-0.0988=0.0231 .
\end{aligned}
$$

4 Area $=\mathrm{P}(-1.2 \leq Z \leq 2.1)=\mathrm{P}(Z \leq 2.1)-\mathrm{P}(Z<-1.2)=0.9821-0.1151=0.8670$.
$5 \mathrm{P}(Z<-2.58$ or $Z>2.58)=2 \mathrm{P}(Z<-2.58)=2(0.0049)=0.0098$.
6 Letting random variable $X$ be back-to-knee lengths of men, we have $\mathrm{P}\left(X \leq P_{80}\right)=0.80$. Standardizing,

$$
\mathrm{P}\left(Z \leq \frac{P_{80}-23.5}{1.1}\right)=0.80
$$

and from the normal distribution table we find that

$$
\frac{P_{80}-23.5}{1.1}=0.84 \Rightarrow P_{80}=0.84(1.1)+23.5=24.424 \approx 24.42
$$

7a Let $X$ be the random variable that gives the resistance of a wire. We must find $\mathrm{P}(X>$ 0.142 ). Using the standard normal distribution table,

$$
\begin{aligned}
\mathrm{P}(X>0.142) & =\mathrm{P}\left(\frac{X-0.13}{0.005}>\frac{0.142-0.13}{0.005}\right)=\mathrm{P}(Z>2.40) \\
& =1-\mathrm{P}(Z \leq 2.40)=1-0.9918=0.0082
\end{aligned}
$$

7b $\mathrm{P}(X<0.128)=\mathrm{P}\left(Z<\frac{0.128-0.13}{0.005}=-0.4\right)=0.3446$.
7c We have

$$
\begin{aligned}
\mathrm{P}(0.123<X<0.139) & =\mathrm{P}\left(\frac{0.123-0.13}{0.005}<\frac{X-0.13}{0.005}<\frac{0.139-0.13}{0.005}\right) \\
& =\mathrm{P}(-1.40<Z<1.80) \\
& =\mathrm{P}(Z<1.80)-\mathrm{P}(Z \leq-1.40) \\
& =0.9641-0.0808=0.8833 .
\end{aligned}
$$

8 Let the random variable $\bar{X}$ denote the mean price, so by the Central Limit Theorem $\bar{X}$ is approximately normally distributed with mean $\mu_{\bar{X}}=4.220$ and standard deviation

$$
\sigma_{\bar{X}}=\frac{\sigma}{\sqrt{n}}=\frac{0.082}{\sqrt{36}}=0.0137
$$

Now,

$$
\begin{aligned}
\mathrm{P}(\bar{X}>4.28) & =1-\mathrm{P}(\bar{X} \leq 4.28)=1-\mathrm{P}\left(Z \leq \frac{4.28-\mu_{\bar{X}}}{\sigma_{\bar{X}}}\right) \\
& =1-\mathrm{P}(Z \leq 4.38)=1-0.9999=0.0001
\end{aligned}
$$

