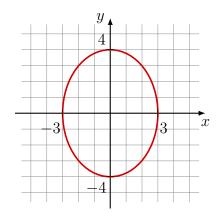
- 1. 10 pts. each Simplify. Assume all variables represent positive numbers.
 - (a) $\sqrt{27}$
 - (b) $\sqrt[3]{54w^3y^5}$
 - (c) $\sqrt{\frac{r^3}{64}}$
 - (d) $3\sqrt{75} + 13\sqrt{48}$
- 2. $\fbox{\ \ 10\ \mathrm{pts.}\ \ }$ Multiply, then simplify the product:

$$\left(2\sqrt{3}+\sqrt{2}\right)\left(2\sqrt{3}-\sqrt{2}\right)$$

- 3. 10 pts. each Rationalize the denominator in each expression. Assume variables represent positive numbers.
 - (a) $\frac{8}{\sqrt{24}}$
 - (b) $\frac{1}{3-\sqrt{b}}$
- 4. $\boxed{\mbox{10 pts. each}}$ Solve each charming little radical equation.
 - (a) $\sqrt{9-x} = x+3$
 - (b) $\sqrt[3]{2z-1} = \sqrt[3]{z-11}$
- 5. 10 pts. each Perform the indicated operation, writing all answers in the form a + bi.
 - (a) (9-10i)-(5+3i)
 - (b) 3i(4+7i)
 - $(c) \ \frac{3-i}{1-i}$


NAME:

6. 10 pts. each Solve each enchanting little quadratic equation using the quadratic formula.

(a)
$$x^2 - 4 = 2x$$

(b)
$$9x^2 - 6x = -7$$

7. 10 pts. Determine whether the relation given by the graph below defines a function, and give the domain and range.

8. 10 pts. Decide whether the relation

$$y = \sqrt{4x + 2}$$

defines y as a function of x, and give the domain.

9. 10 pts. Let $f(x) = 3x - 1 \& g(x) = x^2 + 5x$. Find f(-3) and g(-3).