MATH 103 EXAM #3 KEY (SUMMER II 2011)

1.

	Rate	Time	Distance
East	500	$\frac{x}{500}$	x
West	350	$\frac{x}{350}$	x

The round-trip time was 8.5 hours, so we obtain the equation $\frac{x}{500} + \frac{x}{350} = 8.5$. Multiplying both sides by 3,500 gives: $7x + 10x = 29,750 \implies 17x = 29,750 \implies x = 1,750$ miles.

2.

	Rate	Time	Distance
Jerry	$\frac{1}{20}$	12	$\frac{12}{20}$
Tom	$\frac{1}{t}$	12	$\frac{12}{t}$

Let t be the time it would take Tom to do the job working alone. We get $\frac{12}{20} + \frac{12}{t} = 1 \implies \frac{3}{5} + \frac{12}{t} = 1 \implies 3t + 60 = 5t \implies t = 30 \text{ hours.}$

3a. The second equation gives y=3-2x, which we substitute into the first equation to get $3x-2(3-2x)=7 \Rightarrow 3x-6+4x=7 \Rightarrow 7x=13 \Rightarrow x=13/7$. Putting this into either equation in the system yields y=-5/7. Solution is $\left(\frac{13}{7},-\frac{5}{7}\right)$.

3b. The second equation gives y = 5x, which we substitute into the first equation to get $\frac{1}{4}x - \frac{1}{5}(5x) = 9 \implies 5x - 4(5x) = 180 \implies -15x = 180 \implies x = -12$. Putting this into either equation in the system yields y = -60. Solution is (-12, -60).

4a. 9

4b. |r|

5a. $7^3 = 343$

5b. $1/81^{3/4} = 1/3^3 = 1/27$

6a. $r^{11/9}$

6b. $\frac{1}{m^{1/4}n^{3/4}}$

7a. $10\sqrt{3}$

7b. $11xy^2\sqrt{y}$

7c. $-2tz^2\sqrt[3]{3t^2z}$

7d. $\frac{u\sqrt{u}}{9}$

7e. $45\sqrt{2}$

8. $18 - 4\sqrt{15} + 3\sqrt{15} - 10 = 8 - \sqrt{15}$

9a. $\frac{2\sqrt{6}}{3}$

9b. $8+4\sqrt{3}$

10a. $\sqrt{4y-1} = 6 \implies 4y-1 = 36 \implies y = 37/4$

10b. $7z + 1 = z^2 + 2z + 1 \implies z^2 - 5z = 0 \implies z = 0, 5$

11a. 4 + 5i

11b. 27 + 12i

11c. $\frac{1}{2} - \frac{3}{2}i$

12a. $x^2 + x - 14 = 0 \implies x = \frac{-1 \pm \sqrt{57}}{2}$

12b. $x = \frac{-4 \pm \sqrt{-20}}{2} = -2 \pm i\sqrt{5}$