Math 102 Spring 2012 Exam 2

NAME:

- A1) For any $a, b \in \mathbb{Z}$, $a + b \in \mathbb{Z}$ and $a \cdot b \in \mathbb{Z}$
- A2) For any $a, b \in \mathbb{Q}$, $a + b \in \mathbb{Q}$ and $a \cdot b \in \mathbb{Q}$
- A3) For any $a, b \in \mathbb{R}$, $a + b \in \mathbb{R}$ and $a \cdot b \in \mathbb{R}$
- A4) For any $a, b, c \in \mathbb{R}$, a + (b + c) = (a + b) + c
- A5) For any $a, b, c \in \mathbb{R}$, $a \cdot (b \cdot c) = (a \cdot b) \cdot c$
- A6) For any $a \in \mathbb{R}$, a + 0 = a = 0 + a and $a \cdot 1 = a = 1 \cdot a$
- A7) For any $a, b \in \mathbb{R}, a + b = b + a$
- A8) For any $a, b \in \mathbb{R}, a \cdot b = b \cdot a$
- A9) For any $a, b \in \mathbb{R}$, if $a \cdot b = 0$ then either a = 0 or b = 0
- 1. 25 pts. Determine which of the five properties of a commutative group hold for the mathematical system consisting of the set of whole numbers $\{0, 1, 2, 3, ...\}$ under the operation of subtraction. Use the axioms given above where appropriate.
- 2. 25 pts. The system consisting of the set of whole numbers $\{0, 1, 2, 3, ...\}$ and the binary operation \ominus defined as follows: $a \ominus b = |a - b|$ (i.e. the absolute value of a - b). Use the axioms given above where appropriate, and assume that the absolute value of an integer is an integer.
- 3. 25 pts. For the given mathematical system determine which of the five properties of a commutative group hold. If a property holds, explain why. If a property fails, give a counterexample.

\otimes	\Box	\vee	\cap
	Ш	\vee	\cap
\vee	\vee	\Box	\cap
\cap	\cap	\vee	\Box

25 pts. For the given mathematical system determine which of the five properties of a commutative group hold. If a property holds, explain why. If a property fails, give a counterexample.

·	×	γ	>	\bowtie	\bot
\ltimes	Χ	\perp	\ltimes	γ	γ
Υ	\perp	\ltimes	Υ	\ltimes	\bowtie
>	\ltimes	γ	>	\bowtie	\perp
\bowtie	Υ	\ltimes	\bowtie	\perp	>
\perp	γ	\bowtie	\perp	>	\ltimes

- 5. 5 pts. each Convert to base-10:
 - (a) 46.37
 (b) C.1D₁₆
- 6. 10 pts. each Convert to the base indicated
 - (a) 23.8 to base-5 radix form.
 - (b) $\frac{1945}{144}$ to base-12 radix form.
- 7. 10 pts. each Perform the indicated operation.
 - (a) $3.122_4 + 22.312_4$
 - (b) $5.67_8 \times 5.3_8$
- 8. 10 pts. each Perform the long division in the base indicated.
 - (a) $403_7 \div 6_7$ (state the answer with a bar over the repeating digit)
 - (b) $4233_8 \div 23_8$ (carry out to the 8^{-2} place)
- 9. 10 pts. Convert A85D₁₆ directly to base-2.