- **1.** CLOSURE: Fails, since 1 2 = -1 and -1 is not a whole number.
 - ASSOCIATIVE: Fails, since 5 (3 1) = 5 2 = 3 and (5 3) 1 = 2 1 = 1.
 - IDENTITY: Fails, since the only viable candidate is 0, but $0 2 \neq 2$.
 - INVERSE: Fails, since there is no identity element.
 - COMMUTATIVITY: Fails, since $1 2 \neq 2 1$.
- **2.** CLOSURE. Let a and b be whole numbers. Then a and b are integers, so a b is an integer by A1, and thus |a b| is an integer. But the absolute value of any real number is nonnegative, so |a b| must be an integer that's greater than or equal to 0; that is, |a b| must be a whole number. Closure holds.
 - ASSOCIATIVITY. $1 \ominus (2 \ominus 3) = 1 \ominus 1 = 0$, but $(1 \ominus 2) \ominus 3 = 1 \ominus 3 = 2$. Associativity fails.
 - IDENTITY. For any whole number a we have $a \oplus 0 = |a 0| = |a| = a$ and $0 \oplus a = |0 a| = |-a| = a$ using A6, since a 0 = a + 0 and 0 a = 0 + (-a). So the identity element is 0. Identity property holds!
 - INVERSE. For any whole number a we have $a \ominus a = |a a| = |0| = 0$, so a is its own inverse. Inverse property holds.
 - COMMUTATIVITY. For any whole numbers a and b, $a \ominus b = |a b| = |b a| = b \ominus a$. Commutativity holds.
- 3. CLOSURE: Holds, since table contains no objects that aren't elements of the system.
 - Associativity: Fails, since $\lor \otimes (\lor \otimes \cap) = \lor \otimes \lor = \sqcup$ whilst $(\lor \otimes \lor) \otimes \cap = \sqcup \otimes \cap = \cap$.
 - IDENTITY: Holds. Identity element is \sqcup .
 - INVERSE: Holds, since each element is its own inverse.
 - Commutativity: Fails since $\cap \otimes \lor \neq \lor \otimes \cap$.
- 4. CLOSURE: Holds, since table contains no objects that aren't elements of the system.
 - ASSOCIATIVITY: Fails since $\bowtie \boxdot (\bot \boxdot \curlyvee) = \bowtie \boxdot \bowtie = \bot$ whilst $(\bowtie \boxdot \bot) \boxdot \curlyvee = > \boxdot \curlyvee = \curlyvee$.
 - IDENTITY: Holds. Identity element is >.
 - INVERSE: Fails, since \ltimes and Υ have no inverse (although > is its own inverse, and \bowtie and \bot are inverses).
 - COMMUTATIVITY: Holds, since there is symmetry about the table's diagonal.

5a. $(4 \times 7^1) + (6 \times 7^0) + (3 \times 7^{-1}) = 34.\overline{428571}$

5b. $(12 \times 12^0) + (1 \times 12^{-1}) + (13 \times 12^{-2}) = 12.1736\overline{1}$

6a. 43.4₅

- **6b.** 11.61₁₂
- **7a.** 32.100₄
- **7b.** 37.375₈

8a.	$403_7 \div 6_7 = 45.111_7 = 45.\overline{1}_7$	

	4	5		1	1	1_7
$_{67})_4$	0	3		0	0	07
3	3					
	4	3				
	4	2				
		1	0			
			6			
			1	0		
				6		
				1	0	

8b. $4233_8 \div 23_8 \approx 163.745_8$

$1\ 6\ 3\ .\ 7\ 4\ 5\ 0\ 3_8$
$(2 \ 3_8) \ 4 \ 2 \ 3 \ 3 \ . \ 0 \ 0 \ 0 \ 0 \ 0_8$
$2\ 3$
$\overline{173}$
$1\ 6\ 2$
113
71
220
205
$1 \ 3 \ 0$
114
$1 \ 4 \ 0$
137
$1 \ 0 \ 0$
71
7

9. 1010 1000 0101 1101₂