MATH 102 EXAM #2 Key (Fall 2010)

1. CLOSURE: Fails, since 1-2 = -1 and -1 is not a positive integer. ASSOCIATIVE: Fails, since 5 - (3 - 1) = 5 - 2 = 3 and (5 - 3) - 1 = 2 - 1 = 1. IDENTITY: Fails, since the only viable candidate is 0, but $0 - 2 \neq 2$. INVERSE: Fails, since there is no identity element. COMMUTATIVITY: Fails, since $1 - 2 \neq 2 - 1$.

2. CLOSURE: Holds. Let a and b be even integers. Then a/2 and b/2 are integers. It follows that (a + b)/2 is an integer since (a + b)/2 = a/2 + b/2, and a/2 + b/2 must be an integer by A1. Since (a + b)/2 is an integer, a + b is an even integer. ASSOCIATIVITY: Holds by A4, since integers are reals. IDENTITY: Holds. By A6 the even integer 0 is the identity element. INVERSE: Holds. Let a be an even integer. Then a/2 is an integer. Now, $-a/2 = -1 \cdot a/2$, which is a product of integers and must therefore be an integer by A1. Since -a/2 is an integer, it follows that -a is an even integer. Finally, a + (-a) = -a + a = 0 shows that -a, an even integer, is the inverse for a. COMMUTATIVITY: Holds by A7, since integers are reals.

3. CLOSURE: Holds, since table contains no objects that aren't elements of the system. ASSOCIATIVITY: Fails, since $\lor \otimes (\lor \otimes \cap) = \lor \otimes \lor = \sqcup$ whilst $(\lor \otimes \lor) \otimes \cap = \sqcup \otimes \cap = \cap$. IDENTITY: Holds, since \sqcup is the identity element. INVERSE: Holds, since each element is its own inverse. COMMUTATIVITY: Fails since $\cap \otimes \lor \neq \lor \otimes \cap$.

4. CLOSURE: Holds. ASSOCIATIVITY: Fails since $\bowtie \boxdot (\bot \boxdot \curlyvee) = \bowtie \boxdot \bowtie = \bot$ whilst $(\bowtie \boxdot \bot) \boxdot \curlyvee = > \boxdot \curlyvee = \curlyvee$. IDENTITY: Holds, >. INVERSE: Fails, since \ltimes and \curlyvee have no inverse (although > is its own inverse, and \bowtie and \bot are inverses). COMMUTATIVITY: Holds, since there is symmetry about the table's diagonal.

5a. 6 **5b.** 9 **5c.** 1 **5d.** 1

6a. $41 \div 9$ has remainder 5, so answer is 5.

6b. 4 + 7 = 11, and since $11 \div 6$ has remainder 5, the answer is 5.

6c. $8 \cdot 7 = 56$, and since $56 \div 5$ has remainder 1, the answer is 1.

6d. 5-12 = -7, and since $-7 \div 5$ has remainder 3, the answer is 3.

7a.				7b.				7b.			
	x	x+5	$\frac{x+5}{8}$ rem.		x	2x	$\frac{2x}{6}$ rem.		x	4x	$\frac{4x}{10}$ rem.
	0	5	5		0	0	0		0	0	0
	1	6	6		1	2	2		1	4	4
	2	7	7		2	4	4		2	8	8
	3	8	0		3	6	0		3	12	2
	4	9	1		4	8	2		4	16	6
	5	10	2		5	10	4		5	20	0
	6	11	3		The	There is no solution			6	24	4
	7	12	4		I IIC	10 10	no bolution.		7	28	8
	Solut	ion is 6		,					8	32	2
	Solut	1011 15 0	•						9	36	6

Solutions are 1 and 6.

8a. This is an 18-day cycle, and since $175 \div 18$ has a remainder of 13, we find that 175 days from now the peddler will be in the 3rd day of rest at Bree.

8b. $400 \div 18$ has remainder 4, so be go *backward* 4 days in the cycle to find the peddler in the 1st day of travel from Bree to Rivendell.