MATH 102: CHAPTER 5 SUPPLEMENT SOLUTIONS

1a. $3^3 \cdot 7^2 \cdot 23$

1b. $3 \cdot 29 \cdot 31 \cdot 37$

1c. $5^3 \cdot 11^2 \cdot 19$

1d. $2^6 \cdot 11 \cdot 17 \cdot 29$

1e. 41 · 271

1f. prime

2a. GCD = 294 and LCM = 37,044

2b. GCD = 5 and LCM = 1,412,840

2c. GCD = 2,222 and LCM = 26,664

2d. GCD = 4 and LCM = 76,320

2e. GCD = 84 and LCM = 317,520

2f. GCD = 63 and LCM = 2,593,080

3. We find the least common multiple of the three numbers to arrive at 2,590,770 years.

4a. 55/9

4b. 872/165

4c. 305/333

4d. 1,909/2,475

4e. 16,507/1,650

4f. 5

5a. Irrational

5b. Rational, with the lengthy repeating element 1211211121212 (you have to look carefully at this one).

5c. Irrational

5d. Rational (it equals 2.0001)

5e. $\sqrt{3} \cdot \sqrt{8} = \sqrt{3 \cdot 8} = \sqrt{24} = 2\sqrt{6}$, which is irrational simply because $\sqrt{6}$ is.

5f. $\sqrt{2 \cdot 18} = \sqrt{36} = 6$, which is rational.

6a. Use the Commutative Property of Addition to change 2x + (15 + 7x) to 2x + (7x + 15); then, use the Associative Property of Addition to get (2x + 7x) + 15, which immediately yields 9x + 15.

6b. Use the Distributive Property to change 10y + 4(3 + 5y) to 10y + (12 + 20y); then, use the Commutative Property of Addition to get 10y + (20y + 12); next, use the Associative Property of Addition to obtain (10y + 20y) + 12, which immediately yields 30y + 12.