1 Argument is invalid:

p	q	$[(\neg p \rightarrow q)$	\wedge	$(\neg q)]$	\rightarrow	$(\neg p)$
1	1	1	0	0	1	0
1	0	1	1	1	0	0
0	1	1	0	0	1	1
0	0	0	0	1	1	1

2 Argument is valid:

p	q	r	$[(p \leftrightarrow q) \wedge(p \vee r) \wedge(q \rightarrow r)]$	\rightarrow	$(q \vee r)$
1	1	1	1	1	1
1	1	0	0	1	1
1	0	1	0	1	1
1	0	0	0	1	0
0	1	1	0	1	1
0	1	0	0	1	1
0	0	1	1	1	1
0	0	0	0	1	0

3 With $p=$ "The soccer team wins the game," $q=$ "Xavier played as goalkeeper," and $r=$ "The team is in third place," the argument is:

$$
\begin{aligned}
& p \rightarrow q \\
& q \rightarrow r \\
& \frac{\therefore p \rightarrow r}{\therefore p}
\end{aligned}
$$

The argument is valid:

p	q	r	$[(p \rightarrow q) \wedge(q \rightarrow r)]$	\rightarrow	$(p \rightarrow r)$
1	1	1	1	1	1
1	1	0	0	1	0
1	0	1	0	1	1
1	0	0	0	1	0
0	1	1	1	1	1
0	1	0	0	1	1
0	0	1	1	1	1
0	0	0	1	1	1

4a

4b Let P be the set of Pythagoreans, S the set of those who have squared the circle, C the set of those claiming to have squared the circle, and I the set of insane individuals.

Invalid
$5 \frac{277}{277+787}=\frac{277}{1064} \approx 0.260$.
6 a 0
6b 1
6c $\frac{16}{52}=\frac{4}{13}$
6d $\frac{48}{52}=\frac{12}{13}$

7a Think of the entire square as having area 1 , and add the areas of the four white regions. This will be the relevant probability.

$$
P(\text { white area })=\frac{1}{12}+\frac{1}{12}+\frac{1}{12}+\frac{1}{18}=\frac{11}{36} .
$$

7b $\quad P($ shaded or dotted area $)=1-P($ white area $)=1-\frac{11}{36}=\frac{25}{36}$.
8 11:5 against.
$9 \frac{3}{19+3}=\frac{3}{22}$.
10 Expected Value $=\frac{3}{8}(\$ 6)+\frac{2}{8}(-\$ 3)+\frac{2}{8}(\$ 0)+\frac{1}{8}(-\$ 9)=\$ 0.375$.
11a Expected Value $=\frac{1}{3200}(\$ 1995)+\frac{2}{3200}(\$ 495)+\frac{3197}{3200}(-\$ 5)=-\$ 4.0625$

11b Fair price $=$ Expected Value + Cost to Play $=-\$ 4.0625+\$ 5=\$ 0.9375 \approx \$ 0.94$.

