1 Argument is **invalid**:

p	q	$[(\neg p \to q)$	\wedge	$(\neg q)$]	$ \rightarrow$	$(\neg p)$
1	1	1	0	0	1	0
1	0	1	1	1	0	0
0	1	1	0	0	1	1
0	0	0	0	1	1	1

2 Argument is valid:

p	q	r	$[(p \leftrightarrow q) \land (p \lor r) \land (q \to r)]$	$ \rightarrow$	$(q \vee r)$
1	1	1	1	1	1
1	1	0	0	1	1
1	0	1	0	1	1
1	0	0	0	1	0
0	1	1	0	1	1
0	1	0	0	1	1
0	0	1	1	1	1
0	0	0	0	1	0

3 With p = "The soccer team wins the game," q = "Xavier played as goalkeeper," and r = "The team is in third place," the argument is:

$$\begin{array}{c} p \to q \\ q \to r \\ \hline \therefore p \to r \end{array}$$

The argument is **valid**:

p	q	r	$\left[(p \to q) \land (q \to r) \right]$	\rightarrow	$(p \rightarrow r)$
1	1	1	1	1	1
1	1	0	0	1	0
1	0	1	0	1	1
1	0	0	0	1	0
0	1	1	1	1	1
0	1	0	0	1	1
0	0	1	1	1	1
0	0	0	1	1	1

4a

Invalid

4b Let P be the set of Pythagoreans, S the set of those who have squared the circle, C the set of those claiming to have squared the circle, and I the set of insane individuals.

7a Think of the entire square as having area 1, and add the areas of the four white regions. This will be the relevant probability.

$$P(\text{white area}) = \frac{1}{12} + \frac{1}{12} + \frac{1}{12} + \frac{1}{18} = \frac{11}{36}.$$

7b $P(\text{shaded or dotted area}) = 1 - P(\text{white area}) = 1 - \frac{11}{36} = \frac{25}{36}.$

8 11:5 against.

9 $\frac{3}{19+3} = \frac{3}{22}$.

10 Expected Value = $\frac{3}{8}(\$6) + \frac{2}{8}(-\$3) + \frac{2}{8}(\$0) + \frac{1}{8}(-\$9) = \$0.375.$

11a Expected Value =
$$\frac{1}{3200}(\$1995) + \frac{2}{3200}(\$495) + \frac{3197}{3200}(-\$5) = -\$4.0625$$

11b Fair price = Expected Value + Cost to Play = $-\$4.0625 + \$5 = \$0.9375 \approx \0.94 .