Math 101 Exam \#1 Key (Spring 2021)

1a $\{-2,-1,0,1,2,3\}$

1b $\{4,5,6, \ldots, 14\}$

1c $\{-1\}$, since $2 x+3=1 \Rightarrow x=-1$.

2a $\{x \mid x \in \mathbb{N}$ and $4 \leq x \leq 12\}$

2b $\{x \mid x \in \mathbb{N}$ and x is odd $\}$, or equivalently $\{2 n-1 \mid n \in \mathbb{N}\}$.

3a False, since it is \# that is an element, and not $\{\#\}$.

3b True.

3c False, 回 is an element of the set, not a proper subset of it.
$4 \varnothing,\{a\},\{b\},\{c\},\{a, b\},\{a, c\},\{b, c\}$

5a $\quad(A \cup B)^{\prime}=\{0,6\}$
$\mathbf{5 b} \quad A^{\prime} \cup(A \cap B)=\{0,3,6,7\} \cup\{4\}=\{0,3,4,6,7\}$

5c $\quad A-B^{\prime}=\{1,2,4,5,8\}-\{0,1,2,5,6,8\}=\{4\}$

6a Here $A=\{1,3,5,7,9\}, B=\{2,4,6,8\}$, and $C^{\prime}=\{1,2,3,4,5,6\}$, so

$$
\left(C^{\prime} \cup A\right) \cap B=\{2,4,6\} .
$$

6 b Note $A-B=A$, so $(A-B)^{\prime}=A^{\prime}=B$ and we have

$$
(A-B)^{\prime}-C=B-C=\{2,4,6,8\}-\{7,8,9\}=\{2,4,6\} .
$$

7 We have

$$
B \times A=\{(4, q),(6, q),(8, q),(4, r),(6, r),(8, r)\}
$$

and so $n(A)=2, n(B)=3$, and $n(B \times A)=n(B) \cdot n(A)=6$.

8 We have

$$
A \cap(B \cup C)=\{r, v, w, x, p, n, z\} \cap\{z, n, p, x, s, m, e, g, t, k\}=\{z, n, p, x\}
$$

and

$$
\begin{aligned}
\left(A^{\prime} \cup B\right) \cap C & =(\{t, k, g, e, m, s, j\} \cup\{t, k, g, p, n, z\}) \cap\{g, e, m, s, x, p\} \\
& =\{t, k, g, e, m, s, p, n, z, j\} \cap\{g, e, m, s, x, p\} \\
& =\{g, e, m, s, p\}
\end{aligned}
$$

9a Referring to the regions of a two-set Venn diagram, we find the sets to be equal:

$$
\left(A^{\prime} \cap B\right)^{\prime}=\{\mathrm{I}, \mathrm{II}, \mathrm{IV}\}=A \cup B^{\prime}
$$

9b Referring to the regions of a three-set Venn diagram, we find the sets to be not equal: $A \cup(B \cap C)^{\prime}=\{\mathrm{I}, \mathrm{II}, \mathrm{III}, \mathrm{IV}, \mathrm{V}, \mathrm{VII}, \mathrm{VIII}\} \neq\{\mathrm{III}, \mathrm{VI}, \mathrm{VII}\}=A^{\prime} \cap(B \cup C)$.

10a

10b $43-33=10$

10c $8+8+6=22$

10d 7
$\mathbf{1 0 e} 8+1+6=15$

11

$$
\begin{aligned}
& 5 \longrightarrow 9 \\
& 9 \longrightarrow 13 \\
& 13 \longrightarrow 17 \\
& 17 \longrightarrow 21 \\
& \vdots \\
& 4 n+1 \longrightarrow 4 n+5
\end{aligned}
$$

