1 Argument is valid:

p	q	r	$[(p \wedge(q \vee r))$	\wedge	$(q \rightarrow r)]$	\rightarrow	$(p \wedge r)$
1	1	1	1	1	1	1	1
1	1	0	1	0	0	1	0
1	0	1	1	1	1	1	1
1	0	0	0	0	1	1	0
0	1	1	0	0	1	1	0
0	1	0	0	0	0	1	0
0	0	1	0	0	1	1	0
0	0	0	0	0	1	1	0

2 Let p be "The prescription was called in to Big Pharma Pill-o-Rama," and let q be "You can pick it up by tea time". The argument is: $p \rightarrow q$

$$
\frac{\neg q}{\therefore \neg p}
$$

The argument is valid:

p	q	$[(p \rightarrow q)$	\wedge	$(\neg q)]$	\rightarrow	$(\neg p)$
1	1	1	0	0	1	0
1	0	0	0	1	1	0
0	1	1	0	0	1	1
0	0	1	1	1	1	1

3 Let $p=$ "Neroon wins the contest," let $q=$ "Neroon will be rich," and let $r=$ "Neroon will stop working." Argument: $p \rightarrow q$

$$
\frac{q \rightarrow r}{\therefore \neg r \rightarrow \neg p}
$$

The argument is valid:

p	q	r	$[(p \rightarrow q)$	\wedge	$(q \rightarrow r)]$	\rightarrow	$(\neg r \rightarrow \neg p)$
1	1	1	1	1	1	1	1
1	1	0	1	0	0	1	0
1	0	1	0	0	1	1	1
1	0	0	0	0	1	1	0
0	1	1	1	1	1	1	1
0	1	0	1	0	0	1	1
0	0	1	1	1	1	1	1
0	0	0	1	1	1	1	1

4a

4b Let C be the set of circus clowns, S the set of scary things, and I the set of insurrectionists.

5 Statement: $p \vee \neg q \vee(r \wedge q)$.

p	q	r	$p \vee \neg q \vee(r \wedge q)$	Bulb
1	1	1	1	On
1	1	0	1	On
1	0	1	1	On
1	0	0	1	On
0	1	1	1	On
0	1	0	0	Off
0	0	1	1	On
0	0	0	1	On

6

7a $\quad P($ cat $)=\frac{45}{56+45+12+7}=\frac{45}{120}=\frac{3}{8}$

7b $\quad P($ ferret or $\operatorname{dog})=\frac{7+56}{56+45+12+7}=\frac{63}{120}=\frac{21}{40}$
$8 \quad P($ yellow $)=\frac{5}{25+5+55}=\frac{5}{85}=\frac{1}{17}$

9 Probability $=P(1$ or 2 or 3 or 4 or 5 or J or Q or K$)=\frac{32}{52}=\frac{8}{13}$
$10 \quad P($ not a 5$)=1-P(5)=1-\frac{4}{52}=\frac{48}{52}=\frac{12}{13}$
11 Odds against a number less than $3=\frac{P(\text { no number less than } 3)}{P(\text { number less than } 3)}=\frac{4 / 6}{2 / 6}=\frac{4}{2}$, which translates as 4:2 against, or equivalently 2:1 against.
$12 P($ win funny hat $)=\frac{16}{9+16}=\frac{16}{25}$
13 Expected Value $=\frac{8}{16}(\$ 8)+\frac{2}{16}(-\$ 6)+\frac{4}{16}(-\$ 2)+\frac{1}{16}(-\$ 40)+\frac{1}{16}(\$ 0)=\$ 0.25$.

14a Expected Value $=\frac{1}{2000}(\$ 1197)+\frac{2}{2000}(\$ 597)+\frac{1997}{2000}(-\$ 3)=-\$ 1.80$

14b Fair price $=$ Expected Value + Cost to Play $=-\$ 1.80+\$ 3=\$ 1.20$

