MATH 101 EXAM #3 Key (Fall 2022)

1 Argument is valid:

p	q	r	$[(p \land (q \lor r))$	\wedge	$(q \rightarrow r)]$	\rightarrow	$(p \wedge r)$
1	1	1	1	1	1	1	1
1	1	0	1	0	0	1	0
1	0	1	1	1	1	1	1
1	0	0	0	0	1	1	0
0	1	1	0	0	1	1	0
0	1	0	0	0	0	1	0
0	0	1	0	0	1	1	0
0	0	0	0	0	1	1	0

2 Let p be "The prescription was called in to Big Pharma Pill-o-Rama," and let q be "You can pick it up by tea time". The argument is: $p \to q$

 $\frac{\neg q}{\therefore \neg p}$

The argument is valid:

p	q	$[(p \to q)$	\wedge	$(\neg q)]$	$ \rightarrow$	$(\neg p)$
1	1	1	0	0	1	0
1	0	0	0	1	1	0
0	1	1	0	0	1	1
0	0	1	1	1	1	1

3 Let p = "Neroon wins the contest," let q = "Neroon will be rich," and let r = "Neroon will stop working." Argument: $p \rightarrow q$

$$\frac{q \to r}{\therefore \neg r \to \neg p}$$

The argument is **valid**:

p	q	r	$[(p \to q)$	\wedge	$ (q \rightarrow r)]$	$ \rightarrow$	$(\neg r \rightarrow \neg p)$
1	1	1	1	1	1	1	1
1	1	0	1	0	0	1	0
1	0	1	0	0	1	1	1
1	0	0	0	0	1	1	0
0	1	1	1	1	1	1	1
0	1	0	1	0	0	1	1
0	0	1	1	1	1	1	1
0	0	0	1	1	1	1	1

4b Let C be the set of circus clowns, S the set of scary things, and I the set of insurrectionists.

5 Statement: $p \lor \neg q \lor (r \land q)$.

p	q	r	$p \vee \neg q \vee (r \wedge q)$	Bulb
1	1	1	1	On
1	1	0	1	On
1	0	1	1	On
1	0	0	1	On
0	1	1	1	On
0	1	0	0	Off
0	0	1	1	On
0	0	0	1	On

6

7a
$$P(\text{cat}) = \frac{45}{56 + 45 + 12 + 7} = \frac{45}{120} = \frac{3}{8}$$

7b
$$P(\text{ferret or dog}) = \frac{7+56}{56+45+12+7} = \frac{63}{120} = \frac{21}{40}$$

8 $P(\text{yellow}) = \frac{5}{25+5+55} = \frac{5}{85} = \frac{1}{17}$

9 Probability = $P(1 \text{ or } 2 \text{ or } 3 \text{ or } 4 \text{ or } 5 \text{ or } J \text{ or } Q \text{ or } K) = \frac{32}{52} = \frac{8}{13}$

10
$$P(\text{not a } 5) = 1 - P(5) = 1 - \frac{4}{52} = \frac{48}{52} = \frac{12}{13}$$

11 Odds against a number less than $3 = \frac{P(\text{no number less than } 3)}{P(\text{number less than } 3)} = \frac{4/6}{2/6} = \frac{4}{2}$, which translates as 4:2 against, or equivalently 2:1 against.

12
$$P(\text{win funny hat}) = \frac{16}{9+16} = \frac{16}{25}$$

13 Expected Value = $\frac{8}{16}(\$8) + \frac{2}{16}(-\$6) + \frac{4}{16}(-\$2) + \frac{1}{16}(-\$40) + \frac{1}{16}(\$0) = \$0.25.$

14a Expected Value = $\frac{1}{2000}(\$1197) + \frac{2}{2000}(\$597) + \frac{1997}{2000}(-\$3) = -\$1.80$

14b Fair price = Expected Value + Cost to Play = -\$1.80 + \$3 = \$1.20