1a. Not valid.

1b. Not valid.

1c. Not valid.

2a. {3, 4, 5, 6}

2b. {2, 4, 6, 8, ...}

3a. $\{x \mid x \in \mathbb{N} \text{ and } 5 \le x \le 14\}$

3b. $\{x \mid x \in \mathbb{N} \text{ and } x \text{ is odd}\}$

4a. False, since $\{\#\}$ is actually a *subset* of $\{\$, \&, \%, @, \#, =\}$.

4b. True.

4c. False, since \boxdot is actually an *element* of $\{\boxdot, \Box, \boxdot, \bigtriangledown, \bigtriangledown, \bigstar\}$.

4d. False, since no set can be a proper subset of itself.

4e. True.

5. \emptyset , $\{\emptyset\}$, $\{\sqcup\}$, $\{\times\}$, $\{\emptyset,\sqcup\}$, $\{\emptyset,\times\}$, $\{\sqcup,\times\}$

6a. $(A \cup B)' = \{7\}$

6b. $A' \cup (A \cap B) = \{3, 6, 7\} \cup \{2, 4\} = \{2, 3, 4, 6, 7\}$

6c. $\{1, 2, 4, 5, 8\} - \{1, 5, 7, 8\} = \{2, 4\}$

7. Here $A=\{1,3,5,7,9\},\ B=\{2,4,6,8\},\ \text{and}\ C=\{6,7,8,9\},\ \text{so}\ (C'\cup A)\cap B=\{1,3,5,6,7,8,9\}\cup\{2,4,6,8\}=\{6,8\}$

8. $A \times B = \{(q,4), (q,6), (q,8), (r,4), (r,6), (r,8)\},$ $n(A) = 2, n(B) = 3, n(A \times B) = 6.$ (Notice that $n(A) \cdot n(B) = n(A \times B)$, which is not a co-inky-dink.)

9. {3, 4, 5, 7}

10a. Referring to the regions of a two-set Venn diagram, we find that $(A' \cap B)' = \{I, II, IV\} = A \cup B'$

10b. Referring to the regions of a three-set Venn diagram, we have $A \cup (B \cap C)' = \{I, II, III, IV, V, VII, VIII\} \neq \{III, VI, VII\} = A' \cap (B \cup C)$