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The Riemann Integral

6.1 – Definition of the Riemann Integral

Definition 6.1. Given an interval [a, b] with a < b, a partition P of [a, b] is a finite set of
points {x0, x1, . . . , xn} ⊆ [a, b], called grid points, such that x0 = a, xn = b, and xk−1 < xk
for all k = 1, . . . , n. The points xk subdivide [a, b] into n subintervals,

[a, x1], [x1, x2], . . . , [xk−1, xk], . . . , [xn−2, xn−1], [xn−1, b],

with the length of the kth subinterval being ∆xk = xk−xk−1. The mesh of P , denoted by ‖P‖,
is defined to be the length of the longest subinterval:

‖P‖ = max
1≤k≤n

∆xk.

The set of all possible partitions of [a, b] we denote by P [a, b].

Notation. It is convenient to denote a partition {x0, x1, . . . , xn} more compactly by {xk}nk=0,
and write {xk}nk=0 ∈ P [a, b] to specify that {xk}nk=0 is a partition of the interval [a, b].

Definition 6.2. Let f : [a, b]→ R be bounded, and let P = {xk}nk=0 ∈ P [a, b]. Define

Mk = sup{f(x) : xk−1 ≤ x ≤ xk} and mk = inf{f(x) : xk−1 ≤ x ≤ xk}

for each 1 ≤ k ≤ n. Then

U(P, f) =
n∑

k=1

Mk∆xk and L(P, f) =
n∑

k=1

mk∆xk

are the upper sum of f with respect to P and lower sum of f with respect to P ,
respectively.

Note that since f is bounded on [a, b, ], it must be bounded on each [xk−1, xk] ⊆ [a, b] and
hence Mk and mk must be real numbers as a consequence of the Completeness Axiom of R.

Definition 6.3. Let f : [a, b] → R be bounded. The upper Riemann integral of f over
[a, b] is ∫ b

a

f = inf{U(P, f) : P ∈ P [a, b]},
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and the lower Riemann integral of f over [a, b] is∫ b

a

f = sup{L(P, f) : P ∈ P [a, b]}.

Proposition 6.4. If f : [a, b]→ R is bounded, then∫ b

a

f and

∫ b

a

f

exist in R.

Proof. Suppose that f : [a, b] → R is bounded. Then there exists some M ∈ R such that
f(x) ≤M for all x ∈ [a, b]. Let P = {xk}nk=0 ∈ P [a, b]. For each 1 ≤ k ≤ n we have f(x) ≤M
for all x ∈ [xk−1, xk], and so

mk = inf{f(x) : xk−1 ≤ x ≤ xk} ≤M

for each 1 ≤ k ≤ n. Thus

L(P, f) =
n∑

k=1

mk∆xk ≤
n∑

k=1

M∆xk = M
n∑

k=1

∆xk = M(b− a),

and since P ∈ P [a, b] is arbitrary we conclude that the real number M(b−a) is an upper bound
for {L(P, f) : P ∈ P [a, b]}. Therefore by the Completeness Axiom the least upper bound of
{L(P, f) : P ∈ P [a, b]} is real-valued, which is to say∫ b

a

f = sup{L(P, f) : P ∈ P [a, b]}

exists in R.
The proof of the statement concerning the upper Riemann integral of f over [a, b] is similar

and so left as an exercise. �

Proposition 6.5. If P1, P2 ∈ P [a, b] are such that P1 ⊆ P2, then

L(P1, f) ≤ L(P2, f) and U(P2, f) ≤ U(P1, f).

Proposition 6.6. If P1, P2 ∈ P [a, b], then

L(P1, f) ≤ U(P2, f).

Definition 6.7. A bounded function f : [a, b]→ R is Riemann integrable on [a, b] if∫ b

a

f =

∫ b

a

f = If ∈ R.

We call the real number If the Riemann integral of f over [a, b], and denote it by the
symbol ∫ b

a

f or

∫ b

a

f(x) dx.

The set of all functions that are Riemann integrable on [a, b] is denoted by R[a, b].
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The Riemann integral, also known in these notes as the definite integral, is just one of

many different kinds of integrals defined in mathematics. In the symbol
∫ b

a
f , which in practice

may be read as “the integral of f from a to b,” we call a the lower limit of integration, b
the upper limit of integration, and f the integrand.

The x in the symbol ∫ b

a

f(x) dx (1)

given in Definition 6.7 is called the variable of integration. It is also called a dummy
variable, since we could substitute other letters for x and the meaning of the symbol would
be unchanged. Thus ∫ b

a

f(x) dx,

∫ b

a

f(t) dt,

∫ b

a

f(u) du

and so on are all considered identical Riemann integrals. As the simpler symbol
∫ b

a
f suggests,

only the integrand f and the limits of integration a and b uniquely determine a Riemann
integral.

Using the symbol (1) is preferred especially when the function [a, b] → R in the integrand
has no designation. Thus we may write ∫ 9

0

x2 dx

to denote the Riemann integral
∫ 9

0
f with integrand f(x) = x2. The symbol (1) is also useful

when there is more than one independent variable present in an analysis, as will often be the
case from Chapter 13 onward.

Proposition 6.8. Let c ∈ R. If f ≡ c on [a, b], then f ∈ R[a, b] and
∫ b

a
f = c(b− a).

If f ≡ c on [a, b] then it’s common practice to write∫ b

a

c = c(b− a) or

∫ b

a

c dx = c(b− a),

depending on one’s preference.

Theorem 6.9. Let f : [a, b] → R be a bounded function. Then f ∈ R[a, b] if and only if for
every ε > 0 there exists some P ∈ P [a, b] such that U(P, f)− L(P, f) < ε.
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6.2 – Riemann Sums

Given a partition P = {xk}nk=0, a sample point from [xk−1, xk] is any point x∗k chosen from
the interval, so that

xk−1 ≤ x∗k ≤ xk
for each 1 ≤ k ≤ n.

Definition 6.10. Given a function f : [a, b] → R, a partition P = {xk}nk=0 ∈ P [a, b], and
sample points x∗k ∈ [xk−1, xk] for k = 1, . . . , n, the sum

S(P, f) =
n∑

k=1

f(x∗k)∆xk

is called the Riemann sum for f with respect to P on [a, b].

In this definition as well as the next one it is important to bear in mind that the value of the
integer n depends on the choice of partition P . We could write nP instead of n to emphasize
this, but will refrain from doing so to minimize clutter.

Definition 6.11. Let L ∈ R. Then we define

lim
‖P‖→0

S(P, f) = L

to mean the following: for every ε > 0 there exists some δ > 0 such that if P = {xk}nk=0 ∈ P [a, b]
with 0 < ‖P‖ < δ, then

|S(P, f)− L| < ε

for all choice of sample points x∗k ∈ [xk−1, xk], 1 ≤ k ≤ n.

The following theorem provides, at least theoretically, a means of calculating a Riemann
integral by evaluating a limit. Further improvements are forthcoming.

Theorem 6.12. Let f : [a, b]→ R be bounded. Then f ∈ R[a, b] if and only if

lim
‖P‖→0

S(P, f) = L

for some L ∈ R, in which case
∫ b

a
f = L.
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6.3 – Properties of the Riemann Integral

In this section we establish various general properties of the Riemann integral. Most of
these properties will make the task of evaluating Riemann integrals easier, and certainly all of
them will be useful later on to prove further theoretical results.

Definition 6.13. For any f ∈ R[a, b] we define∫ a

b

f = −
∫ b

a

f.

For any function f for which f(a) ∈ R we define∫ a

a

f = 0.

Proposition 6.14 (Linearity Properties of the Riemann Integral). Suppose f, g ∈ R[a, b]
and c ∈ R. Then f ± g ∈ R[a, b] and cf ∈ R[a, b] such that

1.

∫ b

a

cf = c

∫ b

a

f

2.

∫ b

a

(f ± g) =

∫ b

a

f ±
∫ b

a

g

Theorem 6.15. Suppose f, g ∈ R[a, b]. If f ≤ g on [a, b], then∫ b

a

f ≤
∫ b

a

g.

Theorem 6.16. Suppose c ∈ (a, b). If f ∈ R[a, b], then f ∈ R[a, c], f ∈ R[c, b], and∫ b

a

f =

∫ c

a

f +

∫ b

c

f.

A result amounting effectively to a converse of the statement of Theorem 6.16 is the following
proposition.

Proposition 6.17. Suppose c ∈ (a, b). If f ∈ R[a, c] and f ∈ R[c, b], then f ∈ R[a, b].

Proof. Suppose f ∈ R[a, c] and f ∈ R[c, b]. Then f is bounded on [a, c] and [c, b], which implies
that it is bounded on [a, b]. Let ε > 0. By Theorem 6.9 there exist partitions P1 ∈ P [a, c] and
P2 ∈ P [c, b] such that

U(P1, f)− L(P1, f) < ε/2 and U(P2, f)− L(P2, f) < ε/2

Define P ∈ P [a, b] by P = P1 ∪ P2, so that

U(P, f) = U(P1, f) + U(P2, f) and L(P, f) = L(P1, f) + L(P2, f).



6

Recalling Proposition 6.5, we have

U(P, f)− L(P, f) = |U(P, f)− L(P, f)|

=
∣∣[U(P1, f) + U(P2, f)]− [L(P1, f) + L(P2, f)]

∣∣
≤ |U(P1, f)− L(P1, f)|+ |U(P2, f)− L(P2, f)|

= U(P1, f)− L(P1, f) + U(P2, f)− L(P2, f)

< ε/2 + ε/2 = ε.

Thus there exists some partition in P [a, b] for which U(P, f)−L(P, f) < ε. Therefore f ∈ R[a, b]
by Theorem 6.9. �

Theorem 6.18. Suppose f ∈ R[a, b]. If

{x ∈ [a, b] : g(x) 6= f(x)}
is a finite set, then g ∈ R[a, b] and ∫ b

a

g =

∫ b

a

f.
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6.4 – Integrable Functions

In this section we develop tools to help determine whether a given function is Riemann
integrable on an interval [a, b].

Theorem 6.19. If ϕ ∈ R[a, b], Ran(ϕ) ⊆ [α, β], and ψ : [α, β] → R is continuous, then
ψ ◦ ϕ ∈ R[a, b].

Proposition 6.20. If f is continuous on [a, b], then f ∈ R[a, b].

Proof. Suppose that f : [a, b]→ R is continuous. Let ϕ : [a, b]→ R be the identity function on
[a, b], so that ϕ(x) = x for all x ∈ [a, b]. Since Ran(ϕ) = [a, b], and ϕ ∈ R[a, b] by Proposition
??, it follows by Theorem 6.19 that f ◦ ϕ ∈ R[a, b]. Now, for any x ∈ [a, b],

(f ◦ ϕ)(x) = f(ϕ(x)) = f(x),

so we see that f ◦ ϕ = f and therefore f ∈ R[a, b]. �

Proposition 6.21. If f, g ∈ R[a, b], then

1. f 2 ∈ R[a, b],

2. fg ∈ R[a, b],

3. |f | ∈ R[a, b] with
∣∣ ∫ b

a
f
∣∣ ≤ ∫ b

a
|f |,

4. f ∨ g, f ∧ g ∈ R[a, b].

Proof.
Proof of Part (1). Suppose that f ∈ R[a, b]. Then f : [a, b]→ R is a bounded function, so that
Ran(f) ⊆ [α, β] for some −∞ < α < β <∞. Defining the function ψ by ψ(x) = x2, it is clear
that ψ is continuous on [α, β]. By Theorem 6.19 we conclude that ψ ◦ f ∈ R[a, b]. Now, since

(ψ ◦ f)(x) = ψ(f(x)) = [f(x)]2 = f 2(x)

for any x ∈ [a, b], we see that ψ ◦ f = f 2 and therefore f 2 ∈ R[a, b].

Proof of Part (2). Suppose that f, g ∈ R[a, b]. By Proposition 6.14 we have f+g, f−g ∈ R[a, b],
and then by Part (1) we have (f +g)2, (f−g)2 ∈ R[a, b]. Applying Proposition 6.14 once more,
it follows that

fg =
1

4
[(f + g)2 − (f − g)2] ∈ R[a, b]

as was to be shown.

Proof of Part (3). Suppose that f ∈ R[a, b]. Once again Ran(f) ⊆ [α, β] for some −∞ <
α < β <∞. If ψ(x) = |x|, then ψ is continuous on [α, β]. By Theorem 6.19 we conclude that
ψ ◦ f ∈ R[a, b]. Now, since

(ψ ◦ f)(x) = ψ(f(x)) = |f(x)| = |f |(x)

for any x ∈ [a, b], we see that ψ ◦ f = |f | and therefore |f | ∈ R[a, b]. �



8

6.5 – The Fundamental Theorem of Calculus

Recall that, according to the Extreme Value Theorem, a continuous function on a closed
interval [a, b] will attain an absolute maximum value and an absolute minimum value. That is,
there will be some x1, x2 ∈ [a, b] such that f(x1) ≥ f(x) for all x ∈ [a, b] and f(x2) ≤ f(x) for
all x ∈ [a, b]. Then we can write

f(x1) = max{f(x) : x ∈ [a, b]} and f(x2) = min{f(x) : x ∈ [a, b]}.

This is essential in what follows.

Lemma 6.22. Let f be continuous on [a, b] and c ∈ [a, b]. Define αc, βc : [a, b]→ R by

αc(x) =

{
max{f(t) : t ∈ [c, x]}, if x ≥ c

max{f(t) : t ∈ [x, c]}, if x < c

and

βc(x) =

{
min{f(t) : t ∈ [c, x]}, if x ≥ c

min{f(t) : t ∈ [x, c]}, if x < c

Then limx→c αc(x) = limx→c βc(x) = f(c).

Remark. Note αc and βc are indeed real-valued functions for any a ≤ c ≤ b since f is bounded
on [a, b] by the Extreme Value Theorem.

Proof. We will assume that c ∈ (a, b). If c = a or c = b only a right- or left-hand limit,
respectively, would need to be considered, but otherwise the argument would be the same.

Let ε > 0. Since f is continuous at c, there exists some δ1 > 0 such that c ≤ x < c+δ1 implies
|f(x)− f(c)| < ε/2. Suppose that c < x < c+ δ1. For any t ∈ [c, x] we have |f(t)− f(c)| < ε/2,
whence

f(c)− ε/2 < f(t) < f(c) + ε/2

obtains and thus

f(c)− ε/2 < αc(x) = max{f(t) : t ∈ [c, x]} ≤ f(c) + ε/2.

From this it can be seen that

|αc(x)− f(c)| ≤ ε/2 < ε,

and so

lim
x→c+

αc(x) = f(c).

Next, continuity of f at c implies that there is some δ2 > 0 such that |f(x) − f(c)| < ε/2
whenever c−δ2 < x ≤ c. Suppose that c−δ2 < x < c. For any t ∈ [x, c] we have |f(t)−f(c)| <
ε/2, which gives

f(c)− ε/2 < f(t) < f(c) + ε/2

and thus

f(c)− ε/2 < αc(x) = max{f(t) : t ∈ [x, c]} ≤ f(c) + ε/2.
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Once again we’re led to conclude that

|αc(x)− f(c)| ≤ ε/2 < ε,

and so

lim
x→c−

αc(x) = f(c).

So limx→c αc(x) = f(c) for any c ∈ (a, b). The proof runs along similar lines for the function
βc and so it omitted. �

Theorem 6.23 (The Fundamental Theorem of Calculus, Part 1). If f is continuous on
[a, b], then the function Φ : [a, b]→ R given by

Φ(x) =

∫ x

a

f(t) dt, a ≤ x ≤ b

is differentiable on [a, b], with Φ′(x) = f(x) for each a ≤ x ≤ b.

Remark. As is our custom, it is intended that Φ′(a) and Φ′(b) be taken as signifying the
one-sided derivatives Φ′+(a) and Φ′−(b), respectively.

Proof. Suppose that f is continuous on [a, b], so that f ∈ R[a, b] by Proposition 6.20. Let
c ∈ (a, b). Using Theorem 6.16, we have

lim
x→c+

Φ(x)− Φ(c)

x− c
= lim

x→c+

1

x− c

(∫ x

a

f −
∫ c

a

f

)
= lim

x→c+

1

x− c

∫ x

c

f (2)

Let αc, βc : [a, b] → R be as defined in Lemma 6.22. For any fixed x ∈ (c, b) we have
βc(x) ≤ f(t) ≤ αc(x) for all t ∈ [c, x]. Thus by Theorem 6.15 we obtain∫ x

c

βc(x) ≤
∫ x

c

f ≤
∫ x

c

αc(x),

whence Proposition 6.5 gives

βc(x) · (x− c) ≤
∫ x

c

f ≤ αc(x) · (x− c)

and therefore

βc(x) ≤ 1

x− c

∫ x

c

f ≤ αc(x). (3)

Since the inequality (3) holds for all c < x < b and

lim
x→c+

αc(x) = lim
x→c+

βc(x) = f(c)

by Lemma 6.22, by (2) and the Squeeze Theorem we obtain

lim
x→c+

Φ(x)− Φ(c)

x− c
= lim

x→c+

1

x− c

∫ x

c

f = f(c).

A similar argument shows that

lim
x→c−

Φ(x)− Φ(c)

x− c
= lim

x→c−

1

x− c

∫ x

c

f = f(c),
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and thus

Φ′(c) = lim
x→c

Φ(x)− Φ(c)

x− c
= f(c).

Since a < c < b is arbitrary, we conclude that Φ is differentiable on (a, b) with Φ′(x) = f(x) for
all x ∈ (a, b).

Now let c = a. We have

αa(x) = max{f(t) : t ∈ [a, x]} and βa(x) = min{f(t) : t ∈ [a, x]},

and Lemma 6.22 gives

lim
x→a+

αa(x) = lim
x→a+

βa(x) = f(a). (4)

Given any x ∈ (a, b) we have βa(x) ≤ f(t) ≤ αa(x) for all t ∈ [a, x], implying∫ x

a

βa(x) ≤
∫ x

a

f ≤
∫ x

a

αa(x),

and thus

βa(x) ≤ 1

x− a

∫ x

a

f ≤ αa(x). (5)

Since (5) holds for all a < x < b, by (4) and the Squeeze Theorem we obtain

Φ′+(a) = lim
x→a+

Φ(x)− Φ(a)

x− a
= lim

x→a+

Φ(x)

x− a
= lim

x→a+

1

x− a

∫ x

a

f = f(a),

where Φ(a) = 0 by Definition 6.15. A similar argument shows that Φ′−(b) = f(b).
Therefore Φ is differentiable on [a, b] with Φ′(x) = f(x) for all a ≤ x ≤ b. �

Example 6.24. Given that

F (x) =

∫ sinx

2

(1− t2)7 dt,

find F ′.

Solution. If we define Φ(x) =
∫ x

2
(1− t2)7 dt, then

F (x) = Φ(sin(x)) = (Φ ◦ sin)(x)

and the Chain Rule gives

F ′(x) = (Φ ◦ sin)′(x) = Φ′(sin(x)) · sin′(x) = Φ′(sin(x)) · cos(x)

for all x ∈ R. Now, by Theorem 6.23 we have Φ′(x) = (1− x2)7, and so

F ′(x) = Φ′(sinx) · cosx = (1− sin2 x)7(cosx) = (cos2 x)7(cosx) = cos15(x)

for all x ∈ R. �

Recalling Definition 4.31, what Theorem 6.23 says is that Φ is an antiderivative for f on
[a, b]. We make use of this fact to prove the following.
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Theorem 6.25 (The Fundamental Theorem of Calculus, Part 2). Let f be continuous
on [a, b]. If F is any antiderivative for f on [a, b], then∫ b

a

f(t)dt = F (b)− F (a)

Proof. F be an antiderivative for f on [a, b]. By Theorem 4.33 there exists some constant c
such that F = Φ + c, where Φ is the antiderivative for f on [a, b] that is given in Theorem 6.23.
That is,

F (x) = Φ(x) + c =

∫ x

a

f + c

for x ∈ [a, b], which gives F (a) =
∫ a

a
f + c = c, and so

F (b) =

∫ b

a

f + c =

∫ b

a

f + F (a).

Therefore
∫ b

a
f = F (b)− F (a). �

The first part of the Fundamental Theorem of Calculus shows how a definite integral can
be used to determine an antiderivative for a function f on a closed interval [a, b], while the
second part shows how an antiderivative can be used to determine a definite integral for f on
[a, b]. The symmetry is something to behold, the two parts taken together effectively uniting
the differential and integral branches of calculus.

The following proposition is a modest generalization of Theorem 6.23 and will prove useful
in the study of differential equations.

Proposition 6.26. If f is continuous on (a, b) and c ∈ (a, b), then the function Φ : (a, b)→ R
given by

Φ(x) =

∫ x

c

f(t) dt, a < x < b

is differentiable on (a, b), with Φ′(x) = f(x) for each a < x < b.

Proof. Let d ∈ [c, b). Since f is continuous on [c, d ], by Theorem 6.23 the function Φ is
differentiable on [c, d ] such that Φ′(x) = f(x) for all x ∈ [c, d ]. Since d ∈ [c, b) is arbitrary we
conclude that Φ′(x) = f(x) for all x ∈ (c, b), with Φ′+(c) = f(c) in particular.

Now let d ∈ (a, c]. Since f is continuous on [d, c], by Theorem 6.23 the function Ψ : [d, c]→ R
given by

Ψ(x) =

∫ x

d

f(t) dt

for all x ∈ [d, c] is differentiable such that Ψ′(x) = f(x) for each d ≤ x < c, and Ψ′−(c) = f(c).
Now, by Theorem 6.16 and Definition 6.15 we obtain∫ c

d

f(t) dt =

∫ x

d

f(t) dt+

∫ c

x

f(t) dt =

∫ x

d

f(t) dt−
∫ x

c

f(t) dt = Ψ(x)− Φ(x),

and thus

Φ(x) = Ψ(x)−
∫ c

d

f(t) dt.
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for each d ≤ x ≤ c. Since
∫ c

d
f is a constant we have Φ′(x) = Ψ′(x) = f(x) for x ∈ [d, c], and

since d ∈ (a, c] is arbitrary we conclude that Φ′(x) = f(x) for all x ∈ (a, c), with Φ′−(c) = f(c)
in particular.

Finally, from Φ′+(c) = f(c) = Φ′−(c) we have Φ′(c) = f(c), and therefore Φ′(x) = f(x) for
all a < x < b. �
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6.6 – Improper Riemann Integrals

Suppose f is Riemann integrable on [a, x] for all x ≥ a. By definition we have∫ x

a

f ∈ R

for each x ≥ a. This observation leads us to ask whether
∫ x

a
f tends to some limiting value

L ∈ R as x→∞; that is, does the limit

lim
x→∞

∫ x

a

f

exist in R? Such a question arises frequently in applications, and so motivates the following
definition.

Definition 6.27. If f ∈ R[a, b] for all b ≥ a, then we define∫ ∞
a

f = lim
b→∞

∫ b

a

f

and say that
∫∞
a
f converges to L if

∫∞
a
f = L for some L ∈ R. Otherwise we say that

∫∞
a
f

diverges.
If f ∈ R[a, b] for all a ≤ b, then we define∫ b

−∞
f = lim

a→−∞

∫ b

a

f

and say that
∫ b

−∞ f converges to L if
∫ b

−∞ f = L for some L ∈ R. Otherwise we say that∫ b

−∞ f diverges.

If an improper integral converges to some real number L then it is customary to say simply
that the integral “converges” or is “convergent.” An integral that “diverges” is also said to be

“divergent.” Any integral of the form
∫∞
a
f ,
∫ b

−∞ f , or
∫∞
−∞ f (see below) is called an improper

integral of the first kind.
The next proposition establishes linearity properties specifically for integrals of the form∫∞

a
f that are identical in form to the linearity properties of the Riemann integral given in §5.3.

There are similar linearity properties for all types of improper integrals.

Proposition 6.28. If
∫∞
a
f and

∫∞
a
g are convergent and c ∈ R, then

∫∞
a
cf and

∫∞
a

(f ± g)
are convergent such that

1.

∫ ∞
a

cf = c

∫ ∞
a

f

2.

∫ ∞
a

(f ± g) =

∫ ∞
a

f ±
∫ ∞
a

g

The proof is a routine application of relevant laws of limits established back in Chapter 2,
and so left as an exercise.
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Example 6.29. Determine whether ∫ ∞
1

ln(x)

x2
dx

converges or diverges. Evaluate if convergent.

Solution. It will be easier to first determine the indefinite integral∫
ln(x)

x2
dx.

We start with a substitution: let w = ln(x), so that dw = (1/x)dx and ew = eln(x) = x; now,∫
ln(x)

x2
dx =

∫
we−w dw.

Next, we employ integration by parts, letting u′(w) = e−w and v(w) = w to obtain∫
we−w dw = −we−w +

∫
e−w dw = −we−w − e−w + C.

Hence, ∫
ln(x)

x2
dx = − ln(x) · 1

x
− 1

x
+ C = − ln(x) + 1

x
+ C.

Now we turn to the improper integral,∫ ∞
1

ln(x)

x2
dx = lim

b→∞

∫ b

1

ln(x)

x2
dx = lim

b→∞

[
− ln(x) + 1

x

]b
1

= lim
b→∞

[
− ln(b) + 1

b
+

ln(1) + 1

1

]
= lim

b→∞

(
b− ln(b) + 1

b

)
LR
= lim

b→∞

(
1− 1/b

1

)
= 1,

using L’Hôpital’s Rule where indicated.
Therefore the improper integral is convergent, and its value is 1. �

Proposition 6.30. Suppose that f ∈ R[s, t] for all −∞ < s < t < ∞. If
∫ c

−∞ f and
∫∞
c
f

converge for some c ∈ R, then for any ĉ 6= c the integrals
∫ ĉ

−∞ f and
∫∞
ĉ
f also converge, and∫ ĉ

−∞
f +

∫ ∞
ĉ

f =

∫ c

−∞
f +

∫ ∞
c

f

Proof. Suppose
∫ c

−∞ f and
∫∞
c
f converge for some c ∈ R, meaning the limits

lim
a→−∞

∫ c

a

f and lim
b→∞

∫ b

c

f

both exist. Let ĉ < c.
For all b > c we have ∫ b

ĉ

f =

∫ c

ĉ

f +

∫ b

c

f,
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where
∫ c

ĉ
f,
∫ b

c
f ∈ R since f is integrable on [ĉ, c] and [c, b], and so∫ ∞

ĉ

f = lim
b→∞

∫ b

ĉ

f = lim
b→∞

(∫ c

ĉ

f +

∫ b

c

f

)
=

∫ c

ĉ

f + lim
b→∞

∫ b

c

f =

∫ c

ĉ

f +

∫ ∞
c

f. (6)

Observing that
∫ c

ĉ
f,
∫∞
c
f ∈ R, we readily conclude that

∫∞
ĉ
f ∈ R and hence

∫∞
ĉ
f converges.

For all a < ĉ we have ∫ ĉ

a

f =

∫ c

a

f −
∫ c

ĉ

f,

where
∫ c

a
f,
∫ c

ĉ
f ∈ R since f is integrable on [a, c] and [ĉ, c], and so∫ ĉ

−∞
f = lim

a→−∞

∫ ĉ

a

f = lim
a→−∞

(∫ c

a

f −
∫ c

ĉ

f

)
= lim

a→−∞

∫ c

a

f −
∫ c

ĉ

f =

∫ c

−∞
f −

∫ c

ĉ

f. (7)

Observing that
∫ c

−∞ f,
∫ c

ĉ
f ∈ R, we readily conclude that

∫ ĉ

−∞ f ∈ R and hence
∫ ĉ

−∞ f converges.
Finally, combining (6) and (7), we obtain∫ ĉ

−∞
f +

∫ ∞
ĉ

f =

(∫ c

−∞
f −

∫ c

ĉ

f

)
+

(∫ c

ĉ

f +

∫ ∞
c

f

)
=

∫ c

−∞
f +

∫ ∞
c

f,

as desired. �

Due to Proposition 6.30 we can unambiguously define an improper integral of the first kind
whose interval of integration is (−∞,∞).

Definition 6.31. Suppose that f ∈ R[s, t] for all −∞ < s < t < ∞. If
∫ c

−∞ f and
∫∞
c
f both

converge for some −∞ < c <∞, then we define∫ ∞
−∞

f =

∫ c

−∞
f +

∫ ∞
c

f.

and say that
∫∞
−∞ f converges. Otherwise we say

∫∞
−∞ f diverges.

It should be stressed that
∫∞
−∞ f can not be reliably evaluated simply by computing the

limit

lim
b→∞

∫ b

−b
f,

as the next example illustrates.

Example 6.32. Show that ∫ ∞
−∞

2x

1 + x2
dx

diverges, and yet

lim
b→∞

∫ b

−b

2x

1 + x2
dx = 0.
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Solution. Letting u = 1 + x2 gives du = 2x dx. Then∫ b

0

2x

1 + x2
dx =

∫ 1+b2

1

1

u
du = [ln |u|]1+b2

1 = ln(1 + b2)− ln(1) = ln(1 + b2),

and so ∫ ∞
0

2x

1 + x2
dx = lim

b→∞

∫ b

0

2x

1 + x2
dx = lim

b→∞
ln(1 + b2) =∞.

Thus ∫ ∞
0

2x

1 + x2
dx

diverges, and therefore ∫ ∞
−∞

2x

1 + x2
dx

diverges as well.
On the other hand, again employing the substitution u = 1 + x2 we find that∫ b

−b

2x

1 + x2
dx =

∫ 1+b2

1+b2

1

u
du = 0,

and so

lim
b→∞

∫ b

−b

2x

1 + x2
dx = lim

b→∞
(0) = 0.

�

An improper integral of the second kind is an integral of the form∫ b

a

f,

where −∞ < a < b < ∞, for which there exists some p ∈ [a, b] such that p /∈ Dom(f). The
following definition establishes how such an integral is to be evaluated, if it can be evaluated
at all, in the case when p = a or p = b.

Definition 6.33. If f ∈ R[c, b] for all c ∈ (a, b] and a /∈ Dom(f), then we define∫ b

a

f = lim
c→a+

∫ b

c

f

and say that
∫ b

a
f converges to L if

∫ b

a
f = L for some L ∈ R. Otherwise we say that

∫ b

a
f

diverges.
If f ∈ R[a, c] for all c ∈ [a, b) and b /∈ Dom(f), then we define∫ b

a

f = lim
c→b−

∫ c

a

f

and say that
∫ b

a
f converges to L if

∫ b

a
f = L for some L ∈ R. Otherwise we say that

∫ b

a
f

diverges.
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Very often if f is continuous on, say, (a, b] and a /∈ Dom(f), then f has a vertical asymptote
at a; that is, limx→a+ f(x) = ±∞. However, it could just be that a value for f is simply not
specified at a by construction. For example for the function

ϕ(x) =

{
3x2, if x < 5

4− 8x, if x > 5

it’s seen that ϕ(5) is left undefined, and so the integral
∫ 9

5
ϕ is an improper integral of the

second kind. By Definition 6.33 we obtain∫ 9

5

ϕ = lim
c→5+

∫ 9

c

(4− 8x) dx = lim
c→5+

[
4x− 4x2

]9
c

= lim
c→5+

[(
4(9)− 4(9)2

)
−
(
4c− 4c2

)]
=
(
4(9)− 4(9)2

)
−
(
4(5)− 4(5)2

)
= −208,

which shows that
∫ 9

5
ϕ is convergent.

Example 6.34. Determine whether ∫ 0

−1

1

x2
dx

converges or diverges. Evaluate if convergent.

Solution. The function f(x) = 1/x2 being integrated has a vertical asymptote at x = 0, which
is the right endpoint of the interval of integration [−1, 0]. By Definition 6.33 we obtain∫ 0

−1

1

x2
dx = lim

c→0−

∫ c

−1

1

x2
dx = lim

c→0−

[
−1

x

]c
−1

= lim
c→0−

(
−1

c
− 1

)
=∞,

which shows that the improper integral is divergent. �

Example 6.35. Determine whether ∫ 2

0

x√
4− x2

dx

converges or diverges. Evaluate if convergent.

Solution. Here x/
√

4− x2 has a vertical asymptote at x = 2, the right endpoint of the interval
of integration [0, 2]. By Definition 6.33∫ 2

0

x√
4− x2

dx = lim
c→2−

∫ c

0

x√
4− x2

dx,

and so, letting u = 4− x2 so that x dx = −1
2
du, we obtain

lim
c→2−

∫ c

0

x√
4− x2

dx = lim
c→2−

∫ 4−c2

4

−1/2√
u
du = lim

c→2−

(
−1

2

[
2
√
u
]4−c2
4

)
= lim

c→2−

(
2−
√

4− c2
)

= 2−
√

4− 22 = 2.

Hence the improper integral is convergent, and its value is 2. �
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The next definition addresses the circumstance when a function f is not defined at some
point p in the interior of an interval of integration. Again, this is commonly due to f having a
vertical asymptote at p, so that

lim
x→p+

|f(x)| =∞ or lim
x→p−

|f(x)| =∞,

but other scenarios are possible.

Definition 6.36. Suppose that f ∈ R[a, c] for all c ∈ [a, p), f ∈ R[c, b] for all c ∈ (p, b], and

p /∈ Dom(f). If
∫ p

a
f and

∫ b

p
f both converge, then we define∫ b

a

f =

∫ p

a

f +

∫ b

p

f.

and say that
∫ b

a
f converges. Otherwise we say

∫ b

a
f diverges.

Example 6.37. Determine whether ∫ 3

−2

1

x4
dx

converges or diverges. Evaluate if convergent.

Solution. Here 1/x4 has a vertical asymptote at x = 0, an interior point of the interval of
integration [−2, 3]. Now, by Definition 6.33∫ 3

0

1

x4
dx = lim

c→0+

∫ 3

c

1

x4
dx = lim

c→0+

[
− 1

x3

]3
c

= lim
c→0+

(
− 1

27
+

1

c3

)
=∞,

which shows that
∫ 3

0
x−4 dx is divergent. Thus, since∫ 3

0

x−4 dx and

∫ 0

−2
x−4 dx

cannot both be convergent, by Definition 6.36 it’s concluded that
∫ 3

−2 x
−4 dx is divergent. �

The integral treated in Example 6.37, like all improper integrals of the second kind, does
not look improper at first glance. If one is careless and undertakes to evaluate the integral
by conventional means, one is likely to arrive at a reasonable-looking answer without ever
suspecting that something is amiss:∫ 3

−2

1

x4
dx =

[
− 1

x3

]3
−2

= − 1

27
+

1

−8
= − 35

216
,

which is incorrect! So, before attempting to evaluate a definite integral, it is necessary to check
that the integral is not improper in some way.

It is possible to have an integral that is improper in more than one sense, such as∫ ∞
0

1

x2
dx.
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Here we have an integral of f over an unbounded interval [0,∞), so it’s an improper integral
of the first kind, and also f is undefined at 0, so it’s an improper integral of the second kind.
Such an integral is called a mixed improper integral.

Definition 6.38. If f ∈ R[s, t] for all a < s < t < ∞, a /∈ Dom(f), and
∫ c

a
f and

∫∞
c
f both

converge for some c ∈ (a,∞), then we define∫ ∞
a

f =

∫ c

a

f +

∫ ∞
c

f

and say
∫∞
a
f converges. Otherwise we say

∫∞
a
f diverges.

If f ∈ R[s, t] for all −∞ < s < t < b, b /∈ Dom(f), and
∫ c

−∞ f and
∫ b

c
f both converge for

some c ∈ (−∞, b), then we define ∫ b

−∞
f =

∫ c

−∞
f +

∫ b

c

f

and say
∫ b

−∞ f converges. Otherwise we say
∫ b

−∞ f diverges.

Example 6.39. Determine whether the mixed improper integral∫ ∞
0

1√
x(1 + x)

dx

converges or diverges. Evaluate if convergent.

Solution. We start by determining the indefinite integral∫
1√

x(1 + x)
dx.

Let u =
√
x, so that 1 + u2 = 1 + x and we replace dx with 2u du to obtain∫

1√
x(1 + x)

dx =

∫
2u

u(u2 + 1)
du = 2

∫
1

u2 + 1
du

= 2 arctan(u) + c = 2 arctan(
√
x ) + c.

Now, ∫ 1

0

1√
x(1 + x)

dx = lim
a→0+

∫ 1

a

1√
x(1 + x)

dx = lim
a→0+

[
2 arctan(

√
x )
]1
a

= lim
a→0+

2[arctan(1)− arctan(a)]= 2[arctan(1)− arctan(0)]

= 2
(π

4
− 0
)

=
π

2
,

and ∫ ∞
1

1√
x(1 + x)

dx = lim
b→∞

∫ b

1

1√
x(1 + x)

dx = lim
b→∞

[
2 arctan(

√
x )
]b
1

= lim
b→∞

2
[
arctan(

√
b )− arctan(1)

]
= 2
(π

2
− π

4

)
=
π

2
.
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Since ∫ 1

0

1√
x(1 + x)

dx and

∫ ∞
1

1√
x(1 + x)

dx

both converge, we conclude that∫ ∞
0

1√
x(1 + x)

dx =

∫ 1

0

1√
x(1 + x)

dx+

∫ ∞
1

1√
x(1 + x)

dx =
π

2
+
π

2
= π

by Definition 6.38. �
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6.7 – Comparison Tests for Integrals

It can be difficult to determine by direct means whether an improper integral is convergent
or not, largely because definite integrals themselves can be difficult to evaluate. One tool to
remedy this is a comparison test. Before stating the first such test we need to establish a lemma
that will be needed for its proof.

Lemma 6.40. Suppose the function f is monotone increasing on (a,∞). If

lim
x→∞

f(x) = M,

then f(x) ≤M for all x > a.

Proof. Suppose there exists some x0 > a such that f(x0) > M . Thus f(x0) = M + ε for some
ε > 0. Now, for any β > 0 we can let x1 = max{x0, β} + 1. Since x1 > x0 and f is monotone
increasing, we have

f(x1) ≥ f(x0) = M + ε ⇒ f(x1)−M ≥ ε ⇒ |f(x1)−M | ≥ ε.

Observing that x1 > β also, we conclude that for any β > 0 there exists some x > β for which
|f(x)−M | ≥ ε, and therefore

lim
x→∞

f(x) 6= M.

The contrapositive of the statement of the lemma is proven. �

Theorem 6.41. Suppose f ∈ R[a, x] for all x ≥ a, and 0 ≤ f ≤ g on [a,∞). If
∫∞
a
g is

convergent, then
∫∞
a
f is convergent.

Proof. Suppose
∫∞
a
g is convergent. By definition it follows that g ∈ R[a, x] for all x ≥ a,

and so we may define ψ : [a,∞) → R by ψ(x) =
∫ x

a
g. Similarly we define ϕ : [a,∞) → R by

ϕ(x) =
∫ x

a
f .

Now, g ≥ 0 on [a,∞) implies that ∫ y

x

g ≥ 0

for any a ≤ x < y. Thus, for any x, y ∈ [a,∞) such that x < y we have

ψ(y) =

∫ y

a

g =

∫ x

a

g +

∫ y

x

g ≥
∫ x

a

g = ψ(x),

which shows that ψ is monotone increasing on [a,∞). Since f ≥ 0 on [a,∞), a similar argument
establishes that ϕ also is monotone increasing on [a,∞).

Since
∫∞
a
g converges, there exists some M ∈ R such that

lim
x→∞

∫ x

a

g = M.

That is, ψ is monotone increasing on (a,∞) and

lim
x→∞

ψ(x) = M,

so ψ(x) ≤M for all x > a by Lemma 6.40.
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Finally, from the hypothesis that f ≤ g on [a,∞), we have

ϕ(x) =

∫ x

a

f ≤
∫ x

a

g = ψ(x) ≤M

for all x > a. It is now established that ϕ is both monotone increasing and bounded above on
(a,∞), and therefore by Proposition 2.20 limx→∞ ϕ(x) exists in R. Since∫ ∞

a

f = lim
x→∞

∫ x

a

f = lim
x→∞

ϕ(x),

it follows that
∫∞
a
f is convergent. �

Proposition 6.42. Suppose f ∈ R[a, x] for all x ≥ a. If
∫∞
a
|f | is convergent, then

∫∞
a
f is

convergent.

Proof. Suppose that
∫∞
a
|f | is convergent. Then |f | ∈ R[a, x] for all x ≥ a, and since the same

holds true for f by hypothesis, we have f + |f | ∈ R[a, x] for all x ≥ a by Proposition 5.15.
Now, since 0 ≤ f + |f | ≤ 2|f | on [a,∞), and∫ ∞

a

2|f |

is convergent by Proposition 6.28, Theorem 6.41 implies that∫ ∞
a

(f + |f |)

is convergent. Then, because
∫∞
a
−|f | is convergent by Proposition 6.28, it follows by Proposi-

tion 6.28 that ∫ ∞
a

[
(f + |f |) + (−|f |)

]
is convergent. Of course (f + |f |) + (−|f |) = f on [a,∞), and thus we conclude that

∫∞
a
f is

convergent. �


