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10
Differentiation in Euclidean Space

10.1 – Vector Spaces

Most of the linear algebra results given in this section and the next are established in the
Linear Algebra Notes ([LAN]). Almost all of these results are proven in these pages, but some
have proof omitted and the reader is referred to the aforementioned notes. All needed definitions
and notations are given here, for the sake of convenience.

We begin with a general definition of the algebraic structure known as a vector space, and
later specialize to the setting needed for the analytical developments to come.

Definition 10.1. A vector space over a field F is a set V of objects, along with operations
vector addition V ×V → V (denoted by +) and scalar multiplication F×V → V (denoted
by · or juxtaposition) subject to the following axioms:

VS1. u + v = v + u for any u,v ∈ V
VS2. u + (v + w) = (u + v) + w for any u,v,w ∈ V
VS3. There exists some 0 ∈ V such that u + 0 = u for any u ∈ V
VS4. For each u ∈ V there exists some −u ∈ V such that u + (−u) = 0
VS5. For any a ∈ F and u,v ∈ V , a(u + v) = au + av
VS6. For any a, b ∈ F and u ∈ V , (a+ b)u = au + bu
VS7. For any a, b ∈ F and u ∈ V , a(bu) = (ab)u
VS8. For all u ∈ V , 1u = u

The elements of V are called vectors and the elements of the underlying field F are called
scalars.

We now give some additional properties that, while seemingly obvious, nonetheless require
use of many of the axioms listed above to establish.

Proposition 10.2. Let V be a vector space, u ∈ V , and a ∈ F. Then the following hold.

1. 0u = 0.
2. a0 = 0.
3. If au = 0, then a = 0 or u = 0.
4. (−1)u = −u.
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Proof.
Proof of Part (1). Since u ∈ V and 0 ∈ F, we have 0u ∈ V by the closure property. Now,

0u = 0u + 0 Axiom VS3

= 0u + [u + (−u)] Axiom VS4

= (0u + u) + (−u) Axiom VS2

= (0u + 1u) + (−u) Axiom VS8

= (0 + 1)u + (−u) Axiom VS6

= 1u + (−u)

= u + (−u) Axiom VS8

= 0, Axiom VS4

where of course 0 + 1 = 1 is a known property of real numbers.
The proofs of parts (2), (3), and (4) are left to the exercises. �

Definition 10.3. Let V be a vector space. If W ⊆ V is a vector space under the vector addition
and scalar multiplication operations defined on V × V and F × V , respectively, then W is a
subspace of V .

In order for W ⊆ V to be a vector space it must satisfy the statement of Definition 10.1
to the letter, except that the symbol W is substituted for V . Straightaway this means we
must have W 6= ∅ since Axiom VS3 requires that 0 ∈ W . Moreover, vector addition must
map W ×W → W and scalar multiplication must map F×W → W , which is to say for any
u,v ∈ W and a ∈ F we must have u + v ∈ W and au ∈ W . These observations prove the
forward implication in the following theorem.

Theorem 10.4. Let V be a vector space and ∅ 6= W ⊆ V . Then W is a subspace of V if and
only if au ∈ W and u + v ∈ W for all a ∈ F and u,v ∈ W .

Proof. We need only prove the reverse implication. So, suppose that for any a ∈ F and
u,v ∈ W , it is true that au ∈ W and u + v ∈ W . Then vector addition maps W ×W → W
and scalar multiplication maps F ×W → W , and it remains to confirm that W satisfies the
eight axioms in Definition 10.1. But it is clear that Axioms VS1, VS2, VS5, VS6, VS7, and VS8
must hold. For instance if u,v ∈ W , then u + v = v + u since u,v ∈ V and V is given to be a
vector space, and so Axiom VS1 is confirmed.

Let u ∈ W . Since au ∈ W for any a ∈ F, it follows that (−1)u ∈ W in particular. Now,
(−1)u = −u by Proposition 10.2, and so −u ∈ W . That is, for every u ∈ W we find that
−u ∈ W as well, where u + (−u) = −u + u = 0. This shows that Axiom VS4 holds for W .

Finally, since au ∈ W for any a ∈ F, it follows that 0u ∈ W . By Proposition 10.2 we have
0u = 0, so 0 ∈ W and Axiom VS3 holds for W .

We conclude that W ⊆ V is a vector space under the vector addition and scalar multiplication
operations defined on V × V and F × V , respectively. Therefore W is a subspace of V by
Definition 10.3. �

Definition 10.5. A vector v is called a linear combination of the vectors v1, . . . ,vn if there
exist scalars a1, . . . , an such that v = a1v1 + · · ·+ anvn.
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Definition 10.6. Let V be a vector space and v1, . . . ,vn ∈ V . We say v1, . . . ,vn span V , or
V is spanned by the set {v1, . . . ,vn}, if for every v ∈ V there exist scalars a1, . . . , an such
that v = a1v1 + · · ·+ anvn.

Thus vectors v1, . . . ,vn span V if and only if every vector in V is expressible as a linear
combination of v1, . . . ,vn. If we define the span of v1, . . . ,vn to be the set

Span{v1, . . . ,vn} =

{
n∑
i=1

aivi : a1, . . . , an ∈ F

}
,

then {v1, . . . ,vn} spans V if and only if V = Span{v1, . . . ,vn}. More generally, for any S ⊆ V ,
define Span(S) to be the set of all linear combinations of vectors in S.

Definition 10.7. Let V be a vector space and S = {v1, . . . ,vn} ⊆ V be nonempty. If the
equation

c1v1 + · · ·+ cnvn = 0 (10.1)

admits only the trivial solution c1 = · · · = cn = 0, then we call S a linearly independent set
and v1, . . . ,vn linearly independent vectors. Otherwise we call S a linearly dependent
set and v1, . . . ,vn linearly dependent vectors. A basis for a vector space V is a linearly
independent set of vectors B that spans V .

We say V is a finite-dimensional vector space if V possesses a finite basis. The proof of
the following proposition is given in §3.6 of [LAN].

Proposition 10.8. Let V be a vector space such that V = Span{v1, . . . ,vm}. If u1, . . . ,un ∈ V
for some n > m, then the vectors u1, . . . ,un are linearly dependent.

Theorem 10.9. If B1 and B2 are two bases for a finite-dimensional vector space V , then
card(B1) = card(B2).

Proof. Suppose B1 = {v1, . . . ,vm} and B2 = {u1, . . . ,un} are two bases for V , so that
card(B1) = m and card(B2) = n.

Since Span(B1) = V , if n > m then u1, . . . ,un are linearly dependent by Proposition 10.8,
which contradicts the hypothesis that B2 is a basis for V . Hence n ≤ m.

Since Span(B2) = V , if n < m then v1, . . . ,vm are linearly dependent by Proposition 10.8,
which contradicts the hypothesis that B1 is a basis for V . Hence n ≥ m.

Therefore m = n, which is to say card(B1) = card(B2). �

Since the cardinality of any two bases of a finite-dimensional vector space V is the same, we
may meaningfully define the dimension of V as follows.

Definition 10.10. If V is a finite-dimensional vector space and B is any basis, then the
dimension of V is dim(V ) = card(B).

Definition 10.11. Let V be a vector space and S ⊆ V a nonempty set. We call B ⊆ S a
maximal linearly independent subset of S if the following hold:

1. B is a linearly independent set.
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2. For all A ⊆ S with card(A) > card(B), A is a linearly dependent set.

Proposition 10.12. Let V be a vector space, and let S ⊆ V be a finite set such that V =
Span(S). Then

1. dim(V ) ≤ card(S).
2. If B ⊆ S is a maximal linearly independent subset of S, then B is a basis for V .

Proof.
Proof of Part (1). By Proposition 10.8 any set containing more than card(S) vectors in V must
be linearly dependent, so if B is any basis for V , then we must have dim(V ) = card(B) ≤ card(S).

Proof of Part (2). Suppose that B ⊆ S is a maximal linearly independent subset of S. Reindexing
the elements of S if necessary, we may assume that B = {v1, . . . ,vr}. If r = n, then B = S, and
so B spans V and we straightaway conclude that B is a basis for V and we’re done. Suppose,
then, that 1 ≤ r < n. For each 1 ≤ i ≤ n− r let

Bi = B ∪ {vr+i} = {v1, . . . ,vr,vr+i}.

The setBi is linearly dependent since card(Bi) > card(B), and so there exist scalars ai1, . . . , air, bi,
not all zero, such that

ai1v1 + · · ·+ airvr + bivr+i = 0. (10.2)

We must have bi 6= 0, since otherwise (10.2) becomes

ai1v1 + · · ·+ airvr = 0,

whereupon the linear independence of v1, . . . ,vr would imply that ai1 = · · · = air = 0 and
so contradict the established fact that not all the scalars ai1, . . . , air, bi are zero! From the
knowledge that bi 6= 0 we may write (10.2) as

vr+i = −ai1
bi

v1 − · · · −
air
bi

vr =
r∑
j=1

aij
−bi

vj =
r∑
j=1

dijvj, (10.3)

where we define dij = −aij/bi for each 1 ≤ i ≤ n − r and 1 ≤ j ≤ r. Hence the vectors
vr+1, . . . ,vn are each expressible as a linear combination of v1, . . . ,vr.

Let u ∈ V be arbitrary. Since v1, . . . ,vn span V there exist scalars c1, . . . , cn such that

u = c1v1 + · · ·+ cnvn,

and then from (10.3) we have

u = c1v1 + · · ·+ crvr +
n−r∑
i=1

cr+ivr+i =
r∑
j=1

cjvj +
n−r∑
i=1

(
cr+i

r∑
j=1

dijvj

)

=
r∑
j=1

cjvj +
n−r∑
i=1

r∑
j=1

cr+idijvj =
r∑
j=1

cjvj +
r∑
j=1

n−r∑
i=1

cr+idijvj

=
r∑
j=1

(
cjvj +

n−r∑
i=1

cr+idijvj

)
=

r∑
j=1

(
cj +

n−r∑
i=1

cr+idij

)
vj.
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Setting

ĉj = cj +
n−r∑
i=1

cr+idij

for each 1 ≤ j ≤ r, we finally obtain

u = ĉ1v1 + · · ·+ ĉrvr

and so conclude that u ∈ Span{v1, . . . ,vr} = Span(B).
Therefore V = Span(B), and so B is a basis for V . �

A useful concept closely related to that given in Definition 10.11, but not quite the same, is
the following.1

Definition 10.13. Let V be a vector space. A set B ⊆ V is a maximal linearly independent
set in V if the following are true:

1. B is a linearly independent set.
2. For all w ∈ V such that w /∈ B, the set B ∪ {w} is linearly dependent.

Proposition 10.14. If V is a vector space and S a maximal linearly independent set in V ,
then S is a basis for V .

Proof. Suppose that V is a vector space and S = {v1, . . . ,vn} is a maximal linearly independent
set in V . Let u ∈ V . Then the set {v1, . . . ,vn,u} is linearly dependent, and so there exist
scalars a0, . . . , an not all zero such that

a0u + a1v1 + · · ·+ anvn = 0. (10.4)

Now, if a0 were 0 we would obtain a1v1 + · · ·+ anvn = 0, whereupon the linear independence
of S would imply that a1 = · · · = an = 0 and so contradict the established fact that not all the
scalars a0, . . . , an are zero. Hence we must have a0 6= 0, and (10.4) gives

u = −a1
a0

v1 − · · · −
an
a0

vn.

That is, every vector in V is expressible as a linear combination of vectors in S, so that
Span(S) = V and we conclude that S is a basis for V . �

Theorem 10.15. Let V be a finite-dimensional vector space, and let S ⊆ V with card(S) =
dim(V ).

1. If S is a linearly independent set, then S is a basis for V .
2. If Span(S) = V , then S is a basis for V .

1In comparing the two definitions, note the replacement of the words “subset of” with “set in.”
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Proof.
Proof of Part (1). Setting n = dim(V ), suppose S = {v1, . . . ,vn} ⊆ V is a linearly independent
set. Any basis for V will span V and have n vectors, so by Proposition 10.8 the set S ∪ {w}
must be linearly dependent for every w ∈ V such that w /∈ S. Hence S is a maximal linearly
independent set in V , and therefore S is a basis for V by Proposition 10.14.

Proof of Part (2). Again set n = dim(V ), and suppose S = {v1, . . . ,vn} is such that Span(S) =
V . Assume S is not a basis for V . Then S must not be a linearly independent set. Let B ⊆ S
be a maximal linearly independent subset of S. Then B cannot contain all of the vectors in S,
so card(B) < card(S) = n. By Proposition 10.12(2) it follows that B is a basis for V , and so

dim(V ) = card(B) < n.

Since this is a contradiction, we conclude that S must be a linearly independent set and therefore
S is a basis for V . �

Theorem 10.16. Let V be a vector space with dim(V ) = n > 0. If v1, . . . ,vr ∈ V are linearly
independent vectors for some r < n, then vectors vr+1, . . . ,vn ∈ V may be found such that
{v1, . . . ,vn} is a basis for V .

Proof. Suppose that v1, . . . ,vr ∈ V are linearly independent vectors, where r < n. The set
Sr = {v1, . . . ,vr} cannot be a basis for V since by Definition 10.10 any basis for V must contain
n vectors. Hence Sr cannot be a maximal linearly independent set in V by Theorem 10.14, and
so there must exist some vector vr+1 ∈ V such that the set

Sr+1 = Sr ∪ {vr+1} = {v1, . . . ,vr+1}

is linearly independent. Now, if r + 1 = n, then Theorem 10.15(1) implies that Sr+1 is a basis
for V and the proof is done. If r + 1 < n, then we repeat the arguments made above to obtain
successive sets of linearly independent vectors

Sr+i = Sr+i−1 ∪ {vr+i} = {v1, . . . ,vr+i}

until such time that r + i = n, at which point the linearly independent set

Sn = Sn−1 ∪ {vn} = {v1, . . . ,vr,vr+1, . . . ,vn}
will be a basis for V . �

Theorem 10.17. Let V be a finite-dimensional vector space, and let W be a subspace of V .
Then

1. W is finite-dimensional.
2. dim(W ) ≤ dim(V ).
3. If dim(W ) = dim(V ), then W = V .

Proof. If W = {0}, then all three conclusions of the theorem follow trivially. Thus, we will
henceforth assume W 6= {0}, so that dim(V ) = n ≥ 1.
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Proof of Part (1). Suppose W is infinite-dimensional. Let w1 be a nonzero vector in W . The
set {w1} cannot be a maximal linearly independent set in W since otherwise Proposition 10.14
would imply that {w1} is a basis for W and hence dim(W ) = 1, a contradiction. Thus for
some k ≥ 2 additional vectors w2, . . . ,wk ∈ W may be found such that Sk = {w1, . . . ,wk}
is a linearly independent set of vectors in W . However, for no k ∈ N can Sk be a maximal
set of linearly independent vectors in W , since otherwise Proposition 10.14 would imply that
dim(W ) = k. It follows that there exists, in particular, a linearly independent set

{w1, . . . ,wn+1} ⊆ W ⊆ V,

which is impossible since by Proposition 10.8 there can be no linearly independent set in V
containing more than n vectors. Therefore W must be finite-dimensional.

Proof of Part (2). By Part (1) it is known that W is finite-dimensional, so there exists a basis
B = {w1, . . . ,wm} for W , where m ∈ N. Since B is a linearly independent set in V , and by
Proposition 10.8 there can be no linearly independent set in V containing more than dim(V ) = n
vectors, it follows that dim(W ) = m ≤ n = dim(V ).

Proof of Part (3). Suppose that dim(W ) = dim(V ) = n, where n is some integer since V is
given to be finite-dimensional. Let B = {w1, . . . ,wn} be a basis for W , so that W = Span(B).
Since dim(V ) = n and w1, . . . ,wn ∈ V are linearly independent, B is a basis for V by Theorem
10.15(1). Thus V = Span(B), and we have V = W . �

We now narrow our focus. Throughout this chapter our vector space V over F shall always
be euclidean n-space Rn over the field of real numbers R, and any subspace we consider shall be
a subspace of Rn. The elements of Rn shall be represented by column vectors:

Rn =


x1...
xn

 : x1, . . . , xn ∈ Rn

.
As usual we define vector addition and scalar multiplication in Rn componentwise:x1...

xn

+

y1...
yn

=

x1 + y1
...

xn + yn

 and a

x1...
xn

=

ax1...
axn


A nonempty set S ⊆ Rn is a subspace of Rn (and hence may itself be called a vector space) if
and only if it is closed under vector addition and scalar multiplication; that is, ∅ 6= S ⊆ Rn is a
vector space if and only if x + y ∈ S and ax ∈ S for any x,y ∈ S and a ∈ R.

Recall the Kronecker delta function,

δij =

{
0, i 6= j

1, i = j.

Define the vector ek ∈ Rn to have ith component [ek]i = δik for each 1 ≤ i ≤ n. It is
straightforward to show that the set of vectors En = {e1, . . . , en} is a basis for Rn, called the
standard basis. Therefore

dim(Rn) = n
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for any n ∈ N.
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10.2 – Linear Mappings

A mapping (or transformation) we take to be a function between vector spaces or subsets
of vector spaces. Of particular importance is the notion of a linear mapping.

Definition 10.18. Let V and W be vector spaces over F. A mapping L : V → W is called a
linear mapping if the following properties hold.

LT1. L(u + v) = L(u) + L(v) for all u,v ∈ V
LT2. L(au) = aL(u) for all a ∈ F and u ∈ V .

The zero mapping O : V → W given by O(v) = 0 for all v ∈ V is a linear mapping. If
U ⊆ V , then the symbol OU may sometimes be used to denote the restriction of O : V → W to
U .

A linear operator is a linear mapping L : V → V , which may also be referred to as a linear
operator on V . The identity operator I is the linear operator on V given by IV (v) = v for
all v ∈ V .

Given vector spaces V and W over F, the symbol L(V,W ) will be used to denote the set of
all linear mappings V → W ; that is,

L(V,W ) = {L : V → W | L is a linear tranformation}.

We also define L(V ) = L(V, V ); that is, L(V ) denotes the set of all linear operators on V . As
is shown in §4.1 of [LAN], the collection L(V,W ) is a vector space under the operations of
mapping addition and scalar multiplication given in Definition 10.18.

Definition 10.19. Let F : V → W be a mapping. The image of F is the set

Img(F ) = {w ∈ W : F (v) = w for some v ∈ V },
and the null space of F is the set

Nul(F ) = {v ∈ V : F (v) = 0}.

Note that the image of F is the same as the range of F . As with any function, the symbol
Dom(F ) denotes the domain of a mapping F .

Proposition 10.20. If L ∈ L(V,W ), then the following hold.

1. L(0) = 0
2. L(−v) = −L(v) for any v ∈ V .
3. For any a1, . . . , an ∈ F, v1, . . . ,vn ∈ V ,

L

(
n∑
k=1

akvk

)
=

n∑
k=1

akL(vk).

4. Img(L) is a subspace of W .
5. Nul(L) is a subspace of V .
6. If Nul(L) = {0} and v1, . . . ,vn ∈ V are linearly independent, then L(v1), . . . , L(vn) ∈ W

are linearly independent.

http://faculty.bucks.edu/erickson/math260/260chap4.pdf
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Proof.
Proof of Part (1). Using the linearity property LT1, we have

L(0) = L(0 + 0) = L(0) + L(0).

Subtracting L(0) from the leftmost and rightmost sides then gives

L(0)− L(0) = [L(0) + L(0)]− L(0),

and thus 0 = L(0).

Proof of Part (2). Let v ∈ V be arbitrary. Using property LT1 and part (1), we have

L(v) + L(−v) = L(v + (−v)) = L(0) = 0.

This shows that L(−v) is the additive inverse of L(v). That is, L(−v) = −L(v).

Proof of Part (3). We have L(a1v1) = a1L(v1) by property LT2. Let n ∈ N and suppose that

(a1v1 + · · ·+ anvn) = a1L(v1) + · · ·+ anL(vn) (10.5)

for any a1, . . . , an ∈ F, v1, . . . ,vn ∈ V . Let a1, . . . , an+1 ∈ F and v1, . . . ,vn+1 ∈ V be arbitrary.
Then

L
(∑n+1

i=1
aivi

)
= L

(
(a1v1 + · · ·+ anvn) + an+1vn+1

)
= L(a1v1 + · · ·+ anvn) + L(an+1vn+1) Property LT1

= a1L(v1) + · · ·+ anL(vn) + L(an+1vn+1) Hypothesis (10.5)

= a1L(v1) + · · ·+ anL(vn) + an+1L(vn+1) Property LT2

=
∑n+1

i=1
aiL(vi)

The proof is complete by the Principle of Induction.

Proof of Part (4). We have L(0) = 0 from part (1), and so 0 ∈ Img(L).
Suppose that w1,w2 ∈ Img(L). Then there exist vectors v1,v2 ∈ V such that L(v1) = w1

and L(v2) = w2. Now, since v1 + v2 ∈ V and

L(v1 + v2) = L(v1) + L(v2) = w1 + w2,

we conclude that w1 + w2 ∈ Img(L). Hence Img(L) is closed under vector addition.
Finally, let a ∈ R and suppose w ∈ Img(L). Then there exists some v ∈ V such that

L(v) = w, and since av ∈ V and

L(av) = aL(v) = aw,

we conclude that aw ∈ Img(L). Hence Img(L) is closed under scalar multiplication.
Therefore Img(L) ⊆ W is a subspace by Theorem 10.4.

Proof of Part (5). Since L(0) = 0 we immediately obtain 0 ∈ Nul(L).
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Suppose that v1,v2 ∈ Nul(L). Then L(v1) = L(v2) = 0, and since

L(v1 + v2) = L(v1) + L(v2) = 0 + 0 = 0,

it follows that v1 + v2 ∈ Nul(L) and so Nul(L) is closed under vector addition.
Finally, let a ∈ R and suppose v ∈ Nul(L). Then L(v) = 0, and since

L(av) = aL(v) = a0 = 0

by Proposition 10.2, we conclude that av ∈ Nul(L) and so Nul(L) is closed under scalar
multiplication.

Therefore Nul(L) ⊆ V is a subspace by Theorem 10.4.

Proof of Part (6). Suppose Nul(L) = {0} and v1, . . . ,vn ∈ V are linearly independent. Let
a1, . . . , an ∈ F be such that

a1L(v1) + · · ·+ anL(vn) = 0.

From this we obtain

L(a1v1 + · · ·+ anvn) = 0,

and since Nul(L) = {0} it follows that

a1v1 + · · ·+ anvn = 0.

Now, since v1, . . . ,vn are linearly independent, it follows that a1 = · · · = an = 0. Therefore the
vectors L(v1), . . . , L(vn) in W are linearly independent. �

Proposition 10.21. Let V be a finite-dimensional vector space over F, and let L ∈ L(V ).
Then the following are equivalent.

1. L is injective.
2. L is surjective.
3. Nul(L) = {0}.

Proof.
(1) ↔ (3). Suppose that L ∈ L(V ) is injective. Let v ∈ Nul(L), so that L(v) = 0. By
Proposition 10.20 we have L(0) = 0 also, and since L is injective it follows that v = 0. Hence
Nul(L) ⊆ {0}, and L(0) = 0 shows that {0} ⊆ Nul(L). Therefore Nul(L) = {0}.

Next, suppose that Nul(L) = {0}. Suppose that L(v1) = L(v2), so L(v1)−L(v2) = 0. Then

L(v1 − v2) = L(v1)− L(v2) = 0

shows that v1 − v2 ∈ Nul(L) = {0} and thus v1 − v2 = 0. Therefore v1 = v2 and we conclude
that L is injective.

(2) ↔ (3). Suppose L is surjective. Let B = {v1, . . . ,vn} be a basis for V , so dim(V ) = n. For
any v ∈ V there exists some u ∈ V such that L(u) = v, and since u =

∑n
k=1 akvk for some

a1, . . . , an ∈ F, by Proposition 10.20(3) we have v =
∑n

k=1 akL(vk), which shows that the set
S = {L(v1), . . . , L(vn)} is such that Span(S) = V . Clearly card(S) ≤ n = dim(V ), but also
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card(S) ≥ dim(V ) by Proposition 10.12, and therefore card(S) = dim(V ) = n. By Theorem
10.15(2) it follows that S is a basis for V , so S is a linearly independent set. Now,

L(u) = 0 ⇒
n∑
k=1

akL(vk) = 0 ⇒ a1 = · · · = an = 0 ⇒ u = 0,

and therefore Nul(L) = {0}.
Now suppose that Nul(L) = {0}. By Proposition 10.20(6) the set S is linearly independent.

Now, Img(L) is a subspace of V by Proposition 10.20(4), and since Span(S) = Img(L) it follows
that S is a basis for Img(L). Thus dim(Img(L)) = card(S) = n = dim(V ), and by Theorem
10.17(3) we conclude that Img(L) = V . That is, L is surjective. �

Definition 10.22. Given mappings F : U → V and G : V → W , the composition of G with
F is the mapping G ◦ F : U → W given by

(G ◦ F )(v) = G(F (v))

for all v ∈ U .

Proposition 10.23. Let V1, V2, V3 be vector spaces over F. If L1 : V1 → V2 and L2 : V2 → V3
are linear mappings, then the composition L2 ◦ L1 : V1 → V3 is linear.

Proof. For any u,v ∈ V1 we have

(L2 ◦ L1)(u + v) = L2(L1(u + v)) = L2(L1(u) + L1(v))

= L2(L1(u)) + L2(L1(v)) = (L2 ◦ L1)(u) + (L2 ◦ L1)(v),

and for any a ∈ F and u ∈ V1 we have

(L2 ◦ L1)(au) = L2(L1(au)) = L2(aL1(u)) = aL2(L1(u)) = a(L2 ◦ L1)(u).

Therefore L2 ◦ L1 is linear. �

Definition 10.24. Let F : V → W be a mapping. We say F is invertible if there exists a
mapping G : W → V such that G ◦ F = IV and F ◦ G = IW , in which case G is called the
inverse of F and we write G = F−1.

Proposition 10.25. If F : V → W is an invertible mapping, then

Img(F−1) = Dom(F ) = V and Dom(F−1) = Img(F ) = W,

and for all v ∈ V , w ∈ W ,
F (v) = w ⇔ F−1(w) = v.

Proof. Suppose that F : V → W is invertible, so that there is a mapping F−1 : W → V such
that F−1 ◦ F = IV and F ◦ F−1 = IW . From this it follows immediately that Img(F−1) ⊆ V
and Img(F ) ⊆ W .

Let v ∈ V , so that F (v) = w for some w ∈ W . Then

F−1(w) = F−1(F (v)) = (F−1 ◦ F )(v) = IV (v) = v
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shows that v ∈ Img(F−1), and so Img(F−1) = V and

F (v) = w ⇒ F−1(w) = v

for all v ∈ V .
Next, for any w ∈ W we have F−1(w) = v for some v ∈ V , whence

F (v) = F (F−1(w)) = (F ◦ F−1)(w) = IW (w) = w

shows that w ∈ Img(F ), and so Img(F ) = W and

F−1(w) = v ⇒ F (v) = y

for all w ∈ W . �

An consequence of the foregoing is the following theorem, the proof of which is left as a
straightforward exercise.

Theorem 10.26. A mapping F : U → V is invertible if and only if it is a bijection.

Proposition 10.27. If F : U → V and G : V → W are invertible mappings, then

(G ◦ F )−1 = F−1 ◦G−1.

Proof. Suppose F : U → V and G : V → W are invertible mappings. Then F and G
are bijective by Theorem 10.26, from which it follows that G ◦ F is likewise bijective and so
(G ◦ F )−1 : W → U exists. That is, G ◦ F is invertible.

Let w ∈ W . Then (G ◦ F )−1(w) = v for some v ∈ U , and by repeated use of Proposition
10.25 we obtain

(G ◦ F )−1(w) = v ⇔ (G ◦ F )(v) = w ⇔ G(F (v)) = w

⇔ F (v) = G−1(w) ⇔ v = F−1(G−1(w)).

⇔ (F−1 ◦G−1)(w) = v

Hence
(G ◦ F )−1(w) = (F−1 ◦G−1)(w)

for all w ∈ W , and we conclude that (G ◦ F )−1 = F−1 ◦G−1. �

Proposition 10.28. If L : V → W is an invertible linear mapping, then its inverse L−1 : W →
V is also linear.

Proof. Suppose that L : V → W is an invertible linear mapping, and let L−1 : W → V be its
inverse. Let w1,w2 ∈ W . Then L−1(w1) and L−1(w2) are vectors in V , and by the linearity of
L we obtain

L(L−1(w1) + L−1(w2)) = L(L−1(w1)) + L(L−1(w2))

= (L ◦ L−1)(w1) + (L ◦ L−1)(w2)

= IW (w1) + IW (w2) = w1 + w2
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Now,

L−1(w1 + w2) = L−1(L(L−1(w1) + L−1(w2))) = (L−1 ◦ L)(L−1(w1) + L−1(w2))

= IV (L−1(w1) + L−1(w2)) = L−1(w1) + L−1(w2).

Next, let w ∈ W and let a be a scalar. Then aL−1(w) is a vector in V , and from

L(aL−1(w)) = aL(L−1(w)) = a(L ◦ L−1)(w) = aIW (w) = aw

we obtain

L−1(aw) = L−1(L(aL−1(w))) = (L−1 ◦ L)(aL−1(w)) = IV (aL−1(w)) = aL−1(w).

Therefore L−1 is a linear mappings. �

Definition 10.29. Given linear mappings L1, L2 : V → W , we define the mapping L1 + L2 :
V → W by

(L1 + L2)(v) = L1(v) + L2(v)

for each v ∈ V .
Given linear mapping L : V → W and a ∈ F, we define aL : V → W by

(aL)(v) = aL(v)

for each v ∈ V . In particular we define −L = (−1)L.

Proposition 10.30. Let F1, F2 : U → V and G1, G2 : V → W be mappings, and let a ∈ F.
Then

1. (G1 ±G2) ◦ F1 = G1 ◦ F1 ±G2 ◦ F1

2. G1 ◦ (F1 ± F2) = G1 ◦ F1 ±G1 ◦ F2 if G1 is linear and V and W are vector spaces.
3. (aG1) ◦ F1 = a(G1 ◦ F1)
4. G1 ◦ (aF1) = a(G1 ◦ F1) if G1 is linear and V and W are vector spaces.

Proof.
Proof of Part (1). For any u ∈ U

((G1 +G2) ◦ F1)(u) = (G1 +G2)(F1(u)) = G1(F1(u)) +G2(F1(u))

= (G1 ◦ F1)(u) + (G2 ◦ F1)(u) = (G1 ◦ F1 +G2 ◦ F1)(u),

and therefore (G1+G2)◦F1 = G1◦F1+G2◦F1. The proof that (G1−G2)◦F1 = G1◦F1−G2◦F1

is similar.

Proof of Part (2). For any u ∈ U

(G1 ◦ (F1 + F2))(u) = G1((F1 + F2)(u)) = G1(F1(u)) + F2(u))

= G1(F1(u)) +G1(F2(u)) = (G1 ◦ F1)(u) + (G1 ◦ F2)(u)

= (G1 ◦ F1 +G1 ◦ F2)(u),
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where the third equality obtains from the linearity of G1. Therefore

G1 ◦ (F1 + F2) = G1 ◦ F1 +G1 ◦ F2

if G1 is linear. The proof that G1 ◦ (F1 − F2) = G1 ◦ F1 −G1 ◦ F2 if G1 is linear is similar.

Proof of Part (3). For any u ∈ U

((aG1) ◦ F1)(u) = (aG1)(F1(u)) = aG1(F1(u)) = a(G1 ◦ F1)(u),

and therefore (aG1) ◦ F1 = a(G1 ◦ F1).

Proof of Part (4). Suppose that G1 is a linear mapping. For any u ∈ U

(G1 ◦ (aF1))(u) = G1((aF1)(u)) = G1(aF1(u)) = aG1(F1(u)) = a(G1 ◦ F1)(u),

where the third equality obtains from the linearity of G1. Therefore G1 ◦ (aF1) = a(G1 ◦ F1) if
G1 is linear. �

For convenience we present the following theorem which puts together many salient results
concerning linear operators.

Theorem 10.31 (Invertible Operator Theorem). Let V be a finite-dimensional vector
space, and suppose L ∈ L(V ). Then the following statements are equivalent.

1. L is invertible.
2. L is an isomorphism.
3. L is injective.
4. L is surjective.
5. Nul(L) = {0}.
6. rank(L) = dim(V ).

Proof.
(1) ⇒ (2): If L is invertible, then it is a bijection by Theorem 10.26, and hence an isomorphism.

(2) ⇒ (3) ⇒ (4) ⇒ (5): If L is an isomorphism, then it is immediate that L is injective.
Statements (3), (4), and (5) are equivalent by Proposition 10.21.

(5) ⇒ (6): Suppose Nul(L) = {0}. Then L is surjective by Proposition 10.21, which is to say
Img(L) = V , and therefore rank(L) = dim(V ).

(6) ⇒ (1): Suppose rank(L) = dim(V ). Then dim(Img(L)) = dim(V ), and since Img(L) is a
subspace of V by Proposition 10.20(4), by Theorem 10.17(3) it follows that Img(L) = V . Hence
L is surjective, whereupon Proposition 10.21 gives that L is also injective, and then Theorem
10.26 implies that L is invertible. �
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Let V and W be finite-dimensional vector spaces over R with bases B = (bj)
n
j=1 and

C = (ci)
m
i=1, respectively. Given v ∈ V , there exist v1, . . . , vn ∈ R such that

v =
n∑
j=1

vjbj,

and then the B-coordinates of v are

[v]B =

v1...
vn

.
Let L ∈ L(V,W ). For each 1 ≤ j ≤ n we have L(bj) ∈ W , so there exist a1j, . . . , amj ∈ R such
that

L(bj) =
m∑
i=1

aijci,

and thus the C-coordinates of L(bj) are

[L(bj)]C =

 a1j...
amj

. (10.6)

Now, by the linearity properties of L,

L(v) =
n∑
j=1

vjL(bj) =
n∑
j=1

vj

(
m∑
i=1

aijci

)
=

m∑
i=1

(
n∑
j=1

vjaij

)
ci. (10.7)

Thus the C-coordinates of L(v) are

[L(v)]C =


∑n

j=1 vja1j
...∑n

j=1 vjamj


Defining the matrix

A = [aij]m,n =

 a11 · · · a1n
...

. . .
...

am1 · · · amn

,
it’s straightforward to check that A[v]B = [L(v)]C. The matrix A is called the matrix
corresponding to L with respect to B and C, or simply the BC-matrix of L, and is
denoted by [L]BC. Thus

[L]BC[v]B = [L(v)]C.

Recalling (10.6), we see that [L]BC may be defined in terms of its column vectors as

[L]BC =
[

[L(b1)]C · · · [L(bn)]C

]
. (10.8)

This matrix may be denoted by [L] if context makes clear what bases are under consideration
for the vector spaces involved.
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Now, if L ∈ L(V,W ) is given to have BC-matrix A = [aij]m,n, it is immediate that for any
v ∈ V with B-coordinates as before we must have L(v) given by (10.7). Therefore there is a
bijective correspondence between the elements of L(V,W ) and the elements of Matm,n(R).

Now let us return once again to euclidean vector spaces. Let L ∈ L(Rn,Rm). Let En = (ej)
n
j=1

and Em = (εi)
m
i=1 be the standard bases for Rn and Rm, respectively. For each 1 ≤ j ≤ n we

have

L(ej) =
m∑
i=1

aijεi =

 a1j...
amj

= [L(ej)]Em

for some a1j, . . . , amj ∈ R, and thus by (10.8) we have

[L]EnEm =

 a11 · · · a1n
...

. . .
...

am1 · · · amn


as the EnEm-matrix of L.

As shown in §4.5 of [LAN], a change of bases for V and W will result in a change in the
corresponding matrix for L ∈ L(V,W ). In the case when L ∈ L(V ), regardless of what basis
B is chosen for V , the matrix [L]B := [L]BB will be a square matrix, and as shown in §5.4 of
[LAN] the value of the determinant of [L]B will remain the same. Thus we may define the
determinant of any L ∈ L(V ) to be

det(L) = det([L])

without ambiguity.

Remark. Let V be a finite-dimensional vector space. As can be seen from the Invertible
Operator Theorem above, in conjunction with the Invertible Matrix Theorem in §5.3 of [LAN],
a linear operator L ∈ L(V ) is invertible iff [L] is invertible iff det([L]) 6= 0 iff det(L) 6= 0. This
fact can be used to cast certain upcoming results in the language of matrices and determinants
that is frequently more convenient in practical applications.

http://faculty.bucks.edu/erickson/math260/260chap4.pdf
http://faculty.bucks.edu/erickson/math260/260chap5.pdf
http://faculty.bucks.edu/erickson/math260/260notes.html
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10.3 – The Norm of a Linear Mapping

The euclidean norm for Rn, denoted by ‖ · ‖, is defined thus: if x = [x1, . . . , xn]> ∈ Rn,
then

‖x‖ =

√∑n

k=1
x2k.

Henceforth we assume that any euclidean space Rn is given the euclidean norm, which induces
the euclidean metric de : Rn × Rn → R given by

de(x,y) = ‖x− y‖

so that Rn is taken to be the metric space (Rn, de). It is straightforward to check that

‖x + y‖ ≤ ‖x‖+ ‖y‖ and ‖ax‖ = |a|‖x‖ (10.9)

for any x,y ∈ Rn and a ∈ R.
Presently the definition of the norm of a linear mapping between two euclidean spaces will

be given, although the notion may easily be generalized to apply to arbitrary normed vector
spaces. First, we define the open standard unit ball in Rn to be

Bn = {x ∈ Rn : ‖x‖ < 1},

and we define the closed standard unit ball in Rn to be

Bn = Bn ∪ ∂B = {x ∈ Rn : ‖x‖ ≤ 1}.

We now give the definition of the norm of a linear mapping L : Rn → Rm, which like the
euclidean norm of a vector x ∈ Rn will be indicated by the symbol ‖ · ‖. This will not give rise
to any ambiguity.

Definition 10.32. The norm of L ∈ L(Rn,Rm) is

‖L‖ = sup
x∈Bn

‖L(x)‖.

Theorem 10.33.

1. If L ∈ L(Rn,Rm), then ‖L‖ <∞ and L is uniformly continuous on Rn.
2. If L,L1, L2 ∈ L(Rn,Rm) and a ∈ R, then

‖L1 + L2‖ ≤ ‖L1‖+ ‖L2‖ and ‖aL‖ = |a|‖L‖.

3. For all L1, L2 ∈ L(Rn,Rm) define

dsup(L1, L2) = ‖L1 − L2‖.

Then
(
L(Rn,Rm), dsup

)
is a metric space.

4. If L1 ∈ L(Rn,Rm) and L2 ∈ L(Rm,Rk), then

‖L2 ◦ L1‖ ≤ ‖L2‖‖L1‖.
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Proof.
Proof of Part (1). Let {e1, . . . , en} be the standard basis for Rn. Fix x ∈ Bn, so x =

∑n
k=1 xkek

with √∑n

k=1
x2k ≤ 1,

and thus |xk| ≤ 1 for all 1 ≤ k ≤ n. Now, recalling Proposition 10.20(3) and also (10.9),

‖L(x)‖ =

∥∥∥∥∥
n∑
k=1

xkL(ek)

∥∥∥∥∥ ≤
n∑
k=1

‖xkL(ek)‖ =
n∑
k=1

|xk|‖L(ek)‖ ≤
n∑
k=1

‖L(ek)‖.

We see that
∑n

k=1 ‖L(ek)‖ is an upper bound on ‖L(x)‖ for x ∈ Bn, and therefore

‖L‖ = sup
x∈Bn

‖L(x)‖ ≤ ‖L(x)‖ <∞.

Proof of Part (2). Suppose L,L1, L2 ∈ L(Rn,Rm) and a ∈ R. Recalling (10.9), for any x ∈ Bn
we have

‖(L1 + L2)(x)‖ = ‖L1(x) + L2(x)‖ ≤ ‖L1(x)‖+ ‖L2(x)‖ = ‖L1‖+ ‖L2‖,

which shows that ‖L1‖+ ‖L2‖ is an upper bound for the set

S = {‖(L1 + L2)(x)‖ : x ∈ Bn},

and so the least upper bound for S is at most ‖L1‖+ ‖L2‖:

‖L1 + L2‖ = sup
x∈Bn

‖(L1 + L2)(x)‖ = sup(S) ≤ ‖L1‖+ ‖L2‖.

Next, for any x ∈ Bn,

‖(aL)(x)‖ = ‖aL(x)‖ = |a|‖L(x)‖ ≤ |a|‖L‖,
and so

‖aL‖ = sup
x∈Bn

‖(aL)(x)‖ ≤ |a|‖L‖.

Proof of Part (3). Suppose L,L1, L2 ∈ L(Rn,Rm). Clearly dsup(L,L) = 0, dsup(L1, L2) ≥ 0,
and dsup(L1, L2) = dsup(L2, L1). Moreover, by part (2),

dsup(L1, L2) = ‖L1 − L2‖ = ‖(L1 − L) + (L− L2)‖

≤ ‖L1 − L‖+ ‖L− L2‖ = dsup(L1, L) + dsup(L,L2).

Finally, suppose that dsup(L1, L2) = 0, so that

sup
x∈Bn

de

(
L1(x), L2(x)

)
= sup

x∈Bn

‖L1(x)− L2(x)‖ = 0.

Thus de(L1(x), L2(x)) = 0 for all x ∈ Bn, and since (Rm, de) is a metric space it follows that
L1(x) = L2(x) for all x ∈ Bn. Now let y ∈ Rn \ {0} be arbitrary, and let x = y/‖y‖. Then
L1(x) = L2(x) since x ∈ Bn. Now,

L1(x) = L2(x) ⇒ ‖y‖L1(x) = ‖y‖L2(x) ⇒ L1(‖y‖x) = L2(‖y‖x),
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giving L1(y) = L2(y) and hence L1 = L2. Therefore dsup is a metric for L(Rn,Rm).

Proof of Part (4). Suppose L1 ∈ L(Rn,Rm) and L2 ∈ L(Rm,Rk). We have

‖L2‖ = sup
x∈Bm

‖L2(x)‖ and ‖L1‖ = sup
x∈Bn

‖L1(x)‖.

Fix x ∈ Bn, and first suppose that L1(x) 6= 0. Then

1

‖L1(x)‖
‖L2(L1(x))‖ =

∥∥∥∥ 1

‖L1(x)‖
L2(L1(x))

∥∥∥∥ =

∥∥∥∥L2

(
L1(x)

‖L1(x)‖

)∥∥∥∥ ≤ ‖L2‖

since L1(x)/‖L1(x)‖ ∈ Bm, and thus

‖L2(L1(x))‖ ≤ ‖L2‖‖L1(x)‖ ≤ ‖L2‖‖L1‖.

If L1(x) = 0, then we apply Proposition 10.20(1) to obtain ‖L2(L1(x))‖ = 0 ≤ ‖L2‖‖L1‖ once
more. Hence ‖L2‖‖L1‖ is an upper bound for the set{

‖L2(L1(x))‖ : x ∈ Bn
}
,

and therefore
‖L2 ◦ L1‖ = sup

x∈Bn

‖L2(L1(x))‖ ≤ ‖L2‖‖L1‖,

as desired. �

Remark. Another useful fact about L ∈ L(Rn,Rm) is that ‖L(x)‖ ≤ ‖L‖‖x‖ for any x ∈ Rn.
This is clearly true when x = 0: recalling Proposition 10.20(1) and Theorem 10.33(1), we simply
obtain 0 = 0. If x 6= 0, then

‖L(x)‖ =

∥∥∥∥L(‖x‖ · x

‖x‖

)∥∥∥∥ =

∥∥∥∥L( x

‖x‖

)∥∥∥∥ ‖x‖ ≤ ‖L‖‖x‖
since x/‖x‖ ∈ Bn.

For each n ∈ N the general linear group of degree n , denoted by GLn(R), is the set of
all invertible linear operators on Rn. That is,

GLn(R) = {L ∈ L(Rn) : L is invertible}.

In light of Theorem 10.26 and Proposition 10.21, we may write

GLn(R) =
{
L ∈ L(Rn) : Nul(L) = {0}

}
.

It is left as an exercise to show that GLn(R) is a group under the “multiplication” operation of
function composition ◦ given by Definition 10.22.

Theorem 10.34.

1. Let L ∈ GLn(R) and Λ ∈ L(Rn). If

‖Λ− L‖‖L−1‖ < 1,

then Λ ∈ GLn(R).
2. GLn(R) is an open subset of (L(Rn), dsup).
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3. The mapping Inv : (GLn(R), dsup) → (GLn(R), dsup) given by Inv(L) = L−1 is a homeo-
morphism.

Proof.
Proof of Part (1). Suppose Λ /∈ GLn(R). Then Λ is not a bijection by Theorem 10.26, which is to
say Λ is either not injective or not surjective. By Proposition 10.21 it follows that Nul(Λ) 6= {0},
and so there exists some x0 6= 0 such that Λ(x0) = 0. Let x̂0 = x0/‖x0‖, so x̂0 ∈ Bn with
‖x̂0‖ = 1. Noting that Nul(L) = {0}, we have L(x̂0) = y0 6= 0. Now,

‖(Λ− L)(x̂0)‖ = ‖0− L(x̂0)‖ = ‖L(x̂0)‖ = ‖y0‖

shows that ‖Λ− L‖ ≥ ‖y0‖ > 0. Also∥∥∥∥L−1( y0

‖y0‖

)∥∥∥∥ =
‖L−1(y0)‖
‖y0‖

=
‖x̂0‖
‖y0‖

=
1

‖y0‖
shows that ‖L−1‖ ≥ 1/‖y0‖. Thus

‖Λ− L‖‖L−1‖ ≥ ‖y0‖
(

1

‖y0‖

)
= 1.

Proof of Part (2). Fix L0 ∈ GLn(R), so ‖L−10 ‖ > 0. Let L ∈ L(Rn) be such that

‖L− L0‖ <
1

‖L−10 ‖
.

Then ‖L− L0‖‖L−10 ‖ < 1, and so by part (1) it follows that L ∈ GLn(R). Thus the open ball
Bε(L0) is a subset of GLn(R) for ε = 1/‖L−10 ‖. This shows that every point in GLn(R) is an
interior point, and therefore GLn(R) is an open set.

Proof of Part (3). It is clear that the mapping Inv is a bijection. Fix L0 ∈ GLn(R), and let
ε > 0. Choose

δ =
ε

‖L−1‖‖L−10 ‖
,

and suppose that ‖L− L0‖ < δ. Now,

‖L− L0‖ <
ε

‖L−1‖‖L−10 ‖
⇒ ‖L−1‖‖L− L0‖‖L−10 ‖ < ε,

and so by Theorem 10.33(4) we obtain

‖L−1 − L−10 ‖ = ‖L−1 ◦ (L0 − L) ◦ L−10 ‖ ≤ ‖L−1‖‖L0 − L‖‖L−10 ‖ < ε,

observing that ‖L0 − L‖ = ‖L− L0‖ by Theorem 10.33(2). Hence Inv is continuous, and since
Inv−1 = Inv we conclude that Inv is a homeomorphism. �

Proposition 10.35. Let (X, d) be a metric space, and for each 1 ≤ i ≤ m, 1 ≤ j ≤ n let
aij : X → R be a continuous function. Let En = (ej)

n
j=1 and Em = (εi)

m
i=1 denote the standard

bases for Rn and Rm, respectively. If Θ : (X, d) → (L(Rn,Rm), dsup) is given by Θ(p) = Lp,
where [Lp]EnEm = [aij(p)]m,n, then Θ is continuous on X.



22

Proof. Fix p̂ ∈ X. Let ε > 0 be arbitrary. Choose δ > 0 such that p ∈ X with d(p, p̂) < δ
implies

|aij(p)− aij(p̂)| <
ε√
mn

for all 1 ≤ i ≤ m and 1 ≤ j ≤ n. Fix p ∈ X with d(p, p̂) < δ, and let Lp = Θ(p) and
Lp̂ = Θ(p̂), so that [Lp]EnEm = [aij(p)]m,n and [Lp̂]EnEm = [aij(p̂)]m,n. Recalling (10.7), for each
x = [x1, . . . , xn]> ∈ Rn we have

Lp(x) =
m∑
i=1

(
n∑
j=1

aij(p)xj

)
εi and Lp̂(x) =

m∑
i=1

(
n∑
j=1

aij(p̂)xj

)
εi.

Hence, recalling the Schwarz Inequality,

‖(Lp − Lp̂)(x)‖2 =
m∑
i=1

(
n∑
j=1

[
aij(p)− aij(p̂)

]
xj

)2

≤
m∑
i=1

[(
n∑
j=1

[
aij(p)− aij(p̂)

]2)( n∑
j=1

x2j

)]2

=
m∑
i=1

n∑
j=1

[
aij(p)− aij(p̂)

]2‖x‖2
for all x ∈ Rn. Thus

dsup

(
Θ(p),Θ(p̂)

)
= ‖Lp − Lp̂‖ = sup

x∈Bn

‖(Lp − Lp̂)(x)‖

= sup
x∈Bn

‖x‖( m∑
i=1

n∑
j=1

[
aij(p)− aij(p̂)

]2)1/2


≤

(
m∑
i=1

n∑
j=1

[
aij(p)− aij(p̂)

]2)1/2

<

(
m∑
i=1

n∑
j=1

ε2

mn

)1/2

= ε.

Therefore Θ is continuous at p̂, and we conclude that Θ is continuous on X. �
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10.4 – The Total Derivative

Definition 10.36. A mapping F : S ⊆ Rn → Rm is differentiable at x if there is an open
set U ⊆ Rn with x ∈ U ⊆ S, and linear mapping dFx ∈ L(Rn,Rm), such that

lim
h→0

‖F (x + h)− F (x)− dFx(h)‖
‖h‖

= 0, (10.10)

in which case we call dFx the total derivative (or differential) of F at x. We say F is
differentiable on U if it is differentiable at x for all x ∈ U .

Proposition 10.37. If F : S ⊆ Rn → Rm is differentiable at x, then the linear mapping
dFx ∈ L(Rn,Rm) for which (10.10) holds is unique.

Proof. Suppose L1, L2 ∈ L(Rn,Rm) are such that

lim
h→0

‖F (x + h)− F (x)− L1(h)‖
‖h‖

= 0 and lim
h→0

‖F (x + h)− F (x)− L2(h)‖
‖h‖

= 0.

For all h ∈ Rn \ {0} we have, by the Triangle Inequality,

‖L1(h)− L2(h)‖
‖h‖

≤ ‖ − F (x + h) + F (x) + L1(h) + F (x + h)− F (x)− L2(h)‖
‖h‖

≤ ‖F (x + h)− F (x)− L1(h)‖
‖h‖

+
‖F (x + h)− F (x)− L2(h)‖

‖h‖
,

and since

lim
h→0

(
‖F (x + h)− F (x)− L1(h)‖

‖h‖
+
‖F (x + h)− F (x)− L2(h)‖

‖h‖

)
= 0,

the Squeeze Theorem implies that

lim
h→0

‖L1(h)− L2(h)‖
‖h‖

= 0.

Thus for fixed y ∈ Rn \ {0} we have

lim
t→0

‖L1(ty)− L2(ty)‖
‖ty‖

= 0,

but also we have

lim
t→0

‖L1(ty)− L2(ty)‖
‖ty‖

= lim
t→0

|t|
(
‖L1(y)− L2(y)‖

)
|t|‖y‖

= lim
t→0

‖L1(y)− L2(y)‖
‖y‖

=
‖L1(y)− L2(y)‖

‖y‖
.

It follows that
‖L1(y)− L2(y)‖

‖y‖
= 0,

and hence L1(y) = L2(y) for all y 6= 0. Since L1(0) = L2(0) = 0 by Proposition 10.20(1), we
conclude that L1 = L2. �
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We introduce a bit of notation for the next proposition. Given a set A in a vector space V ,
define for any v ∈ V the set

A+ v = {a + v : a ∈ A}.
Also define A− v = A+ (−v).

Proposition 10.38. A mapping F : S ⊆ Rn → Rm is differentiable at x if and only if there is
an open set U ⊆ Rn with x ∈ U ⊆ S, some L ∈ L(Rn,Rm), and a mapping R : Rn → Rm, such
that

R(h) = F (x + h)− F (x)− L(h) (10.11)

for all h ∈ U − x and

lim
h→0

‖R(h)‖
‖h‖

= 0.

Proof. Suppose F : S ⊆ Rn → Rm is differentiable at x. Then there is an open set U ⊆ Rn

with x ∈ U ⊆ S, and a linear mapping dFx : Rn → Rm, such that (10.10) holds. Define
R : Rn → Rm by

R(h) = F (x + h)− F (x)− dFx(h)

for all h ∈ U − x. Since U is open, there exists some ε > 0 such that x + h ∈ U for all h ∈ Rn

with ‖h‖ < ε, which is to say h ∈ U − x and so Bε(0) ⊆ U − x. We then obtain

lim
h→0

‖R(h)‖
‖h‖

= lim
h→0

‖F (x + h)− F (x)− dFx(h)‖
‖h‖

= 0,

as desired.
Now suppose there is an open set U ⊆ Rn with x ∈ U ⊆ S, some L ∈ L(Rn,Rm), and a

mapping R : Rn → Rm, such that (10.11) holds for all h ∈ U − x and ‖R(h)‖/‖h‖ → 0 as
h→ 0. Then

lim
h→0

‖F (x + h)− F (x)− L(h)‖
‖h‖

= lim
h→0

‖R(h)‖
‖h‖

= 0,

and so F is differentiable at x by Definition 10.36 (with L = dFx by Proposition 10.37). �

In Proposition 10.38 it is immaterial how the mapping R is defined outside U − x, and so
we may simply set R ≡ 0 on Rn \ (U − x). The alternate characterization of differentiability
established by the proposition is frequently given as the definition of differentiability in the
literature.

Proposition 10.39. If L ∈ L(Rn,Rm), then dLx = L for all x ∈ Rn.

Proof. Suppose L ∈ L(Rn,Rm), and fix x ∈ Rn. For any h ∈ Rn, since L(x+h) = L(x)+L(h),
we have

L(x + h)− L(x)− L(h) = L(x) + L(h)− L(x)− L(h) = 0

and so

lim
h→0

‖L(x + h)− L(x)− L(h)‖
‖h‖

= lim
h→0

(0) = 0

obtains easily. This shows that dLx = L. �

Proposition 10.40. If F : S ⊆ Rn → Rm is differentiable at x, then it is continuous at x.
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Proof. Suppose F is differentiable at x. By Proposition 10.38 there is an open U ⊆ Dom(F )
with x ∈ U such that

F (x + h)− F (x) = R(h) + dFx(h)

for all h for which x + h ∈ U , where ‖R(h)‖/‖h‖ → 0 as h → 0. Fix ε > 0. By Theorem
10.33(1) the linear mapping dFx is continuous at 0, and so there exists some δ1 > 0 such that
‖h‖ < δ1 implies

‖dFx(h)‖ = ‖dFx(h)− dFx(0)‖ < ε

2
.

Also ‖R(h)‖/‖h‖ → 0 as h → 0 implies that R(h) → 0 as h → 0, and so there exists some
δ2 > 0 such that ‖h‖ < δ2 implies ‖R(h)‖ < ε/2. (Observe that ‖h‖ < δ2 also implies that
x + h ∈ U .) Suppose ξ ∈ Dom(F ) is such that ‖ξ − x‖ < min{δ1, δ2}. Then ξ ∈ U with

‖dFx(ξ − x)‖ < ε

2
and ‖R(ξ − x)‖ < ε

2
,

and so

‖F (ξ)− F (x)‖ = ‖F (x + (ξ − x))− F (x)‖ = ‖R(ξ − x) + dFx(ξ − x)‖

≤ ‖R(ξ − x)‖+ ‖dFx(ξ − x)‖ < ε.

Therefore F is continuous at x. �

The following Chain Rule can help to determine whether a given mapping H is differentiable
at some point in the interior of its domain, and if it is, to then find the total derivative of H at
that point. However, it is necessary to characterize H as a composition of two mappings G and
F whose differentiability and relevant total derivatives are known.

Theorem 10.41 (Chain Rule). Let U ⊆ Rn and V ⊆ Rm be open. If F : U → Rm is
differentiable at x ∈ U , F (U) ⊆ V , and G : V → R` is differentiable at F (x), then G ◦ F is
differentiable at x with

d(G ◦ F )x = dGF (x) ◦ dFx.

Proof. Suppose F : U → Rm is differentiable at x ∈ U , F (U) ⊆ V , and G : V → R` is
differentiable at F (x). Let

R(h) = F (x + h)− F (x)− dFx(h)

for all h ∈ Rn such that x + h ∈ U , and let

T (k) = G(F (x) + k)−G(F (x))− dGF (x)(k)

for all k ∈ Rm such that F (x) + k ∈ V . Also define

δ(h) =
‖R(h)‖
‖h‖

and ε(k) =
‖T (k)‖
‖k‖

. (10.12)

Then limh→0 δ(h) = 0 and limk→0 ε(k) = 0 by Proposition 10.38.
Now, for each h ∈ Rn for which x + h ∈ U , set k = F (x + h)− F (x). Then, recalling the

remark after the proof of Theorem 10.33,

‖k‖ = ‖F (x + h)− F (x)‖ = ‖dFx(h) +R(h)‖
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≤ ‖dFx(h)‖+ ‖R(h)‖ = ‖dFx‖‖h‖+ δ(h)‖h‖, (10.13)

and

(G ◦ F )(x + h)− (G ◦ F )(x)− (dGF (x) ◦ dFx)(h)

= G(F (x + h))−G(F (x))− (dGF (x) ◦ dFx)(h)

= G(F (x) + k)−G(F (x))− (dGF (x) ◦ dFx)(h)

= dGF (x)

(
k− dFx(h)

)
+ T (k)

= dGF (x)(R(h)) + T (k).

By (10.12) and (10.13) we have, for any h 6= 0,

‖(G ◦ F )(x + h)− (G ◦ F )(x)− (dGF (x) ◦ dFx)(h)‖
‖h‖

=
‖dGF (x)(R(h)) + T (k)‖

‖h‖

≤
‖dGF (x)(R(h))‖+ ‖T (k)‖

‖h‖
≤
‖dGF (x)‖‖R(h)‖+ ‖T (k)‖

‖h‖

=
δ(h)‖dGF (x)‖‖h‖+ ε(k)‖k‖

‖h‖
≤ δ(h)‖dGF (x)‖+ ε(k)

[
‖dFx‖+ δ(h)

]
.

As h→ 0 we have δ(h)→ 0, and thus k→ 0 by (10.13). Since ε(k)→ 0 as k→ 0, we find that

lim
h→0

(
δ(h)‖dGF (x)‖+ ε(k)

[
‖dFx‖+ δ(h)

])
= 0,

and therefore

lim
h→0

‖(G ◦ F )(x + h)− (G ◦ F )(x)− (dGF (x) ◦ dFx)(h)‖
‖h‖

= 0.

Since dGF (x) ◦ dFx is a linear mapping by Proposition 10.23, we conclude that G ◦ F is
differentiable at x, with d(G ◦ F )x = dGF (x) ◦ dFx. �
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10.5 – Partial Derivatives

Let F : S ⊆ Rn → Rm be a mapping, and let En = (e1, . . . , en) and Em = (ε1, . . . , εm) be the
standard (ordered) bases for Rn and Rm, respectively. For each x ∈ Rn we have F (x) ∈ Rm,
and thus

F (x) =
m∑
i=1

Fi(x)εi

for some real-valued scalars F1(x), . . . , Fm(x). In the notation of Em-coordinates,

F (x) =

 F1(x)
...

Fm(x)

,
which we may sometimes write as

F (x) =
(
F1(x), . . . , Fm(x)

)
, (10.14)

where the functions Fi : S ⊆ Rn → R are called the components of F . In the notation of
En-coordinates each x ∈ Rn is given by

x =

x1...
xn


for some x1, . . . , xn ∈ R, and for each 1 ≤ i ≤ m we define

Fi(x1, . . . , xn) = Fi

x1...
xn

= Fi(x). (10.15)

We see that each Fi is a real-valued function of n real-valued independent variables.

Definition 10.42. Let F : S ⊆ Rn → Rm be as above. For x ∈ Int(S) we define, for each
1 ≤ i ≤ m and 1 ≤ j ≤ n,

(∂jFi)(x) = lim
t→0

Fi(x + tej)− Fi(x)

t
,

provided the limit exists.

More explicitly we have

(∂jFi)(x1, . . . , xn) = lim
t→0

Fi(x1, . . . , xj + t, . . . , xn)− Fi(x1, . . . , xn)

t
,

which shows the limit to be the derivative of Fi with respect to the variable xj while keeping
the other variables fixed at the values x1, . . . , xj−1, xj+1, . . . , xn. For this reason we call ∂jFi the
partial derivative of Fi with respect to xj , also denoted by ∂xjFi.
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Theorem 10.43. Let En = (ej)
n
j=1 and Em = (εi)

m
i=1 be the standard bases for Rn and Rm. If

F : S ⊆ Rn → Rm is differentiable at x, then all partial derivatives (∂jFi)(x) exist, and

dFx(ej) =
m∑
i=1

(∂jFi)(x)εi

for all 1 ≤ j ≤ n.

Proof. Suppose F : S ⊆ Rn → Rm is differentiable at x. Letting (dFx)i denote the component
functions of dFx : Rn → Rm, so that

dFx(h) =
m∑
i=1

(dFx)i(h)εi

for each h ∈ Rn, we have

0 = lim
h→0

‖F (x + h)− F (x)− dFx(h)‖
‖h‖

= lim
h→0

∥∥∥∥∥
m∑
i=1

Fi(x + h)− Fi(x)− (dFx)i(h)

‖h‖
εi

∥∥∥∥∥
= lim

h→0

[
m∑
i=1

(
Fi(x + h)− Fi(x)− (dFx)i(h)

‖h‖

)2
]1/2

,

and so

lim
h→0

m∑
i=1

(
Fi(x + h)− Fi(x)− (dFx)i(h)

‖h‖

)2

= 0.

Thus for any 1 ≤ j ≤ n we have

lim
t→0

m∑
i=1

(
Fi(x + tej)− Fi(x)− (dFx)i(tej)

‖tej‖

)2

= 0,

and hence

lim
t→0

m∑
i=1

(
Fi(x + tej)− Fi(x)− t(dFx)i(ej)

t

)2

= 0.

It follows that, for any 1 ≤ i ≤ m,

lim
t→0

Fi(x + tej)− Fi(x)− t(dFx)i(ej)

t
= lim

t→0

(
Fi(x + tej)− Fi(x)

t
− (dFx)i(ej)

)
= 0,

which implies that

(∂jFi)(x) = lim
t→0

Fi(x + tej)− Fi(x)

t
= (dFx)i(ej)

for all 1 ≤ i ≤ m and 1 ≤ j ≤ n. This shows that all partial derivatives of F exist, and moreover

dFx(ej) =
m∑
i=1

(∂jFi)(x)εi

for all 1 ≤ j ≤ n. �
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Given F : S ⊆ Rn → Rm is differentiable at x, for any h =
∑n

j=1 hjej ∈ Rn we have

dFx(h) =
n∑
j=1

hjdFx(ej) =
n∑
j=1

(
hj

m∑
i=1

(∂jFi)(x)εi

)
=

m∑
i=1

(
n∑
j=1

(∂jFi)(x)hj

)
εi,

by Theorem 10.43, and so the Em-coordinates of (dFx)(h) ∈ Rm are seen to be

[
dFx(h)

]
Em

=


∑n

j=1(∂jF1)(x)hj
...∑n

j=1(∂jFm)(x)hj

.
Since  (∂1F1)(x) · · · (∂nF1)(x)

...
. . .

...
(∂1Fm)(x) · · · (∂nFm)(x)

h1...
hn

=


∑n

j=1(∂jF1)(x)hj
...∑n

j=1(∂jFm)(x)hj

,
we see that the matrix corresponding to dFx with respect to the bases En and Em (what may be
called the EnEm-matrix for dFx) is

[dFx]EnEm =

 (∂1F1)(x) · · · (∂nF1)(x)
...

. . .
...

(∂1Fm)(x) · · · (∂nFm)(x)

, (10.16)

or more compactly

[dFx] =
[
(∂jFi)(x)

]
mn
,

which is in agreement with (10.8) in the general treatment. That is, [dFx]EnEm is the unique
matrix for which

[dFx]EnEm [h]En =
[
dFx(h)

]
Em

holds for all h ∈ Rn. Since it is understood that we are working with the standard bases for Rn

and Rm, we may simply write

[dFx]h = dFx(h),

where h and (dFx)(h) are column vectors. Commonly the symbol dFx is used to denote the
matrix [dFx], and so [dFx]h is further simplified to dFxh.

In the case when m = n, which is to say F : S ⊆ Rn → Rn, then the matrix (10.16) becomes
a square matrix provided that F is differentiable at x. The determinant

JF (x) = det
(
[dFx]EnEn

)
=

∣∣∣∣∣∣
(∂1F1)(x) · · · (∂nF1)(x)

...
. . .

...
(∂1Fn)(x) · · · (∂nFn)(x)

∣∣∣∣∣∣ (10.17)

is the Jacobian of F at x, which may also be denoted by det(dFx). If F is differentiable on
an open set U ⊆ S, then JF : U → R.

Partial differentiation of a function f : S ⊆ Rn → R follows the same rules given in Chapter
5 for the differentiation of a real-valued function of a single real variable, and so (10.16) offers a
straightforward means of determining the total derivative of a mapping F : S ⊆ Rn → Rm.
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Example 10.44. In the classical study of the differential geometry of surfaces the notation
employed may be quite different.2 A surface Σ ⊆ R3 is typically characterized as the trace of a
parametrization x : S ⊆ R2 → R3 given by

x

([
u
v

])
=

x(u, v)
y(u, v)
z(u, v)

,
where here we assume the standard bases for R2 and R3. Note the bold-facing used in the
function’s symbol, which is not a notational practice in these notes but is prevalent in the
literature. Adopting the notation defined by (10.14) and (10.15), we may write

x(u, v) =
(
x(u, v), y(u, v), z(u, v)

)
.

The differential of x at a point p = (u0, v0) in S is then the linear map dxp : R2 → R3 with
corresponding matrix

dxp =

xu(p) xv(p)
yu(p) yv(p)
zu(p) zv(p)

,
where the symbol dxp now stands for [dxp], and of course xu := ∂ux, xv := ∂vx, and so on. A
further bastardization of notation, never again paraded in public in these notes, is to write

dxp =

xu xv
yu yv
zu zv

,
where the evaluation of the partial derivatives at the point p is understood. �

Example 10.45. Let F : R3 → R2 be given by

F

xy
z

=

[
x3 + yz2

exz + sin y

]
,

which may also be written F (x, y, z) = (x3 + yz, exz + sin y). The components of F are

F1(x, y, z) = x3 + yz2 and F2(x, y, z) = exz + sin y.

If F is differentiable at

x =

xy
z

∈ R3,

then the matrix that represents the total derivative of F at x is

[dFx] =

[
(∂1F1)(x) (∂2F1)(x) (∂3F1)(x)
(∂1F2)(x) (∂2F2)(x) (∂3F2)(x)

]
=

[
3x2 z2 2yz
zexz cos y xexz

]
.

In particular for a = [0, 0, 2]> we have

[dFa] =

[
0 4 0
2 1 0

]
.

2See for instance Differential Geometry of Curves and Surfaces by Manfredo DoCarmo.
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Technically this does not show that F is differentiable at a. In order to do that, our only
recourse at this time is to verify that the limit

lim
h→0

‖F (a + h)− F (a)− dFa(h)‖
‖h‖

equals zero, which would be arduous at best. Our theory clearly needs further development. �

In Chapter 5 we defined a vector-valued function γ : I ⊆ R → Rn to be differentiable at
t ∈ I if the limit

γ′(t) = lim
h→0

γ(t+ h)− γ(t)

h
(10.18)

exists in Rn. This is equivalent to requiring that there exists some γ′(t) ∈ Rn such that

lim
h→0

γ(t+ h)− γ(t)− γ′(t)h
h

= 0,

or alternatively

lim
h→0

‖γ(t+ h)− γ(t)− γ′(t)h‖
|h|

= 0. (10.19)

(Note that it is not a requirement that t be in the interior of the domain of γ.) On the other
hand, by Definition 10.36 we say γ is differentiable at t ∈ Int(I) if there exists a linear mapping
dγt : R→ Rn such that

lim
h→0

‖γ(t+ h)− γ(t)− dγt(h)‖
|h|

= 0. (10.20)

Comparing (10.19) and (10.20), and assuming t ∈ Int(I), we see that γ : I ⊆ R → Rn

is differentiable at t in the sense of (10.18) if and only if it is differentiable at t in the sense
of Definition 10.36, with the associated linear mapping (i.e. total derivative) being the map
dγt : R → Rn given by dγt(h) = γ′(t)h for all h ∈ R. In particular, if it is given that
γ : I ⊆ R→ Rn given by

γ(t) =
n∑
i=1

γi(t)ei

is differentiable in the sense of Definition 10.36 at t ∈ Int(I), then Theorem 10.43 may be used
to calculate

dγt(1) =
n∑
i=1

(∂1γi)(t)ei =
n∑
i=1

γ′i(t)ei = γ′(t),

bearing in mind that {1} is the standard basis for R. Hence

dγt(h) = hdγt(1) = hγ′(t)

for any h ∈ R. We summarize our findings with a proposition.

Proposition 10.46. Let γ : I ⊆ R→ Rn be a vector-valued function, and let t ∈ Int(I). Then
γ is differentiable in the sense of Definition 10.36 if and only if γ′(t) exists in Rn, in which case
dγt : R→ Rn is given by dγt(h) = hγ′(t) for all h ∈ R.
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In Proposition 10.46 and the foregoing remarks it is important to distinguish between the
mapping dγt ∈ L(R,Rn) and the vector γ′(t) ∈ Rn.3

Theorem 10.47. Suppose F : S ⊆ Rn → Rm is differentiable on a convex open set V ⊆ S, and
there exists some α ∈ R such that ‖dFx‖ ≤ α for all x ∈ V . Then

‖F (x)− F (y)‖ ≤ α‖x− y‖

for all x,y ∈ V .

Proof. Fix x,y ∈ V , and define γ : R→ Rn by

γ(t) = tx + (1− t)y.

Observe that γ([0, 1]) is the segment [x,y] in Rn, and so γ([0, 1]) ⊆ V since V is convex. Indeed,
since γ is continuous and V is open, there exists an open interval I ⊆ R such that [0, 1] ⊆ I
and γ(I) ⊆ V . Since γ : I → Rn is differentiable at t ∈ I, γ(I) ⊆ V , and F : V → Rm is
differentiable at γ(t), by the Chain Rule g = F ◦ γ is differentiable at t with

dgt = dFγ(t) ◦ dγt.

In particular we see that g is differentiable on I. Fix t ∈ [0, 1]. Observing that B1 = [−1, 1] and
γ′(t) = x− y, by Theorem 10.33(4) and Proposition 10.46,

‖dgt‖ ≤ ‖dFγ(t)‖‖dγt‖ ≤ α sup
h∈[−1,1]

‖dγt(h)‖ = α sup
h∈[−1,1]

‖hγ′(t)‖ = α‖γ′(t)‖ = α‖x− y‖.

On the other hand, another application of Proposition 10.46 gives

‖dgt‖ = sup
h∈[−1,1]

‖dgt(h)‖ = sup
h∈[−1,1]

‖hg′(t)‖ = ‖g′(t)‖,

and hence

‖g′(t)‖ ≤ α‖x− y‖
for all t ∈ [0, 1].

Now, g is differentiable on (0, 1) ⊆ I, and by Proposition 10.40 g is continuous on [0, 1] ⊆ I.
Thus by Theorem 5.19 in [Rud] there is some τ ∈ (0, 1) such that ‖g(1) − g(0)‖ ≤ ‖g′(τ)‖.
Therefore

‖F (x)− F (y)‖ = ‖F (γ(1))− F (γ(0))‖ = ‖g(1)− g(0)‖ ≤ ‖g′(τ)‖ ≤ α‖x− y‖,

as desired. �

Proposition 10.48. Suppose F : S ⊆ Rn → Rm is differentiable on a connected open set
U ⊆ S. If dFx = 0 for all x ∈ U , then F is constant on U .

3Many authors use the same symbol to represent both in introductory texts, which is unfortunate.
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Proof. Suppose dFx = 0 for all x ∈ U . Assume U is convex. Since ‖dFx‖ = 0 for all x ∈ U ,
Theorem 10.47 implies that ‖F (x)− F (y)‖ = 0 for all x,y ∈ U , and thus F (x) = F (y) for all
x,y ∈ U . Therefore F is constant on U .

Now assume U is not convex. Since U is open, for each x ∈ U we may choose some εx > 0
such that Bεx(x) ⊆ U , and thereby construct a collection of open balls

B =
{
Bεx(x) : x ∈ U

}
such that

⋃
B = U . Open balls are convex sets, and so F is constant on each B ∈ B. Fix a ∈ U ,

let V1 be the union of all B ∈ B on which F ≡ F (a):

V1 =
⋃{

B ∈ B : F ≡ F (a) on B
}
.

Also let

V2 =
⋃{

B ∈ B : F ≡ c on B for some c 6= F (a)
}
.

Clearly V1 ∪ V2 = U and V1 ∩ V2 = ∅. Also V1 6= ∅ since Bεa(a) ⊆ V1. Since U is connected, it
follows that V2 = ∅. Therefore U = V1, which shows that every x ∈ U lies in a ball on which
F ≡ F (a), and therefore F ≡ F (a) on U . �

A mapping F : S ⊆ Rn → Rm is differentiable on some open set U ⊆ S if and only if
the total derivative dFx is defined for each x ∈ U . That is, for each x ∈ U there exists some
dFx ∈ L(Rn,Rm), and so there is a mapping x 7→ dFx defined on U . We denote this mapping
by dF , so in explicit terms dF : U → L(Rn,Rm) is given by dF (x) = dFx.

Definition 10.49. A mapping F : S ⊆ Rn → Rm is continuously differentiable on an
open set U ⊆ S if F is differentiable on U and the mapping dF : (U, de)→ (L(Rn,Rm), dsup) is
continuous on U .

The collection of all mappings that are continuously differentiable on U is denoted by C ′(U),
and any F ∈ C ′(U) is called a C ′-mapping on U.

The following result extends the Mean Value Theorem to a multivariable setting, and will
be useful in proving the theorem that comes after.

Theorem 10.50 (Multivariable Mean Value Theorem). Suppose f : Br(a) ⊆ Rn → R
has continuous first partials. Then for any x ∈ Br(a) there exist c1, . . . , cn ∈ Br(a) such that

f(x)− f(a) =
n∑
i=1

∂if(ci)(x− a) · ei.

Proof. Fix x ∈ Br(a). Thus we have a =
∑n

i=1 aiei and x =
∑n

i=1 xiei. For each 1 ≤ i ≤ n let

bi = a +
i∑

k=1

(xk − ak)ek.

Defining b0 = a, set Si = [bi−1,bi] and

∆i =
[

min{ai, xi},max{ai, xi}
]
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for each 1 ≤ i ≤ n. It is straightforward to verify that bn = x and S =
⋃n
i=1 Si ⊆ Br(a). Fix

1 ≤ i ≤ n, and assume that ai 6= xi. Define gi : ∆i → R by

gi(t) = f
(
bi−1 + (t− ai)ei

)
= f(x1, . . . , xi−1, t, ai+1, . . . , an).

Clearly gi is continuous on ∆i. For any t ∈ Int(∆i), letting vit = bi−1 + (t− ai)ei, we have

g′i(t) = lim
h→0

gi(t+ h)− gi(t)
h

= lim
h→0

f(vit + hei)− f(vit)

h
= ∂if(vit),

and so we see that g′i(t) exists since vit ∈ Br(a) and the partial derivatives of f exist on Br(a).
Hence gi is differentiable on Int(∆i). By the Mean Value Theorem it follows that there exists
some ti ∈ Int(∆i) such that

g′i(ti) =
gi(xi)− gi(ai)

xi − ai
.

Setting ci = viti , we conclude that

∂if(ci) =
f(bi)− f(bi−1)

xi − ai
for all 1 ≤ i ≤ n for which ai 6= xi. If ai = xi simply choose ci = ai. Now,

f(x)− f(a) =
n∑
i=1

[
f(bi)− f(bi−1)

]
=

n∑
i=1

∂if(ci)(xi − ai),

observing that for any i for which ai = xi we have bi−1 = bi, and hence

f(bi)− f(bi−1) = 0 = ∂if(ai)(ai − ai) = ∂if(ci)(xi − ai).

This finishes the proof. �

The next theorem will at last provide a practical means of determining whether a mapping
is differentiable at a given point in the interior of its domain. For the proof, recall that the
standard basis (εi)

m
i=1 for Rm is orthonormal, so that εi · εj := ε>i εj = δij.

Theorem 10.51. Let U ⊆ Rn be an open set, and let F : U → Rm. Then F ∈ C ′(U) if and only
if the partial derivatives ∂jFi exist and are continuous on U for all 1 ≤ i ≤ m and 1 ≤ j ≤ n.

Proof. Suppose F ∈ C ′(U). Fix x ∈ U , and let ε > 0. Since dF is continuous at x, there exists
some δ > 0 such that ‖dFξ − dFx‖ < ε for all ξ ∈ U with ‖ξ − x‖ < δ. Fix 1 ≤ i ≤ m and
1 ≤ j ≤ n. By Theorem 10.43,

dFx(ej) · εi =
m∑
i=k

∂jFk(x)εk · εi = ∂jFi(x).

Let ξ ∈ U with ‖ξ − x‖ < δ. Then

∂jFi(ξ)− ∂jFi(x) =
[
dFξ(ej)− dFx(ej)

]
· εi =

[
(dFξ − dFx)(ej)

]
· εi,

and since ‖εi‖ = ‖ej‖ = 1 (in particular ej ∈ Bn), we have∣∣∂jFi(ξ)− ∂jFi(x)
∣∣ ≤ ‖(dFξ − dFx)(ej)‖‖εi‖ ≤ ‖dFξ − dFx‖ < ε.
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Therefore ∂jFi is continuous at x.
For the converse, suppose the partial derivatives ∂jFi exist and are continuous on U for all

1 ≤ i ≤ m and 1 ≤ j ≤ n. Fix x ∈ U and let ε > 0. Let r > 0 be such that Br(x) ⊆ U . For
each 1 ≤ i ≤ m and 1 ≤ j ≤ n there exists some 0 < δij < r such that ‖ξ − x‖ < δij implies

‖∂jFi(ξ)− ∂jFi(x)‖ < ε

2mn
.

Choose δ = min{δij : 1 ≤ i ≤ m, 1 ≤ j ≤ n}, and suppose ‖h‖ < δ. Fix 1 ≤ i ≤ m. Since
x + h ∈ Bδ(x) ⊆ U , by Theorem 10.50 there exist ci1, . . . , cin ∈ Bδ(x) such that

Fi(x + h)− Fi(x) =
n∑
j=1

∂jFi(cij)h · ej.

Now, noting that |h · ej| ≤ ‖h‖‖ej‖ = ‖h‖, and also ‖cij − x‖ < δij for each 1 ≤ j ≤ n,∣∣∣∣∣Fi(x + h)− Fi(x)−
∑n

j=1 ∂jFi(x)h · ej
‖h‖

∣∣∣∣∣ =

∣∣∑n
j=1

(
∂jFi(cij)− ∂jFi(x)

)
h · ej

∣∣
‖h‖

≤ 1

‖h‖

n∑
j=1

∣∣∂jFi(cij)− ∂jFi(x)
∣∣|h · ej| ≤ n∑

j=1

∣∣∂jFi(cij)− ∂jFi(x)
∣∣

≤
n∑
j=1

ε

2mn
=

ε

2m
.

Defining L ∈ L(Rn,Rm) by

L(ej) =
m∑
i=1

∂jFi(x)εi

for each 1 ≤ j ≤ n, so that

Li(h) =
n∑
j=1

∂jFi(x)h · ej

for each 1 ≤ i ≤ m, we have

‖F (x + h)− F (x)− L(h)‖
‖h‖

=

[
m∑
i=1

(
Fi(x + h)− Fi(x)− Li(h)

‖h‖

)2
]1/2

≤

(
m∑
i=1

ε2

4m2

)1/2

=
ε

2
√
m
< ε.

Therefore

lim
h→0

‖F (x + h)− F (x)− L(h)‖
‖h‖

= 0

for the linear mapping L, and we conclude that F is differentiable at x. Since x ∈ U is arbitrary,
it follows that F is differentiable on U .

Finally, since ∂jFi is a real continuous functions on U ⊆ Rn for each 1 ≤ i ≤ m and
1 ≤ j ≤ n, and by (10.16) the EnEm-matrix of dFx is [(∂jFi)(x)], we conclude by Proposition
10.35 that the mapping dF : (U, de)→ (L(Rn,Rm), dsup) given by dF (x) = dFx is continuous
on U . Therefore F ∈ C ′(U). �
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10.6 – The Inverse Function Theorem

Definition 10.52. Let (X, d) be a metric space. A mapping ϕ : X → X is a contraction of
X into X if there exists some c < 1 such that

d
(
ϕ(x), ϕ(y)

)
≤ cd(x, y)

for all x, y ∈ X.

Proposition 10.53 (Contraction Principle). If (X, d) is a complete metric space and
ϕ : X → X is a contraction, then there exists a unique x ∈ X such that ϕ(x) = x.

For the following definition, recall that a mapping F : U → V is invertible if and only if
it is bijective, so that there exists a tranformation F−1 : V → U such that F ◦ F−1 = IV and
F−1 ◦ F = IU .

Definition 10.54. Let U, V ⊆ Rn be open sets. Then F : U → V is a C ′-diffeomorphism if
F is bijective, F ∈ C ′(U), and F−1 ∈ C ′(V ).

We henceforth adopt the following notation: the symbol dF−1x indicates the inverse of the
total derivative of F at x; that is, dF−1x := (dFx)−1. In contrast the symbol d(F−1)y denotes
the total derivative of F−1 at y.

Theorem 10.55 (Inverse Function Theorem). Let U ⊆ Rn be open, and suppose the
mapping F : U → Rn is such that F ∈ C ′(U), dFa is invertible for some a ∈ U , and b = F (a).
Then there exist open sets A ⊆ U , B ⊆ F (U) such that a ∈ A, b ∈ B, and F : A → B is a
C ′-diffeomorphism. Moreover, for each y = F (x) ∈ B,

d(F−1)y = dF−1x . (10.21)

Proof. Since dF : U → L(Rn) is continuous at a, there exists some r > 0 such that A0 =
Br(a) ⊆ U and

‖dFx − dFa‖ <
1

2‖dF−1a ‖
:= λ (10.22)

for all x ∈ A0.
For each y ∈ Rn define Φy : U → Rn by

Φy(x) = x + dF−1a (y − F (x))

for all x ∈ U . Since dF−1a is a linear mapping by Proposition 10.28, we have

Φy(x) = (I − dF−1a ◦ F )(x) + dF−1a (y),

where I is the identity tranformation on Rn. For any x ∈ U the total derivative of Φy exists,
with

d(Φy)x = I − dF−1a ◦ dFx = dF−1a ◦ (dFa − dFx)
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by the Chain Rule, Proposition 10.39, and Proposition 10.30(2). Now, by Theorem 10.33(4)
and (10.22),

‖d(Φy)x‖ ≤ ‖dF−1a ‖‖dFa − dFx‖ <
1

2
for all x ∈ A0, and so

‖Φy(x1)− Φy(x2)‖ ≤
1

2
‖x1 − x2‖ (10.23)

for all x1,x2 ∈ A0 by Theorem 10.47. This shows that Φy is a contraction of A0 into A0, and if
we define A = Br/2(a) ⊆ U , so that A ⊆ A0, then Φy is a contraction of the complete metric
space A into A. By the Contraction Principle Φy has a unique fixed point in A, and so has at
most one fixed point in A. Thus there is at most one x ∈ A for which

x + dF−1a (y − F (x)) = Φy(x) = x,

which yields

dF−1a (y − F (x)) = 0,

and hence F (x) = y by Proposition 10.21, since dF−1a ∈ L(Rn) is invertible and hence a bijection.
Since y ∈ Rn is arbitrary, it follows that F is injective on A.

Let B = F (A) ⊆ F (U), so that F : A → B is bijective, and of course b ∈ B. We must
show that B is open. Fix y0 ∈ B. Then y0 = F (x0) for some x0 ∈ A. Let ρ > 0 be such that
K := Bρ(x0) ⊆ A. Fix y ∈ Bλρ(y0). Then

‖Φy(x0)− x0‖ = ‖dF−1a (y − F (x0))‖ = ‖dF−1a (y − y0)‖ < ‖dF−1a ‖λρ =
ρ

2
,

so by (10.23) we have, for any x ∈ K,

‖Φy(x)− x0‖ ≤ ‖Φy(x)− Φy(x0)‖+ ‖Φy(x0)− x0‖ <
1

2
‖x− x0‖+

ρ

2
≤ ρ,

and hence Φy(x) ∈ Int(K). Since (10.23) holds on A0 ⊇ A, it holds on K; then, having shown
Φy(K) ⊆ Int(K), it follows that Φy is a contraction of K into K. By the Contraction Principle
there exists some x ∈ K such that Φy(x) = x, and so F (x) = y. Hence y ∈ F (K) ⊆ F (A) = B,
and since y ∈ Bλρ(y0) is arbitrary, we obtain Bλρ(y0) ⊆ B. Therefore B is open.

Next we show that F−1 is differentiable on B and verify (10.21). Fix y ∈ B. Since F : A→ B
is bijective, for any k such that y + k ∈ B there exist x,x + h ∈ A (with h 6= 0 being unique)
such that F (x) = y and F (x + h) = y + k. Moreover (10.22) implies that

‖dFx − dFa‖‖dF−1a ‖ < 1,

and so dFx is an invertible linear operator on Rn by Theorem 10.34(1). Now,

F−1(y + k)− F−1(y)− dF−1x (k) = h− dF−1x (k)

= dF−1x

(
dFx(h)

)
− dF−1x

(
F (x + h)− F (x)

)
= −dF−1x

(
F (x + h)− F (x)− dFx(h)

)
; (10.24)

and by (10.23),

‖h‖ − ‖dF−1a (k)‖ ≤ ‖h− dF−1a (k)‖ =
∥∥h + dF−1a

(
F (x)− F (x + h)

)∥∥
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= ‖Φy(x + h)− Φy(x)‖ ≤ ‖h‖
2
,

whence ‖dF−1a (k)‖ ≥ ‖h‖/2 obtains, yielding

‖h‖ ≤ 2‖dF−1a (k)‖ ≤ 2‖dF−1a ‖‖k‖ =
‖k‖
λ

(10.25)

by the remark following Theorem 10.33.
Let ε > 0. Since

lim
h→0

‖F (x + h)− F (x)− dFx(h)‖
‖h‖

= 0

by the differentiability of F at x, there exists some δ0 > 0 such that 0 < ‖h‖ < δ0 implies

‖F (x + h)− F (x)− dFx(h)‖
‖h‖

<
ελ

‖dF−1x ‖
.

For r0 > 0 such that Br0(y) ⊆ B, choose δ = min{r0, λδ0}, and suppose 0 < ‖k‖ < δ. Then by
(10.25) the unique h 6= 0 for which F (x + h) = y + k is such that

0 < ‖h‖ ≤ ‖k‖
λ

<
δ

λ
≤ δ0.

Now, recalling (10.24),

‖F−1(y + k)− F−1(y)− dF−1x (k)‖
‖k‖

≤
‖dF−1x

(
F (x + h)− F (x)− dFx(h)

)
λ‖h‖

≤ ‖dF
−1
x ‖
λ

· ‖F (x + h)− F (x)− dFx(h)‖
‖h‖

<
‖dF−1x ‖

λ
· ελ

‖dF−1x ‖
= ε.

Thus

lim
k→0

‖F−1(y + k)− F−1(y)− dF−1x (k)‖
‖k‖

= 0,

and so F−1 is differentiable at y with d(F−1)y = dF−1x . Since y ∈ B is arbitrary, F−1 is
differentiable on B, and (10.21) is verified.

It is clear that F ∈ C ′(A), and so it remains only to show that d(F−1) : B → L(Rn) is
continuous. By Proposition 10.40, the bijection F−1 : B → A is continuous. Also, for each
x ∈ A we found that dFx is invertible, and so the continuous mapping dF : A → L(Rn) in
fact maps A into GLn(R). Finally, the map Inv : GLn(R) → GLn(R) given by Inv(L) = L−1

is continous by Theorem 10.34(3). Hence Inv ◦ dF ◦ F−1 : B → GLn(R) is continouous. Let
y ∈ B, so there is a unique x ∈ A such that F (x) = y. By (10.21),

(Inv ◦ dF ◦ F−1)(y) = Inv
(
dF (x)

)
= Inv(dFx) = dF−1x = d(F−1)y = d(F−1)(y),

so d(F−1) = Inv ◦ dF ◦ F−1 and hence d(F−1) is continuous. Therefore F−1 ∈ C ′(B). �

In the statement of the Inverse Function Theorem it is clear that the open set B is in fact
F (A); that is, A and F (A) are both open in Rn. This leads to another important result.
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Theorem 10.56 (Open Mapping Theorem). Let U ⊆ Rn be open, and suppose the mapping
F : U → Rn is such that F ∈ C ′(U) and dFx is invertible for all x ∈ U . Then F (W ) is open in
Rn for all open W ⊆ U .

Proof. Let W ⊆ U be an open set. Fix y ∈ F (W ), so there exists some x ∈ W such that
F (x) = y. Since the mapping F : W → Rn is such that F ∈ C ′(W ), and dFx is invertible, by
the Inverse Function Theorem there exists an open set A ⊆ W such that x ∈ A and F (A) is
open. Now, y = F (x) ∈ F (A) ⊆ F (W ), and so y is an interior point of F (W ). Since y ∈ F (W )
is arbitrary, we conclude that F (W ) is open in Rn. �

In general, given metric spaces (X, d) and (Y, ρ), a function f : (X, d)→ (Y, ρ) is an open
mapping if f(U) is open in (Y, ρ) whenever U is open in (X, d). Recalling the definition of the
Jacobian of a mapping F : S ⊆ Rn → Rn given by (10.17), and also recalling (see the remark at
the end of §10.2) that a linear operator L ∈ L(V ) is invertible if and only if det(L) 6= 0, the
Open Mapping Theorem immediately implies the following.

Corollary 10.57. Let U ⊆ Rn be open, and suppose F : U → Rn is such that F ∈ C ′(U). If
det(dFx) 6= 0 for all x ∈ U , then F is an open mapping.
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10.7 – The Implicit Function Theorem and Rank Theorem

We continue to regard the elements of any euclidean space to be column vectors, so that
they interact in a natural way with matrices and conform to the usual format of systems of
equations. If

x =

x1...
xn

∈ Rn and y =

 y1...
ym

∈ Rm,

then we define the vector

(x,y) =



x1
...
xn
y1
...
ym


∈ Rn+m.

In general, whenever given that (x,y) ∈ Rn+m, we assume x ∈ Rn and y ∈ Rm.
For any L ∈ L(Rn+m,Rn), define L•0 ∈ L(Rn) and L0• ∈ L(Rm,Rn) by

L•0(x) = L(x,0) and L0•(y) = L(0,y)

for all x ∈ Rn and y ∈ Rm. Then, for any (x,y) ∈ Rn+m,

L(x,y) = L
(
(x,0) + (0,y)

)
= L(x,0) + L(0,y) = L•0(x) + L0•(y). (10.26)

If L•0 or L0• are invertible, then the symbols L−1•0 and L−10• will denote their inverses. That is,

L−1•0 := (L•0)
−1 and L−10• := (L0•)

−1.

Proposition 10.58. Let L ∈ L(Rn+m,Rn). If L•0 is invertible, then for each k ∈ Rm there
exists a unique h ∈ Rn such that L(h,k) = 0. Moreover,

h = −(L−1•0 ◦ L0•)(k). (10.27)

Proof. Suppose L•0 is invertible, and fix k ∈ Rm. Applying (10.26),

L(h,k) = L
(
− (L−1•0 ◦ L0•)(k),k

)
= L•0

(
− (L−1•0 ◦ L0•)(k)

)
+ L0•(k)

= −L•0
(
L−1•0 (L0•(k))

)
+ L0•(k) = −L0•(k) + L0•(k) = 0,

which proves existence and confirms (10.27).
Now suppose that h ∈ Rn is such that L(h,k) = 0. Then L•0(h) + L0•(k) = 0 by (10.26),

and

L•0(h) + L0•(k) = 0 ⇒ L•0(h) = −L0•(k) ⇒ h = −L−1•0
(
L0•(k)

)
since L•0 is invertible. This gives (10.27), proving uniqueness. �
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Proposition 10.59. Let U ⊆ Rn be open, and let F : U → Rm and G : U → R` be such that
F,G ∈ C ′(U). Suppose Φ : U → Rm+` is given by

H(x) =
(
F (x), G(x)

)
for all x ∈ U . Then H ∈ C ′(U), and for each a ∈ U ,

dHa(x) =
(
dFa(x), dGa(x)

)
for all x ∈ Rn.

Proof. By Theorem 10.51, the partial derivatives ∂jFi and ∂jGk exist and are continuous on U
for all 1 ≤ i ≤ m, 1 ≤ j ≤ n, and 1 ≤ k ≤ `. Since the components of Φ are

Φ1 = F1, . . . ,Φm = Fm,Φm+1 = G1, . . . ,Φm+` = G`,

we see that ∂jΦi exist and are continuous on U for all 1 ≤ i ≤ m+ ` and 1 ≤ j ≤ n. Therefore
Φ ∈ C ′(U) by Theorem 10.51.

Next, fix a ∈ U . Let

α = lim
h→0

H(a + h)−H(a)− (dFa(h), dGa(h))

‖h‖
.

Then

α = lim
h→0

(
F (a + h)− F (a)− dFa(h), G(a + h)−G(a)− dGa(h)

)
‖h‖

= lim
h→0

(
F (a + h)− F (a)− dFa(h)

‖h‖
,
G(a + h)−G(a)− dGa(h)

‖h‖

)
= (0,0),

and therefore

lim
h→0

‖H(a + h)−H(a)− dHa(h)‖
‖h‖

= 0

for dHa = (dFa, dGa), as was to be shown. �

Theorem 10.60 (Implicit Function Theorem). Let Ω ⊆ Rn+m be open, and let F : Ω→ Rn

be such that F ∈ C ′(Ω) and F (a,b) = 0 for some (a,b) ∈ Ω. If dF(a,b)( · ,0) ∈ L(Rn) is
invertible, then there exist open sets U ⊆ Ω and W ⊆ Rm, with (a,b) ∈ U and b ∈ W , such
that the following hold:

1. There is a unique function G : W → Rn with G(b) = a, and such that

(G(y),y) ∈ U and F (G(y),y) = 0

for all y ∈ W .
2. G ∈ C ′(W ) and

dGb = −dF(a,b)( · ,0)−1 ◦ dF(a,b)(0, ·). (10.28)



42

Proof. Suppose dF(a,b)(· ,0) is invertible. The mapping Λ : Rn+m → Rm given by Λ(x,y) = y
is a linear mapping, so Λ ∈ C ′(Rn+m) by Proposition 10.39, which implies that Λ : Ω→ Rm is a
C ′-mapping on Ω. Define Φ : Ω→ Rn+m by

Φ(x,y) =
(
F (x,y),Λ(x,y)

)
=
(
F (x,y),y

)
.

Then Φ ∈ C ′(Ω) by Proposition 10.59, and in particular Φ is differentiable at (a,b). By
Proposition 10.59 once more, dΦ(a,b) : Rn+m → Rn+m is given by

dΦ(a,b)(x,y) =
(
dF(a,b)(x,y),y

)
,

where dΛ(a,b)(x,y) = Λ(x,y) = y by Proposition 10.39. Now, if dΦ(a,b)(x,y) = (0,0), it follows
that dF(a,b)(x,y) = 0 and y = 0, and hence dF(a,b)(x,0) = 0. Since dF(a,b)( · ,0) is invertible,
Theorem 10.26 and Proposition 10.21 imply that Nul(dF(a,b)(· ,0)) = {0}, and so x = 0. Thus
Nul(dΦ(a,b)) = {(0,0)}, whereupon Proposition 10.21 implies dΦ(a,b) is bijective and hence
invertible.

We now apply the Inverse Function Theorem to Φ : Ω→ Rn+m to conclude that there exist
open sets U ⊆ Ω, V ⊆ Φ(U) such that (a,b) ∈ U , (0,b) = Φ(a,b) ∈ V , and Φ : U → V is a
C ′-diffeomorphism. Let

W = {y ∈ Rm : (0,y) ∈ V },

so W ⊆ Rm is an open set with b ∈ W .
Fix y ∈ W . Then (0,y) ∈ V , and since Φ(U) = V there exists some (x,y) ∈ U such that

Φ(x,y) = (0,y), and therefore F (x,y) = 0. If we suppose ξ ∈ Rn is such that (ξ,y) ∈ U and
F (ξ,y) = 0, then we obtain

Φ(ξ,y) =
(
F (ξ,y),y

)
=
(
F (x,y),y

)
= Φ(x,y),

and thus ξ = x since Φ : U → V is injective. Therefore there is a unique function G : W → Rn

for which (G(y),y) ∈ U and F (G(y),y) = 0 for all y ∈ W . Moreover, since for b ∈ W we have
(a,b) ∈ U and F (a,b) = 0, it is clear that G(a) = b.

Because Φ : U → V is a C ′-diffeomorphism, the mapping Φ−1 : V → U is a bijection such
that Φ−1 ∈ C ′(V ). Now, (G(y),y) ∈ U with Φ(G(y),y) = (0,y) for all y ∈ W , and so

Φ−1(0,y) =
(
G(y),y

)
for all y ∈ W . By Theorem 10.51 all partial derivatives of Φ−1 : V → U are continuous on V ,
which implies that all partial derivatives of Φ−1(0, ·) : W → U are continuous on W . Since
the components of G : W → Rn are also components of Φ−1(0, ·), it follows that the partial
derivatives of G must be continuous on W , and hence G ∈ C ′(W ) by Theorem 10.51.

It remains to verify (10.28). For brevity let H = Φ−1(0, ·), and note that H ∈ C ′(W ). For
any y ∈ W we have, by Proposition 10.59,

dHy(k) =
(
dGy(k),k

)
(10.29)

for all k ∈ Rm. Also, since H : W → U and F : U → Rn are each differentiable, and F ◦H ≡ OW

on W , the Chain Rule gives

O = d(OW )y = d(F ◦H)y = dFH(y) ◦ dHy



43

for all y ∈ W . In particular

dF(a,b) ◦ dHb = O, (10.30)

since b ∈ W with H(b) = (a,b). Now, for any k ∈ Rm we have(
dF(a,b)( · ,0) ◦ dGb + dF(a,b)(0, ·)

)
(k) = dF(a,b)(· ,0)(dGb(k)) + dF(a,b)(0, ·)(k)

= dF(a,b)(dGb(k),k)

by (10.26), and then(
dF(a,b)( · ,0) ◦ dGb + dF(a,b)(0, ·)

)
(k) = dF(a,b)(dHb(k)) = 0

by (10.29) and (10.30), respectively. Hence

dF(a,b)( · ,0) ◦ dGb + dF(a,b)(0, ·) = O,

and since dF(a,b)(· ,0) is invertible, we finally obtain (10.28). �

The following variant of the Implicit Function Theorem can be proven either in the same
fashion as Theorem 10.60, or by reordering variables and applying Theorem 10.60 directly.

Corollary 10.61. Let Ω ⊆ Rn+m be open, and let F : Ω → Rm be such that F ∈ C ′(Ω) and
F (a,b) = 0 for some (a,b) ∈ Ω. If dF(a,b)(0, ·) ∈ L(Rm) is invertible, then there exist open
sets U ⊆ Ω and W ⊆ Rn, with (a,b) ∈ U and a ∈ W , such that the following hold:

1. There is a unique function G : W → Rm with G(a) = b, and such that

(x, G(x)) ∈ U and F (x, G(x)) = 0

for all x ∈ W .
2. G ∈ C ′(W ) and

dGa = −dF(a,b)(0, ·)−1 ◦ dF(a,b)( · ,0).

For the next example we make extensive use of the definition

(x1, . . . , xn) :=

x1...
xn


for x1, . . . , xn ∈ R.

Example 10.62. Let f, g : R→ R be continuously differentiable functions such that f(1) =
g(1) = 0. Find conditions on the functions f and g which will permit solving the system of
equations {

f(xy) + g(yz) = 0
g(xy) + f(yz) = 0

for y and z as functions of x in a neighborhood of the point (1, 1, 1).
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Solution. Define Φ : R3 → R2 by

Φ(x, y, z) =
(
f(xy) + g(yz), g(xy) + f(yz)

)
.

The component functions

ϕ1(x, y, z) = f(xy) + g(yz) and ϕ2(x, y, z) = g(xy) + f(yz),

being continuously differentiable, have continuous first partials on R3 and therefore Φ ∈ C ′(R3).
Also we have

Φ(1, 1, 1) =
(
f(1) + g(1), g(1) + f(1)

)
= (0, 0).

Now, for any point a = (a, b, c) ∈ R3, the linear mapping dΦa : R3 → R2 has matrix representa-
tion

[dΦa] =

[
∂xϕ1(a) ∂yϕ1(a) ∂zϕ1(a)

∂xϕ2(a) ∂yϕ2(a) ∂zϕ2(a)

]
.

Next, define the linear mapping P : R2 → R3 by P (y, z) = (0, y, z), which has matrix represen-
tation

[P ] =

0 0
1 0
0 1

.
If L = dΦa ◦ P , then

L(y, z) = dΦa(P (y, z)) = dΦa(0, y, z)

and we see that L = dΦa(0, ·) ∈ L(R2). By a proposition in §4.7 of [LAN] the matrix
representation for L is

[L] = [dΦa][P ] =

[
∂xϕ1(a) ∂yϕ1(a) ∂zϕ1(a)

∂xϕ2(a) ∂yϕ2(a) ∂zϕ2(a)

]0 0
1 0
0 1

=

[
∂yϕ1(a) ∂zϕ1(a)

∂yϕ2(a) ∂zϕ2(a)

]
.

In particular

[dΦ(1,1,1)(0, ·)] =

[
∂yϕ1(1, 1, 1) ∂zϕ1(1, 1, 1)

∂yϕ2(1, 1, 1) ∂zϕ2(1, 1, 1)

]
,

and since

∂yϕ1(x, y, z) =
∂

∂y

[
f(xy) + g(yz)

]
= xf ′(xy) + zg′(yz),

∂zϕ1(x, y, z) =
∂

∂z

[
f(xy) + g(yz)

]
= yg′(yz),

∂yϕ2(x, y, z) =
∂

∂y

[
f(yz) + g(xy)

]
= zf ′(yz) + xg′(xy),

and

∂zϕ2(x, y, z) =
∂

∂z

[
f(yz) + g(xy)

]
= yf ′(yz),

it follows that

[dΦ(1,1,1)(0, ·)] =

[
f ′(1) + g′(1) g′(1)

f ′(1) + g′(1) f ′(1)

]
.

http://faculty.bucks.edu/erickson/math260/260chap4.pdf
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The linear mapping dΦ(1,1,1)(0, ·) is invertible if and only if

det
(
[dΦ(1,1,1)(0, ·)]

)
=

∣∣∣∣ f ′(1) + g′(1) g′(1)

f ′(1) + g′(1) f ′(1)

∣∣∣∣ = [f ′(1)]2 − [g′(1)]2 6= 0;

that is, dΦ(1,1,1)(0, ·) is invertible if and only if f ′(1) 6= ±g′(1). If f ′(1) 6= ±g′(1), then the
Implicit Function Theorem implies there are open sets U ⊆ R3 and I ⊆ R, with (1, 1, 1) ∈ U
and 1 ∈ I, for which there is a (unique) function Ψ : I → R2 with Ψ(1) = (1, 1) that satisfies

(x,Ψ(x)) ∈ U and Φ(x,Ψ(x)) = (0, 0)

for all x ∈ I. Letting ψ1, ψ2 : I → R be the components of Ψ, we may write

Φ(x, ψ1(x), ψ2(x)) = (0, 0);

that is, for all x ∈ I, we have y = ψ1(x) and z = ψ2(x) such that(
f(xy) + g(yz), g(xy) + f(yz)

)
= (0, 0),

and therefore {
f
(
xψ1(x)

)
+ g
(
ψ1(x)ψ2(x)

)
= 0

g
(
xψ1(x)

)
+ f
(
ψ1(x)ψ2(x)

)
= 0

Note that (x, ψ1(x), ψ2(x)) ∈ U for all x ∈ I, where U is an open set containing (1, 1, 1) as
desired. �

If V and W are vector spaces, and L ∈ L(V,W ), then the rank of L is defined to be

rank(L) = dim(Img(L)).

A bijective linear mapping is called an isomorphism. Theorem 10.26 and Proposition 10.28
make it clear that every isomorphism has an inverse, and that inverse is also an isomorphism.

If V is a vector space, then a linear operator Π ∈ L(V ) is a projection in V if Π ◦ Π = Π.
Thus, for all v ∈ V , Π(Π(v)) = Π(v).

Proposition 10.63. Let V be a vector space.

1. If Π is a projection in V , then for every v ∈ V there exist unique vectors u ∈ Img(Π) and
w ∈ Nul(Π) such that v = u + w.

2. If V is finite-dimensional and W is a subspace, then there exists a projection Π in V such
that Img(Π) = W .

Proof.
Proof of Part (1). Suppose Π is a projection in V , and let v ∈ V . Now,

Π(v) = Π(Π(v)) ⇒ Π(v)− Π(Π(v)) = 0 ⇒ Π(v − Π(v)) = 0,

and so v−Π(v) ∈ Nul(Π). Let u = Π(v) and w = v−Π(v). Then u ∈ Img(Π) and w ∈ Nul(Π)
are such that u + w = v, which proves existence.

Next, suppose v = u′ + w′ for some u′ ∈ Img(Π) and w′ ∈ Nul(Π). Then Π(w) = 0, and
there exists some z ∈ V such that Π(z) = u′. Now,

Π(z) = u′ ⇒ Π(Π(z)) = Π(u′) ⇒ Π(z) = Π(u′) ⇒ u′ = Π(u′),
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so that

u′ = u′ + 0 = Π(u′) + Π(w′) = Π(u′ + w′) = Π(v) = u,

and then

w′ = v − u′ = v − Π(v) = w.

Thus u′ = u and w′ = w, which proves uniqueness.

Proof of Part (2). Suppose V is finite-dimensional and W is a subspace. By Theorem 10.17(2)

m = dim(W ) ≤ dim(V ) = n

for some m,n ∈W. If either m = 0 or n = 0, then we may let Π = OV and the proof is done.
Thus we may henceforth assume that m,n ∈ N.

Let BW = {v1, . . . ,vm} be a basis for W . The vectors v1, . . . ,vm are linearly independent
in V , and so by Theorem 10.16 vectors vm+1, . . . ,vn may be found such that B = {v1, . . . ,vn}
is a basis for V . Define Π ∈ L(V ) as follows:

Π(vk) =

{
vk, 1 ≤ k ≤ m

0, m+ 1 ≤ k ≤ n.

Fix v ∈ V , so that v =
∑n

k=1 akvk for some a1, . . . , an ∈ R. Then by linearity and Theorem
10.4,

Π(v) =
n∑
k=1

akΠ(vk) =
m∑
k=1

akvk ∈ W,

which shows that Img(Π) ⊆ W . Moreover,

Π(Π(v)) = Π

(
m∑
k=1

akvk

)
=

m∑
k=1

akΠ(vk) =
m∑
k=1

akvk = Π(v),

which shows that Π ◦Π = Π. Finally, if w ∈ W so that w =
∑m

k=1 bkvk for some b1, . . . , bm ∈ R,
we obtain Π(w) = w, whence w ∈ Img(Π), and therefore Img(Π) = W . �

It is a fact that any subspace of Rn is a closed set. For instance, in R3 the only possible
subspaces are {0}, lines through 0, planes through 0, and R3 itself. Thus, in the statement of
the following lemma is must be kept in mind that if V is a subspace of Rn and A ⊆ V is given
to be open in V , so that A = V ∩B for some set B open in Rn, then A is not necessarily open
in Rn unless V = Rn.

Lemma 10.64. Let V,W be vector subspaces of Rn,Rm, respectively, with each given the
standard subspace topology. If L ∈ L(V,W ) is surjective, then L is an open mapping.

The following is essentially the Rank Theorem as stated in [Rud]. Aside from some remarks
that come after, the proof is omitted.
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Theorem 10.65 (Rank Theorem). Suppose m,n, r ∈W with m,n ≥ r, let W ⊆ Rn be open,
and suppose F : W → Rm is a C ′-mapping with rank(dFx) = r for all x ∈ W . For fixed a ∈ W
let Π ∈ L(Rm) be a projection such that Π(Rm) = dFa(Rn). Then there exist open U, V ⊆ Rn

with a ∈ U ⊆ W , a C ′-diffeomorphism H : V → U , and a C ′-mapping ϕ : dFa(V ) → Nul(Π),
such that

(F ◦H)(x) = dFa(x) + ϕ(dFa(x))

for all x ∈ V .

First note that dFa : Rn → dFa(Rn) is a surjective linear mapping, where of course dFa(Rn)
is a subspace of Rm. Since V is open in Rn, by Lemma 10.64 it follows that dFa(V ) is open in
dFa(Rn). This does not mean that dFa(V ) is open in Rm, however. Thus, for the statement of
the theorem to make sense, we must generalize Definition 10.49 modestly to include sets that
are not necessarily open in a euclidean space, but rather open in a subspace of the euclidean
space.4

4This is not done in [Rud], and so what it means for the function ϕ in the Rank Theorem to be a C′-mapping
on dFa(V ) is left a dangling ambiguity. Ideally we would here employ the machinery of charts, atlases, and
coordinate maps from the theory of smooth manifolds. This will be done in a separate document sometime in
the future.
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10.9 – Derivatives of Higher Order

10.10 – Differentiation of Integrals

Theorem 10.66 (Leibniz’s Rule). Let ϕ : [a, b] × [c, d] → R be continuous, and define
g : [c, d]→ R by

g(t) =

ˆ b

a

ϕ(x, t)dx.

Then g is continuous. If in addition ∂tϕ exists and is continuous on [a, b] × [c, d], then g is
continuously differentiable with

g′(t) =

ˆ b

a

∂tϕ(x, t)dx

for each t ∈ [c, d].

Proof. Fix t0 ∈ [c, d], and let ε > 0. Since ϕ is uniformly continuous on R := [a, b] × [c, d],
there exists δ > 0 such that

‖x− y‖ < δ ⇒
∣∣ϕ(x)− ϕ(y)

∣∣ < ε

b− a
for all x,y ∈ R. �
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