
Chapter 2 – Homology

2.1 – Homological Algebra

Let Fn be an abelian group for each n ≥ 0, and let fn : Fn → Fn−1 be homomorphisms such
that fn ◦ fn+1 = 0 (the trivial homomorphism) for all n ≥ 0, with f0 = 0. Then the sequence
F given as

· · · fn+1−−−→ Fn
fn−−−→ Fn−1

fn−1−−−→ · · · f2−−−→ F1
f1−−−→ F0

f0−−−→ 0 (1)

is called a chain complex. In this general algebraic setting nothing compels the index n to
consist strictly of the whole numbers, but unless otherwise specified we will always assume that
a chain complex ends at index value (or “dimension”) 0, with f0 = 0. Thus, to say something
holds “for all n” in this context is intended to mean for all n ≥ 0. There will be times, in certain
topological settings, when it will be convenient to extend a chain complex out to dimension
n = −1. From fn ◦fn+1 = 0 we obtain Im fn+1 ⊂ Ker fn ⊂ Fn, so Im fn+1 is a normal subgroup
of Ker fn and we can meaningfully construct a quotient group

Hn(F ) = Ker fn/ Im fn+1,

called the nth homology group of F , for each n ≥ 0. The elements of Hn(F ) are cosets of the
form x+ Im fn+1, usually called homology classes and denoted by [x] when it does not lead
to ambiguity. If x, y ∈ Ker fn are such that [x] = [y], then x and y are said to be homologous
and it follows that x− y ∈ Im fn+1.

Suppose that the diagram

· · · Fn+1 Fn Fn−1 · · ·fn+1 fn

· · · Gn+1 Gn Gn−1 · · ·gn+1 gn

ϕn+1 ϕn ϕn−1

has sequences F and G that are chain complexes, and suppose also that the diagram is com-
mutative given the maps ϕn : Fn → Gn. Then the maps ϕn taken together define a chain map
F → G, and it’s convenient to denote the chain map by either ϕn : F → G or {ϕn}. Now,
if ψn : F → G is another chain map, and if there also exist maps λn : Fn → Gn+1 as in the
diagram

· · · Fn+1 Fn Fn−1 · · ·fn+1 fn

· · · Gn+1 Gn Gn−1 · · ·gn+1 gn

ϕn+1ψn+1 ϕnψn ϕn−1ψn−1

λn λn−1

such that
ϕn − ψn = gn+1 ◦ λn + λn−1 ◦ fn
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for all n, then we call the collection of maps {λn} a chain homotopy between the chain maps
{ϕn} and {ψn}, and say that {ϕn} and {ψn} are chain homotopic.

Proposition 2.1. If {ϕn} is a chain map F → G, then each map ϕn induces a well-defined
homomorphism ϕn∗ : Hn(F )→ Hn(G) given by

ϕn∗(x+ Im fn+1) = ϕn(x) + Im gn+1

for each x ∈ Ker fn.

Proposition 2.2. If {ϕn} is a chain map F → G such that each map ϕn is an isomorphism,
then each map ϕn∗ is an isomorphism.

Proof. Suppose that each ϕn : Fn → Gn of the chain map F → G is an isomorphism. Fix
n ≥ 0. Suppose that ϕn∗(x + Im fn+1) = Im gn+1. Then ϕn(x) ∈ Im gn+1, so there exists some
y ∈ Gn+1 such that gn+1(y) = ϕn(x). Since ϕn+1 is onto, there exists some z ∈ Fn+1 such that
ϕn+1(z) = y. Now, ϕn ◦ fn+1 = gn+1 ◦ ϕn+1, so

ϕn(fn+1(z)) = gn+1(ϕn+1(z)) = ϕn(x)

and the one-to-oneness of ϕn implies that fn+1(z) = x. Hence x ∈ Im fn+1, from which it
follows that x+ Im fn+1 = Im fn+1 and therefore ϕn∗ is one-to-one.

Next, let y + Im gn+1 ∈ Hn(G), so y ∈ Ker gn. Since y ∈ Gn and ϕn is onto, there exists
some x ∈ Fn such that ϕn(x) = y. If n = 0 then x ∈ Ker f0 also, so suppose that n > 0. We
obtain

ϕn−1(fn(x)) = gn(ϕn(x)) = gn(y) = 0,

whence the one-to-oneness of ϕn−1 gives fn(x) = 0 so that x ∈ Ker fn. Thus, x + Im fn+1 ∈
Hn(F ), and

ϕn∗(x+ Im fn+1) = ϕn(x) + Im gn+1 = y + Im gn+1

shows that ϕn∗ is onto.
Therefore ϕn∗ is an isomorphism. �

One useful result that derives easily from a chain homotopy is the following proposition,
which will be used in later developments.

Proposition 2.3. If {ϕn} and {ψn} are chain-homotopic chain maps F → G, then ϕn∗ = ψn∗
for all n.

Proof. Suppose that {ϕn} and {ψn} are chain-homotopic maps. Fix n and x ∈ Ker fn. For
simplicity denote ϕn, ψn : Fn → Gn by ϕ and ψ, so ϕ∗, ψ∗ : Hn(F ) → Hn(G). It must be
demonstrated that

ϕ∗(x+ Im fn+1) = ϕ(x) + Im gn+1 = ψ(x) + Im gn+1 = ψ∗(x+ Im fn+1),

or equivalently

(ϕ(x)− ψ(x)) + Im gn+1 = Im gn+1.
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But by hypothesis there exist maps λn−1 and λn such that

ϕ− ψ = gn+1 ◦ λn + λn−1 ◦ fn,
so

(ϕ− ψ)(x) = gn+1(λn(x)) + λn−1(fn(x))

= gn+1(λn(x)) + λn−1(0) = gn+1(λn(x)).

Hence (ϕ− ψ)(x) ∈ Im gn+1, which implies that (ϕ− ψ)(x) + Im gn+1 = Im gn+1 and therefore

ϕ∗(x+ Im fn+1) = ψ∗(x+ Im fn+1)

as desired. �

In what follows, for any chain complex F (see the top row of the diagram above) let

Fn : Fn → Fn be identity maps, which taken together form the chain map Fn : F → F . Also
let Hn(F ) be the identity map on Hn(F ) for all n.

Proposition 2.4. Let θn : E → F and ϕn : F → G be chain maps. Then, for all n,

(1) Fn∗ = Hn(F )

(2) (ϕn ◦ θn)∗ = ϕn∗ ◦ θn∗

Referring to the diagram above, if there exists a chain map θn : G→ F such that {θn ◦ϕn}
is chain homotopic to { Fn} and {ϕn ◦ θn} is chain homotopic to { Gn}, then {ϕn} is called a
chain-homotopy equivalence.

Proposition 2.5. If {ϕn} is a chain-homotopy equivalence, then ϕn∗ is an isomorphism for
all n.

Proof. Suppose that the chain map ϕn : F → G is a chain-homotopy equivalence. Then there
exists a chain map θn : G→ F such that {θn ◦ ϕn} is chain homotopic to { Fn} and {ϕn ◦ θn}
is chain homotopic to { Gn}. By Proposition 2.3, (θn ◦ ϕn)∗ = Fn∗ and (ϕn ◦ θn)∗ = Gn∗,
and so by Proposition 2.4 we obtain θn∗ ◦ ϕn∗ = Hn(F ) and ϕn∗ ◦ θn∗ = Hn(G). Therefore, by
Proposition 1.1, ϕn∗ is an isomorphism. �

The chain complex (1) is said to be an exact sequence if Im fn+1 = Ker fn for all n, in
which case Hn(F ) = 0. An exact sequence of the form

0 −→ A
i−−−→ B

j−−−→ C −→ 0

is called a short exact sequence. Let E, F , and G be chain complexes in the mold of (1),
and let in : E → F and jn : F → G be chain maps such that

0 −→ En
in−−−→ Fn

jn−−−→ Gn −→ 0

is a short exact sequence for every n. Then the diagram in Figure 1 is commutative and is
called a short exact sequence of chain complexes. By Proposition 2.1 there are well-defined
homomorphisms in∗ : Hn(E) → Hn(F ) and jn∗ : Hn(F ) → Hn(G), and what we’re interested
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· · · En+1 En En−1 · · · (E)
en+1 en

· · · Fn+1 Fn Fn−1 · · · (F )
fn+1 fn

· · · Gn+1 Gn Gn−1 · · · (G)
gn+1 gn

in+1 in in−1

jn+1 jn jn−1

0 0 0

0 0 0

Figure 1

in doing is constructing homomorphisms ρn : Hn(G) → Hn−1(E) such that we obtain a long
exact sequence of homology groups

· · · −→ Hn(E)
in∗−−−→ Hn(F )

jn∗−−−→ Hn(G)
ρn−−−→ Hn−1(E)

in−1∗−−−→ Hn−1(F ) −→ · · ·

Let [z] ∈ Hn(G), so z ∈ Ker gn. Since jn is onto, z = jn(y) for some y ∈ Fn. Now,
fn(y) ∈ Fn−1, and since

jn−1(fn(y)) = gn(jn(y)) = gn(z) = 0

it follows that fn(y) ∈ Ker jn−1 = Im in−1 and so there exists some x ∈ En−1 such that
in−1(x) = fn(y). Since

in−2(en−1(x)) = fn−1(in−1(x)) = fn−1(fn(y)) = 0

(F is a chain complex so fn−1 ◦ fn = 0) and in−2 is one-to-one, we conclude that en−1(x) = 0
and hence x represents a homology class [x] ∈ Hn−1(E). We define ρn([z]) = [x].

Theorem 2.6. The sequence

· · · −→ Hn(E)
in∗−−−→ Hn(F )

jn∗−−−→ Hn(G)
ρn−−−→ Hn−1(E)

in−1∗−−−→ Hn−1(F ) −→ · · ·

is exact.

We round out the section with two last results that are purely a matter of homological
algebra but will have wide utility when dealing with topological matters.

Lemma 2.7 (The Five-Lemma). In a commutative diagram of abelian groups as given
below, if the two rows are exact and the maps α, β, δ, ε are isomorphisms, then γ is also an
isomorphism.

A B C D E
i j k `

A′ B′ C ′ D′ E ′
i′ j′ k′ `′

α β γ δ ε
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Lemma 2.8 (The Splitting Lemma). For a short exact sequence

0 −→ A
i−−−→ B

j−−−→ C −→ 0

of abelian groups the following statements are equivalent:

(1) There exists a homomorphism p : B → A such that p ◦ i = A.
(2) There exists a homomorphism s : C → B such that j ◦ s = C.
(3) If f : A→ A�C is given by f(a) = (a, 0) and g : A�C → C is given by g(a, c) = c, then

there is an isomorphism Φ : B → A�C such that the following diagram is commutative:

0 A C 0

B

A� C

i

f

j

g

Φ
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2.2 – Simplicial Homology

Recall that a set A ⊂ Rm is convex if tv+ (1− t)w ∈ A whenever v, w ∈ A and 0 < t < 1,
which is to say that the line segment connecting any two points in A must also lie in A. The
following result will prove useful later on.

Proposition 2.9. Let A ⊂ Rm be a convex set. If v1, . . . , vn ∈ A and t1, . . . , tn ≥ 0 such that∑
k tk = 1, then

∑
k tkvk ∈ A.

Proof. The statement is clearly true in the case n = 1. Suppose that it is true for some n ∈ N.
Let v1, . . . , vn+1 ∈ A and t1, . . . , tn+1 ≥ 0 such that t1 + · · ·+ tn+1 = 1.

If tn+1 = 1 then we must have tk = 0 for all 1 ≤ k ≤ n, whence
∑

k tkvk = vn+1 ∈ A and
we’re done.

Assuming that tn+1 6= 1, observe that from
∑n

k=1 tk = 1− tn+1 we have

n∑
k=1

tk
1− tn+1

= 1.

Now,
n+1∑
k=1

tkvk =
n∑
k=1

tkvk + tn+1vn+1 = (1− tn+1)
n∑
k=1

tk
1− tn+1

vk + tn+1vn+1,

where by the inductive hypothesis
n∑
k=1

tk
1− tn+1

vk

is an element of A. Thus, since vn+1 ∈ A and A is convex, we conclude that

n+1∑
k=1

tkvk

is also in A. �

The convex hull of a set A ⊂ Rm, denoted by C(A), is the intersection of all convex sets
that contain A; that is,

C(A) =
⋂
{C : A ⊂ C and C is convex}

Proposition 2.10. If A = {v0, . . . , vn}, then

C(A) =

{
n∑
k=0

tkvk : ∀k (tk ≥ 0) and
n∑
k=0

tk = 1

}
.
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Figure 2. The convex hull of points in space.

Proof. Suppose that A = {v0, . . . , vn}, and let

S =
{∑

k
tkvk : ∀k (tk ≥ 0) and

∑
k
tk = 1

}
.

It is clear that A ⊂ S.
Let p, q ∈ S. Then p =

∑
k skvk and q =

∑
k tkvk for some nonnegative reals sk, tk such

that
∑

k sk =
∑

k tk = 1. Now, for any 0 < r < 1,

rp+ (1− r)q = r
∑

k
skvk + (1− r)

∑
k
tkvk =

∑
k
(rsk + (1− r)tk)vk,

where rsk + (1− r)tk ≥ 0 for each k, and∑
k
(rsk + (1− r)tk) = r

∑
k
sk + (1− r)

∑
k
tk = r + (1− r) = 1.

Hence rp + (1 − r)q ∈ S and S is a convex set containing A. From this conclusion it follows
that C(A) ⊂ S.

Next, let C be any convex set such that A ⊂ C. For any q ∈ S there exist scalars tk ≥ 0
such that

∑
k tkvk = 1 and q =

∑
k tkvk. Now, since vk ∈ C for each k and C is convex, it

follows from Proposition 2.9 that q ∈ C. Hence S ⊂ C, and since C is an arbitrary convex set
that contains A, we obtain S ⊂ C(A). �

The stereoscopic figure pair in Figure 2 illustrates the convex hull for a set A of ten points
in R3. Of course, if the three points that appear in the interior of C(A) were removed from A,
the same convex hull would result. We will be particularly interested in finite sets of points for
which no one point can be removed without altering the convex hull.

If A = {v0, . . . , vn} ⊂ Rm for some m ≥ n + 1 and the vectors v1 − v0, . . . , vn − v0 are
linearly independent, then C(A) is called an n-simplex, the points vk are called the vertices
of the simplex, and C(A) is denoted by [v0, . . . , vn]. The ordering of the vertices in the symbol
[v0, . . . , vn] further specifies an orientation on the n-simplex that is considered an essential
part of its definition: namely, any edge [vi, vj] of [v0, . . . , vn] is oriented in the direction of the
vector vj − vi if i < j, or vi − vj if i > j. Proposition 2.10 along with the definition of an
n-simplex make clear that any point in [v0, . . . , vn] is uniquely expressible in the form

∑
k tkvk,

with the barycentric coordinates tk of the point being nonnegative scalars that sum to 1.
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u0

u1

u2

u0

u1

u2

Figure 3. The standard 2-simplex ∆2.

Defining ui−1 = (0, . . . , 1, . . . , 0) ∈ Rn+1 with the 1 in the ith position for 1 ≤ i ≤ n + 1,
the standard n-simplex ∆n is the n-simplex [u0, . . . , un] ⊂ Rn+1, and so since

∑
k tkuk =

(t0, . . . , tn),

∆n =

{
(t0, . . . , tn) ∈ Rn+1 : ∀k (tk ≥ 0) and

n∑
k=0

tk = 1

}
.

See Figure 3 for an illustration of the standard 2-simplex.
The canonical linear homeomorphism from ∆n to any n-simplex [v0, . . . , vn] is the

linear transformation
∑

k tkuk 7→
∑

k tkvk that preserves orientation.
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2.3 – Singular Homology

Given a topological space X, a singular n-simplex is a continuous map σ : ∆n → X.
For each n ≥ 0 define Cn(X) to be the free abelian group with basis the set of all singular
n-simplices associated with X. The elements of Cn(X) are called n-chains, and are written

as finite formal sums
∑k

i=1 niσi, where k, ni ∈ Z and σi : ∆n → X. The singular boundary
maps ∂n : Cn(X)→ Cn−1(X) are homomorphisms defined by

∂n(σ) =
n∑
i=0

(−1)iσ|[u0,...,ûi,...,un] ◦ δn−1
i (2)

for each basis element σ ∈ Cn(X), where δn−1
i : ∆n−1 → [u0, . . . , ûi, . . . , un] is the canonical

linear homeomorphism as discussed in the previous section (it is often suppressed in the interests
of brevity). As with the simplicial boundary maps it can be shown that ∂n ◦ ∂n+1 = 0, so we
obtain a chain complex

· · · −→ Cn+1(X)
∂n+1−−−→ Cn(X)

∂n−−−→ Cn−1(X) −→ · · · ,

called the singular chain complex of X and denoted by C(X), which gives rise to homology
groups

Hn(X) = Ker ∂n/ Im ∂n+1

called the singular homology groups of X.
Now, suppose Y is another topological space, and let ϕ : X → Y be continuous. For each

n the map ϕ induces a homomorphism1 ϕn : Cn(X) → Cn(Y ) defined by ϕn(σ) = ϕ ◦ σ for
each basis element σ : ∆n → X of Cn(X). Thus, for any n-chain

∑
i niσi we have

ϕn

(∑
i
niσi

)
=
∑

i
niϕn(σi) =

∑
i
ni(ϕn ◦ σi).

Denoting the singular boundary maps Cn(X) → Cn−1(X) and Cn(Y ) → Cn−1(Y ) by ∂Xn and
∂Yn , respectively, we find that

(ϕn−1 ◦ ∂Xn )(σ) = ϕn−1

(∑
i
(−1)iσ|[u0,...,ûi,...,un] ◦ δn−1

i

)
=
∑

i
(−1)i((ϕ ◦ σ)|[u0,...,ûi,...,un] ◦ δn−1

i )

= ∂Yn (ϕ ◦ σ) = ∂Yn (ϕn(σ)) = (∂Yn ◦ ϕn)(σ),

and therefore the diagram

· · · Cn+1(X) Cn(X) Cn−1(X) · · ·∂Xn+1 ∂Xn

· · · Cn+1(Y ) Cn(Y ) Cn−1(Y ) · · ·∂Yn+1 ∂Yn

ϕn+1 ϕn ϕn−1

1Other books would represent ϕn by ϕ], and I once was tempted to use ϕn]; but ϕ] is uninformative for
obvious reasons, and ϕn] conveys no more information than ϕn already does.
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is commutative and it follows that {ϕn} forms a chain map C(X) → C(Y ). By Proposition
2.1 the maps ϕn induce homomorphisms ϕn∗ : Hn(X)→ Hn(Y ) between homology groups.

The first significant general result we are in a position to obtain in singular homology is
the following.

Proposition 2.11. Let {Xα}α∈A be the path-components of a topological space X. Then
Hn(X) ∼=

⊕
α∈AHn(Xα).

Proof. For [σ] := σ+ ∂n+1(Cn+1(X)) ∈ Hn(X) we have σ =
∑a

i=1 niσi for singular n-simplices
σi : ∆n → X. Each image σi(∆

n) in X is path-connected, so for each 1 ≤ i ≤ a there exists
some αi ∈ A such that σi : ∆n → Xαi .

Let i1 = 1, i2 = min{1 < i ≤ a : αi 6= α1}, and in general ik = min{i : αi 6= αi1 , . . . , αik−1
}

for 1 ≤ k ≤ b, where b ≤ a. Then Xαi1
, . . . , Xαib

are the distinct path components of X that
contain the images of the σi, and for convenience we can designate each Xαik

by Xik . Let

Bk = {i | σi : ∆n → Xik} for each k, and define ϕk =
∑

i∈Bk niσi so that ϕk ∈ Cn(Xik). Now
σ =

∑
k ϕk, and σ ∈ Ker ∂n implies

∑
k ∂nϕk = 0 and therefore ∂nϕk = 0 for each k since

Cn(Xir)∩Cn(Xis) = ∅ whenever r 6= s. It follows that each ϕk is in the kernel of ∂n restricted
to Cn(Xik), so that

[ϕk]ik := ϕk + ∂n+1(Cn+1(Xik))

is in Hn(Xik) and we can define a map Ω : Hn(X)→
⊕

α∈AHn(Xα) by

Ω([σ]) =
b∑

k=1

[ϕk]ik .

Suppose that [σ] = [τ ], so σ − τ ∈ ∂(Cn+1(X)) and there’s some ξ ∈ Cn+1(X) such that
∂ξ = σ − τ . As before, we can write σ =

∑a
k=1 ϕαk such that ϕαk ∈ Cn(Xαk) and αi 6= αj

whenever i 6= j. Similarly, τ =
∑b

k=1 ψβk such that ψβk ∈ Cn(Xβk) and βi 6= βj whenever i 6= j.
By definition Ω([σ]) = ([ϕα])α∈A, where [ϕα] is a class in Hn(Xα) with ϕα = 0 if α 6= αk for all
1 ≤ k ≤ a. In similar fashion Ω([τ ]) = ([ψα])α with ψα = 0 if α 6= βk for all 1 ≤ k ≤ b. With
this kind of arrangement we can write

σ =
∑
α∈A

ϕα and τ =
∑
α∈A

ψα,

so ∂ξ =
∑

α(ϕα−ψα). However, ξ itself is expressible as
∑

α∈A ξα with ξα ∈ Cn+1(Xα) for each
α, and clearly we must have

∂ξα = ϕα − ψα ∈ Cn(Xα)

since the Xα are disjoint. Since

ϕα − ψα ∈ ∂(Cn+1(Xα)),

we find that [ϕα] = [ψα] as classes in Hn(Xα), whence Ω([σ]) = Ω([τ ]) and Ω is well-defined.
Now assume simply that [σ], [τ ] ∈ Hn(X). Once again rearrange to write σ =

∑a
k=1 ϕαk and

τ =
∑b

k=1 ψβk , only such that αk = βk for all 1 ≤ k ≤ c ≤ a (assuming a ≤ b for definiteness)
and

{αk : c+ 1 ≤ k ≤ a} ∩ {βk : c+ 1 ≤ k ≤ b} = ∅.
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Redesignate indices as follows: βc+1 = αa+1, βc+2 = αa+2, . . . , βb = αa+r, where b = c + r.
Now, since Ω is well-defined,

Ω([σ] + [τ ]) = Ω

([
a∑
k=1

ϕαk +
b∑

k=1

ψβk

])

= Ω

([
c∑

k=1

(ϕαk + ψαk) +
a∑

k=c+1

ϕαk +
a+r∑

k=a+1

ψαk

])
We can let ξk = ϕαk + ψαk for 1 ≤ k ≤ c, ξk = ϕαk for c + 1 ≤ k ≤ a, and ξk = ψαk for
a+ 1 ≤ k ≤ a+ r, so that

Ω([σ] + [τ ]) = Ω

([
a+r∑
k=1

ξk

])
=

a+r∑
k=1

[ξk]αk

=
c∑

k=1

[ϕαk + ψαk ]αk +
a∑

k=c+1

[ϕαk ]αk +
a+r∑

k=a+1

[ψαk ]αk .

Since

[ϕαk + ψαk ]αk = [ϕαk ]αk + [ψαk ]αk ,

αk = βk for 1 ≤ k ≤ c, and ψαk = ψβk−a+c for a+ 1 ≤ k ≤ a+ r,

Ω([σ] + [τ ]) =
a∑
k=1

[ϕαk ]αk +
c∑

k=1

[ψαk ]αk +
a+r∑

k=a+1

[ψβk−a+c ]βk−a+c

=
a∑
k=1

[ϕαk ]αk +
c∑

k=1

[ψβk ]βk +
c+r∑

k=c+1

[ψβk ]βk .

Recalling that b = c+ r, we obtain

Ω([σ] + [τ ]) =
a∑
k=1

[ϕαk ]αk +
b∑

k=1

[ψβk ]βk = Ω([σ]) + Ω([τ ])

and see that Ω is a homomorphism.
Next, suppose that Ω([σ]) = 0. Proceeding as with the well-definedness argument, we

obtain ([ϕα])α∈A = 0 and hence ϕα ∈ ∂(Cn+1(Xα)) for all α ∈ A. But then ϕα ∈ ∂(Cn+1(X))
for all α and

[σ] =

[∑
α∈A

ϕα

]
=

[
a∑
k=1

ϕαk

]
=

a∑
k=1

[ϕαk ] =
a∑
k=1

(ϕαk + ∂(Cn+1(X))) = 0,

where the third equality holds since each ϕαk is, by construction, in the kernel of ∂n and so
represents a class in Hn(X). Therefore Ω is injective.

Now suppose that ([ϕα])α∈A ∈
⊕

α∈AHn(Xα), so the set S = {α ∈ A : [ϕα] 6= 0} must be
finite. For each α ∈ S we have

ϕα ∈ Ker[∂n : Cn(Xα)→ Cn−1(Xα)],
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and thus

ϕ :=
∑
α∈S

ϕα ∈ Ker[∂n : Cn(X)→ Cn−1(X)]

so that [ϕ] := ϕ+ ∂(Cn+1(X)) ∈ Hn(X). Now,

Ω([ϕ]) =
∑
α∈S

[ϕα] =
∑
α∈A

[ϕα] = ([ϕα])α∈A

since [ϕα] = 0 for α ∈ A− S. Therefore Ω is surjective. �

In what follows recall the notational convention whereby [u0] and [u0, u1] denote the stan-
dard simplices ∆0 and ∆1, respectively.

Proposition 2.12. If X 6= ∅ is path-connected, then H0(X) ∼= Z.

Proof. Define the homomorphism ε : C0(X) → Z by ε(
∑

i niσi) =
∑

i ni, so that ε(σ) = 1
for each singular 1-simplex σ. If σ : ∆0 → X is given by σ(u0) = x0 for some x0 ∈ X, then
for any k ∈ Z we have ε(kσ) = k for kσ ∈ C0(X), showing that ε is surjective and thus
C0(X)/Ker ε ∼= Z.

Fix τ : ∆1 → X in C1(X). Then

ε(∂1τ) = ε(τ |[u1] − τ |[u0]) = ε(τ |[u1])− ε(τ |[u0]) = 1− 1 = 0.

Thus, if σ ∈ Im ∂1, then there exists some
∑

i niτi ∈ C1(X) such that ∂1(
∑

i niτi) = σ, whence

ε(σ) = ε
(∑

i
ni ∂1τi

)
=
∑

i
ni ε(∂1τi) = 0

and we conclude that Im ∂1 ⊂ Ker ε.
Now suppose that ϕ =

∑
i niσi ∈ Ker ε, so

∑
i ni = 0. Fix x0 ∈ X. Define σ0 ∈ C0(X)

by σ0(u0) = x0. For each i, since σi(u0), x0 ∈ X and X is path-connected, there exists a path
τi : ∆1 → X such that τi(u0) = x0 and τi(u1) = σi(u0). Then

∂1

(∑
i
niτi

)
=
∑

i
ni ∂1τi =

∑
i
ni(τi|[u1] − τi|[u0]) =

∑
i
niτi|[u1] −

∑
i
niτi|[u0]

=
∑

i
niσi −

∑
i
niσ0 =

∑
i
niσi − σ0

∑
i
ni =

∑
i
niσi = ϕ,

which shows that ϕ ∈ Im ∂1 and hence Ker ε ⊂ Im ∂1.
Therefore H0(X) = C0(X)/ Im ∂1 = C0(X)/Ker ε ∼= Z. �

Combining the two propositions above it follows that for any space X, if {Xα}α∈A are the
path-components of X, then H0(X) ∼=

⊕
α∈A Z.

Proposition 2.13. If X = {p}, then Hn(X) = 0 for all n ≥ 1.

Proof. For X a single point p we find that Cn(X) ∼= Z with generator pn, where pn : ∆n → X
is the singular n-simplex given by pn(x) = p for all x ∈ ∆n. Fix σ ∈ Ker ∂n ⊂ Cn(X), so
σ = mpn for some m ∈ Z such that ∂n(mpn) = 0
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Suppose that n is odd. Now, mpn+1 ∈ Cn+1(X), and

∂n+1(mpn+1) = m
n+1∑
i=0

(−1)ipn+1|[u0,...,ûi,...,un+1] = m

n+1∑
i=0

(−1)ipn = mpn = σ

shows that σ ∈ Im ∂n+1. Therefore [σ] = 0.
Suppose that n is even. ∂nσ = 0 implies that m∂npn = 0; that is,

m

n∑
i=0

(−1)ipn|[u0,...,ûi,...,un] = m

n∑
i=0

(−1)ipn−1 = mpn−1 = 0,

which implies that m = 0. Thus σ = 0 and once again we obtain [σ] = 0.
It’s concluded, then, that Hn(X) = 0 for any n ≥ 1. �

So for X = {p} Proposition 2.12 implies that H0(X) ∼= Z, and thus there’s an exception
to the pattern in Proposition 2.13. To fix this (if indeed a “fix” is desired), we can modify
the definition for the 0th homology class to make it also trivial in the case when X is a single
point. The way to do this is to replace the map ∂0 : C0(X) → 0 with ε : C0(X) → Z to form
the augmented chain complex

· · · −→ C2(X)
∂2−−−→ C1(X)

∂1−−−→ C0(X)
ε−−−→ Z −→ 0,

then define H̃0(X) = Ker ε/ Im ∂1. Since it was found in the proof of Proposition 2.12 that

Ker ε = Im ∂1 when X is nonempty and path-connected, we find in particular H̃0({p}) = 0.

Setting H̃n(X) = Hn(X) for n ≥ 1, we obtain what are known as reduced homology groups
which have the virtue of being trivial in all nonnegative dimensions for one-point spaces.

If X is nonempty but not path-connected we still have Im ∂1 ⊂ Ker ε. Define ε̄ : H0(X)→ Z
by ε̄([σ]) = ε(σ), and note that ε̄ is surjective and Ker ε̄ = H̃0(X). Hence H0(X)/H̃0(X) ∼= Z,

or equivalently H0(X) ∼= H̃0(X) � Z.

Theorem 2.14. If the maps f, g : X → Y are homotopic, then fn∗ = gn∗ : Hn(X) → Hn(Y )
for all n.

Proof. Suppose that f, g : X → Y are homotopic. In light of Proposition 2.3 it will suffice to
show that the chain maps fn, gn : Cn(X) → Cn(Y ) are chain-homotopic. That is, it must be
shown that there exists, for all n ≥ 0, maps λn : Cn(X)→ Cn+1(Y ) such that

gn − fn = ∂Yn+1 ◦ λn + λn−1 ◦ ∂Xn .

Let F : X × I → Y be a homotopy from f to g, so F (·, 0) = f(·) and F (·, 1) = g(·). As
usual ∆n will be designated by [u0, . . . , un], and for the product space ∆n×I define ∆n×{0} =
[v0, . . . , vn] and ∆n × {1} = [w0, . . . , wn]. Finally, define the homomorphism λn : Cn(X) →
Cn+1(Y ) by

λn(σ) =
n∑
i=0

(−1)iF ◦ (σ × )|[v0,...,vi,wi,...,wn]
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for each σ : ∆n → X, where F ◦ (σ × ) : ∆n × I → X × I → Y and each term in the sum we
take to be precomposed by the canonical linear homeomorphism

∆n+1 7→ [v0, . . . , vi, wi, . . . , wn] ⊂ ∆n × I.

It’s instructive to examine the n = 0 case and show that g0 − f0 = ∂Y1 ◦ λ0 + λ−1 ◦ ∂X0 .
Designating λ−1 ≡ 0, this entails showing ∂Y1 ◦ λ0 = g0 − f0. Letting δn denote appropriate
canonical linear homeomorphisms ∆n 7→ [z0, . . . , zn] for any n-simplex [z0, . . . , zn], we have for
any σ : ∆0 → X,

(∂Y1 ◦ λ0)(σ) = ∂Y1 (F ◦ (σ × )|[v0,w0] ◦ δ1) = ∂Y1 (F ◦ (σ × ) ◦ δ1),

where the second equality holds since [v0, w0] = ∆0 × I. Pressing on,

(∂Y1 ◦ λ0)(σ) = F ◦ (σ × ) ◦ δ1|[u1] ◦ δ0 − F ◦ (σ × ) ◦ δ1|[u0] ◦ δ0.

Now,

(F ◦ (σ × ) ◦ δ1|[u1] ◦ δ0)(u0) = (F ◦ (σ × ) ◦ δ1)(u1)

= (F ◦ (σ × ))(u0, 1)

= F (σ(u0), 1),

where F (σ(u0), 1) = g(σ(u0)) = (g0(σ))(u0) and thus F ◦ (σ× )◦ δ1|[u1] ◦ δ0 = g0(σ). In similar
fashion we find F ◦ (σ × ) ◦ δ1|[u0] ◦ δ0 = f0(σ), and so (∂Y1 ◦ λ0)(σ) = g0(σ)− f0(σ) and we’re
done.

The n = 2 case is the highest dimensioned case that can be readily visualized, so let’s
consider it next. Let σ : ∆2 → X. For brevity let H = F ◦ (σ× ) and [j] = [u0, . . . , ûj, . . . , u3].
Also it will be convenient to define [z0, . . . , zn]j = [z0, . . . , ẑj, . . . , zn]. Now,

∂Y3 (λ2(σ)) =
3∑
j=0

(−1)jH|[v0,w0,w1,w2] ◦ δ3|[j] ◦ δ2 −
3∑
j=0

(−1)jH|[v0,v1,w1,w2] ◦ δ3|[j] ◦ δ2

+
3∑
j=0

(−1)jH|[v0,v1,v2,w2] ◦ δ3|[j] ◦ δ2

=
3∑
j=0

(−1)j
[
H|[v0,w0,w1,w2]j ◦ δ2 −H|[v0,v1,w1,w2]j ◦ δ2 +H|[v0,v1,v2,w2]j ◦ δ2

]
,

and from λ1(∂X2 (σ)) =
∑2

j=0(−1)jλ1(σ|[u0,...,ûj ,...,u2] ◦ δ1) we obtain

λ1(∂X2 (σ)) =
2∑
j=0

(−1)j
[
F ◦ (σ|[u0,...,ûj ,...,u2] ◦ δ1 × )|[v0,w0,w1] ◦ δ2

− F ◦ (σ|[u0,...,ûj ,...,u2] ◦ δ1 × )|[v0,v1,w1] ◦ δ2
]

(3)

Consider the workings of

(σ|[u1,u2] ◦ δ1 × )|[v0,w0,w1] ◦ δ2 : ∆2 → ∆1 × I → X × I.
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The 2-simplex [v0, w0, w1] is regarded as a subspace of ∆1 × I, so for a point p ∈ ∆2 we have
δ2(p) = (q, t) for q ∈ ∆1 and 0 ≤ t ≤ 1. Now,

(σ|[u1,u2] ◦ δ1 × )(q, t) = (σ|[u1,u2] × )(δ1(q), t) = (σ × )(δ1(q), t),

where δ1(q) ∈ [u1, u2] with [u1, u2] regarded as a subspace of ∆2 so that

(δ1(q), t) ∈ [v1, w1, w2] ⊂ ∆2 × I.

Thus (σ|[u1,u2] ◦ δ1 × )|[v0,w0,w1] ◦ δ2 is equal to (σ × )|[v1,w1,w2] ◦ δ2 since

((σ × )|[v1,w1,w2] ◦ δ2)(p) = (σ × )|[v1,w1,w2](δ
1(q), t) = (σ × )(δ1(q), t)

(note that δ2 : ∆2 → [v1, w1, w2] ⊂ ∆2 × I will canonically carry p directly to (δ1(q), t)).
Expanding (3) (and suppressing the canonical homeomorphisms), we obtain

λ1(∂X2 (σ)) =
[
F ◦ (σ|[u1,u2] × )|[v0,w0,w1] − F ◦ (σ|[u1,u2] × )|[v0,v1,w1]

]
−
[
F ◦ (σ|[u0,u2] × )|[v0,w0,w1] − F ◦ (σ|[u0,u2] × )|[v0,v1,w1]

]
+
[
F ◦ (σ|[u0,u1] × )|[v0,w0,w1] − F ◦ (σ|[u0,u1] × )|[v0,v1,w1]

]
and thus

λ1(∂X2 (σ)) = H|[v1,w1,w2] −H|[v1,v2,w2] −H|[v0,w0,w2] +H|[v0,v2,w2] +H|[v0,w0,w1] −H|[v0,v1,w1].

Now at last we add:

∂Y3 (λ2(σ)) + λ1(∂X2 (σ)) = F ◦ (σ × )|[w0,w1,w2] ◦ δ2 − F ◦ (σ × )|[v0,v1,v2] ◦ δ2.

For p ∈ ∆2,

(F ◦ (σ × )|[w0,w1,w2] ◦ δ2)(p) = F ◦ (σ × )|[w0,w1,w2](p, 1)

= F (σ(p), 1) = g(σ(p))

= (g ◦ σ)(p) = (g2(σ))(p),

so F ◦ (σ × )|[w0,w1,w2] ◦ δ2 = g2(σ), and similarly F ◦ (σ × )|[v0,v1,v2] ◦ δ2 = f2(σ). Hence

(∂Y3 ◦ λ2 + λ1 ◦ ∂X2 )(σ) = (g2 − f2)(σ)

for the basis element σ of C2(X).
The general case for arbitrary n requires careful bookkeeping and will be addressed at a

later time. �

Lemma 2.15. Let X, Y, Z be topological spaces, and let f : X → Y and g : Y → Z be
continuous maps. Then, for all n,

(1) ( X)n∗ = Hn(X)

(2) (g ◦ f)n∗ = gn∗ ◦ fn∗
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Proof. Fix n. For σ : ∆n → X we have ( X)n(σ) = X ◦ σ = σ so that ( X)n = Cn(X). Now,
by Proposition 2.4, ( X)n∗ = Cn(X)∗ = Hn(X), which proves part (1).

Next, from g ◦ f : X → Z we obtain the map (g ◦ f)n : Cn(X)→ Cn(Z), where

(g ◦ f)n(σ) = (g ◦ f) ◦ σ = g ◦ (f ◦ σ) = gn(f ◦ σ) = gn(fn(σ)) = (gn ◦ fn)(σ),

and so we obtain
(g ◦ f)n∗ = (gn ◦ fn)∗ = gn∗ ◦ fn∗

by once again appealing to Proposition 2.4. This proves part (2). �

Corollary 2.16. If f : X → Y is a homotopy equivalence, then fn∗ : Hn(X) → Hn(Y ) is an
isomorphism for all n.

Proof. Suppose that f : X → Y is a homotopy equivalence. Then there is a map g : Y → X
such that g◦f ' X and f ◦g ' Y . By Theorem 2.14, (g◦f)n∗ = ( X)n∗ and (f ◦g)n∗ = ( Y )n∗,
and thus by Lemma 2.15 we obtain gn∗ ◦ fn∗ = Hn(X) and fn∗ ◦ gn∗ = Hn(Y ). Therefore fn∗ is
an isomorphism by Proposition 1.1. �

If X is a space and A is a nonempty closed subspace that is a deformation retract of some
neighborhood of X, then the pair (X,A) is known as a good pair. The following theorem will
be proven over course of the next two sections, with the maps ∂̂n to be determined along the
way.

Theorem 2.17. If (X,A) is a good pair, then there is an exact sequence

· · · −→ H̃n(A)
in∗−−−→ H̃n(X)

qn∗−−−→ H̃n(X/A)
∂̂n∗−−−→ H̃n−1(A) −→ · · · −→ H̃0(X/A) −→ 0,

where in∗ is induced by the inclusion map i : A ↪→ X and qn∗ is induced by the quotient map
q : X → X/A.
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2.4 – Relative Homology

Given a topological space X, let A ⊂ X be a subspace. From the free abelian groups
Cn(X) and Cn(A) we form the quotient group Cn(X,A) = Cn(X)/Cn(A), and define ∂̄n to be
the homomorphism induced by

∂n : (Cn(X), Cn(A))→ (Cn−1(X), Cn−1(A))

so that

∂̄n(σ + Cn(A)) = ∂n(σ) + Cn−1(A)

for each σ ∈ Cn(X). It’s easy to check that ∂̄n◦ ∂̄n+1 = 0 holds for all n, and so a chain complex

· · · −→ Cn+1(X,A)
∂̄n+1−−−→ Cn(X,A)

∂̄n−−−→ Cn−1(X,A) −→ · · ·

results. The homology groups associated with this chain complex, given as

Hn(X,A) =
Ker[∂̄n : Cn(X,A)→ Cn−1(X,A)]

Im[∂̄n+1 : Cn+1(X,A)→ Cn(X,A)]
,

are called relative homology groups.
If A ⊂ X and B ⊂ Y , a continuous map f : (X,A)→ (Y,B) induces homomorphisms

fn : (Cn(X), Cn(A))→ (Cn(Y ), Cn(B))

in the usual fashion given in section 2.1, and these in turn induce homomorphisms f̄n :
Cn(X,A)→ Cn(Y,B) given by

f̄n(σ + Cn(A)) = fn(σ) + Cn(B) = f ◦ σ + Cn(B)

for each basis element σ ∈ Cn(X). The maps f̄n constitute a chain map C(X,A) → C(Y,B),
and so by Proposition 2.1 they induce well-defined homomorphisms f̄n∗ : Hn(X,A)→ Hn(Y,B)
given by

f̄n∗
(
(σ + Cn(A)) + ∂̄n+1(Cn+1(X,A))

)
= f̄n(σ + Cn(A)) + ∂̄n+1(Cn+1(Y,B)).

Slightly more compactly we can write

f̄n∗
(
(σ + Cn(A)) + Im ∂̄Xn+1

)
= (f ◦ σ + Cn(B)) + Im ∂̄Yn+1.

Let i : A ↪→ X be the inclusion map. This map induces homomorphisms in : Cn(A) →
Cn(X) given by in(σ) = i ◦ σ for each map σ : ∆n → A. Also we introduce the homomorphism
jn : Cn(X) → Cn(X,A) given by jn(σ) = σ + Cn(A) for each σ : ∆n → X. Clearly each
in is injective and each jn is surjective. If σ ∈ Im in, then σ ∈ Cn(A) and so jn(σ) = σ +
Cn(A) = Cn(A) (the zero element of Cn(X,A)), which shows that σ ∈ Ker jn. If σ ∈ Ker jn,
then σ ∈ Cn(A) and it follows that in(σ) = i ◦ σ = σ, which shows that σ ∈ Im in. Thus,
Im in = Ker jn, and we conclude that

0 −→ Cn(A)
in−−−→ Cn(X)

jn−−−→ Cn(X,A) −→ 0
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· · · Cn+1(A) Cn(A) Cn−1(A) · · ·∂An+1 ∂An

· · · Cn+1(X) Cn(X) Cn−1(X) · · ·∂Xn+1 ∂Xn

· · · Cn+1(X,A) Cn(X,A) Cn−1(X,A) · · ·∂̄n+1 ∂̄n

in+1 in in−1

jn+1 jn jn−1

0 0 0

0 0 0

Figure 4

is a short exact sequence. The claim is that in : C(A)→ C(X) and jn : C(X)→ C(X,A) are
chain maps, which is to say the diagram in Figure 4 is commutative and therefore a short exact
sequence of chain complexes. We have, for any σ : ∆n → A,

(in−1 ◦ ∂An )(σ) = in−1

(∑
i
(−1)iσ|[u0,...,ûi,...,un]

)
=
∑

i
(−1)i in−1

(
σ|[u0,...,ûi,...,un]

)
=
∑

i
(−1)iσ|[u0,...,ûi,...,un] = ∂Xn (σ) = ∂Xn (in(σ)) = (∂Xn ◦ in)(σ);

and for any σ : ∆n → X,

(jn−1 ◦ ∂Xn )(σ) = jn−1

(∑
i
(−1)iσ|[u0,...,ûi,...,un]

)
=
∑

i
(−1)i

(
σ|[u0,...,ûi,...,un] + Cn−1(A)

)
=
(∑

i
(−1)iσ|[u0,...,ûi,...,un]

)
+ Cn−1(A) = ∂n(σ) + Cn−1(A)

= ∂̄n(σ + Cn(A)) = ∂̄n(jn(σ)) = (∂̄n ◦ jn)(σ).

We now define homomorphisms ρn : Hn(X,A)→ Hn−1(A) in the same manner as the maps
ρn in section 2.1, where Hn−1(A) = Ker ∂An−1/ Im ∂An . Let

(σ + Cn(A)) + Im ∂̄n+1 ∈ Hn(X,A),

so σ + Cn(A) ∈ Ker ∂̄n ⊂ Cn(X,A). Since σ ∈ Cn(X) we have jn(σ) = σ + Cn(A), and from
jn−1 ◦ ∂Xn = ∂̄n ◦ jn comes ∂Xn σ ∈ Ker jn−1 = Im in−1. So there is some τ ∈ Cn−1(A) such that
in−1(τ) = ∂Xn σ, which immediately implies τ = ∂Xn σ. Define

ρn
(
(σ + Cn(A)) + Im ∂̄n+1

)
= ∂Xn σ + Im ∂An .

By Theorem 2.6 we obtain a long exact sequence

· · · −→ Hn(A)
in∗−−−→ Hn(X)

jn∗−−−→ Hn(X,A)
ρn−−−→ Hn−1(A)

in−1∗−−−→ Hn−1(X) −→ · · ·
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Proposition 2.18. For A ⊂ X and B ⊂ Y , let f : (X,A) → (Y,B) be a map such that
f : X → Y and f |A : A → B are each homotopy equivalences. Then for all n the maps
f̄n∗ : Hn(X,A)→ Hn(Y,B) are isomorphisms.

Proof. By Corollary 2.16 the maps fn∗ : Hn(X) → Hn(Y ) and fAn∗ := (f |A)n∗ : Hn(A) →
Hn(B) are isomorphisms for all n. Fix n ≥ 0. The diagram

Hn(A) Hn(X) Hn(X,A) Hn−1(A) Hn−1(X)
iXn∗ jXn∗ ρXn iXn−1∗

Hn(B) Hn(Y ) Hn(Y,B) Hn−1(B) Hn−1(Y )
iYn∗ jYn∗ ρYn iYn−1∗

fAn∗ fn∗ f̄n∗ fAn−1∗ fn−1∗

has exact rows, and the claim is it’s also commutative. It’s easily verified that the diagram

Cn(A) Cn(X) Cn(X,A)
iXn jXn

Cn(B) Cn(Y ) Cn(Y,B)
iYn jYn

fAn fn f̄n

is commutative. For instance

(f̄n ◦ jXn )(σ) = f̄n(σ + Cn(A)) = fn(σ) + Cn(B) = jYn (fn(σ)) = (jYn ◦ fn)(σ)

clinches commutativity of the second square, and a similar routine will show commutativity of
the first square. Now, {fn}, {f̄n}, {jXn } and {jYn } are chain maps that induce the well-defined
homomorphisms found in the first diagram, and since the functor ∗ preserves commutativity,
we conclude that the second and first squares in the first diagram are likewise commutative.

Next, for

(σ + Cn(A)) + Im ∂̄n+1 ∈ Hn(X,A)

we obtain

(fAn−1∗ ◦ ρXn )((σ + Cn(A)) + Im ∂̄Xn+1) = fAn−1∗(∂
X
n σ + Im ∂An )

= fAn−1(∂Xn (σ)) + Im ∂Bn = fn−1(∂Xn (σ)) + Im ∂Bn

= ∂Yn (fn(σ)) + Im ∂Bn = ρYn ((fn(σ) + Cn(B)) + Im ∂̄Yn )

= (ρYn ◦ f̄n∗)((σ + Cn(A)) + Im ∂̄Xn+1),

where the third equality holds since ∂Xn σ ∈ Cn−1(A) ⊂ Cn−1(X) and fAn−1 is the restriction of
fn−1 to Cn−1(A); and the fourth equality holds since {fn} is a chain map C(X)→ C(Y ). This
shows commutativity of the third square.

Therefore, by the Five-Lemma, the maps f̄n∗ are isomorphisms. �
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Example 2.19. Show a map f : (Dn,Sn−1) ↪→ (Dn,Dn−{0}) cannot be a homotopy equivalence
of pairs; that is, there’s no map g : (Dn,Dn − {0}) → (Dn,Sn−1) such that f ◦ g and g ◦ f are
homotopic to Dn through maps (Dn,Dn−{0})→ (Dn,Dn−{0}) and (Dn,Sn−1)→ (Dn,Sn−1),
respectively.

Solution. Suppose there is such a map g. Let

{ϕt : (Dn,Sn−1)→ (Dn,Sn−1)}t∈I

be a homotopy such that ϕ0 = Dn and ϕ1 = g ◦ f . Since f(x) = x for all x ∈ Dn, we have
ϕ1(x) = g(f(x)) = g(x) so that ϕ1 = g and hence g ' Dn .

Let i : Sn−1 ↪→ Dn be the inclusion map. Since g : Dn − {0} → Sn−1 is continuous and
0 is in the closure of Dn − {0}, we must have g(0) ∈ Sn−1 so that g : Dn → Sn−1 and hence
g ◦ i = g|Sn−1 : Sn−1 → Sn−1.

Now, for each n ≥ 1 we have

H̃n−1(Sn−1)
i∗−−−→ H̃n−1(Dn)

g∗−−−→ H̃n−1(Sn−1),

where H̃n−1(Sn−1) ∼= Z and H̃n−1(Dn) = 0 so that g∗ ◦ i∗ = 0. On the other hand the maps
{ϕt|Sn−1 : Sn−1 → Sn−1}t∈I constitute a homotopy g◦i ' Sn−1 , so by Theorem 2.14 and Lemma
2.15 we obtain

g∗ ◦ i∗ = (g ◦ i)∗ = Sn−1∗ = H̃n−1(Sn−1),

and hence for 1 ∈ H̃n−1(Sn−1) we obtain (g∗ ◦ i∗)(1) = 1; that is, g∗ ◦ i∗ 6= 0, which is a
contradiction. �
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2.5 – The Excision Theorem

Let A and B be subspaces of X. The inclusion map j : (B,A ∩ B) ↪→ (X,A) induces
homomorphisms jn : Cn(B) → Cn(X) given by jn(β) = j ◦ β for a basis element β : ∆n → B
of Cn(B). Each jn, in turn, induces a homomorphism of quotient groups

̄n : Cn(B,A ∩B)→ Cn(X,A)

given by

̄n(β + Cn(A ∩B)) = jn(β) + Cn(A) = j ◦ β + Cn(A) = β + Cn(A). (4)

The Excision Theorem states circumstances when the maps ̄n will induce isomorphisms of
relative homology groups.

Theorem 2.20 (Excision Theorem). If A,B ⊂ X such that X = A◦∪B◦, then the inclusion
j : (B,A ∩B) ↪→ (X,A) induces isomorphisms ̄n∗ : Hn(B,A ∩B)→ Hn(X,A) for all n.

The reason for the use of the term “excision” is perhaps made clearer by the following
result.

Corollary 2.21. Given subspaces Z ⊂ A ⊂ X such that Z̄ ⊂ A◦, then the inclusion
j : (X − Z,A − Z) ↪→ (X,A) induces isomorphisms ̄n∗ : Hn(X − Z,A − Z) → Hn(X,A)
for all n.

Proof. Let B = X −Z, and note that A∩B = A−Z. It remains to show that A◦ ∪B◦ = X.
Let x ∈ X, and suppose that x /∈ A◦. Since Z̄ ⊂ A◦, we have x /∈ Z̄ and thus x ∈ X − Z̄. Now,
X − Z̄ is open, so there exists some open set O such that

x ∈ O ⊂ X − Z̄ ⊂ X − Z = B.

Hence x ∈ B◦ and we conclude that X = A◦ ∪B◦.
Therefore, by the Excision Theorem, j : (X − Z,A − Z) ↪→ (X,A) induces isomorphisms

Hn(X − Z,A− Z) ∼= Hn(X,A). �

To prove the Excision Theorem there is a technical result that first needs to be established.
Let U = {Uk} be a collection of subspaces of X such that X =

⋃
k U
◦
k , and let C Un (X) be the

subgroup of Cn(X) consisting of n-chains
∑

i niσi such that for each i there is some k for which
σi(∆

n) ⊂ Uk. It’s easy to see that if α ∈ C Un (X), then ∂nα ∈ C Un−1(X); thus, if we let ∂ Un
denote the restriction of ∂n to C Un (X), and define ιn : C Un (X) ↪→ Cn(X) to be the inclusion
map, we obtain a commutative diagram of chain complexes:

· · · C Un+1(X) C Un (X) C Un−1(X) · · ·∂ Un+1 ∂ Un

· · · Cn+1(X) Cn(X) Cn−1(X) · · ·∂n+1 ∂n

ιn+1 ιn ιn−1
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As usual Hn(X) = Ker ∂n/ Im ∂n+1, and now we also define H Un (X) = Ker ∂ Un / Im ∂ Un+1. In
accordance with the developments in section 2.1, the induced map ιn∗ : H Un (X) → Hn(X) is
given by

ιn∗(α + Im ∂ Un+1) = ιn(α) + Im ∂n+1

for each α ∈ Ker ∂ Un .

Lemma 2.22. Let U = {Uk} be a collection of subspaces of X such that X =
⋃
k U
◦
k . If

ιn : C Un (X) ↪→ Cn(X) is the inclusion map, then the map ιn∗ : H Un (X) → Hn(X) is an
isomorphism.

To prove the lemma it will be shown that the chain map ιn : C U(X) → C(X) is a chain
homotopy equivalence, which means there is a chain map ϕn : C(X) → C U(X) such that
{ιn ◦ ϕn} is chain homotopic to { n} (the identity maps on Cn(X)) and {ϕn ◦ ιn} is chain
homotopic to { Un } (the identity maps on C Un (X)). The result follows from Proposition 2.5.

Proof. We start with barycentric subdivision of simplices.2 By definition of an n-simplex,

[v0, . . . , vn] =

{
n∑
i=0

tivi : ∀i (ti ≥ 0) and
n∑
i=0

ti = 1

}
⊂ Rm

for some m ≥ n + 1, where the set of vectors {v1 − v0, . . . , vn − v0} is linearly independent.
The barycenter of [v0, . . . , vn] is the point b =

∑
i

1
n+1

vi, and the barycentric subdivision of
[v0, . . . , vn] is the subdivision of [v0, . . . , vn] into smaller n-simplices of the form [b, w0, . . . , wn−1]
which we now specify inductively. When n = 0, the barycentric subdivision of [v0] is defined
to be [v0] itself. For n = 1 we decompose [v0, v1] with barycenter b = 1

2
v0 + 1

2
v1 into [b, v0]

and [b, v1]. For n = 2, let bij be the barycenter of the face [vi, vj] of [v0, v1, v2], and decompose
[v0, v1, v2] into [b, b01, v0], [b, b01, v1], [b, b02, v0], [b, b02, v2], [b, b12, v1], and [b, b12, v2]. For n = 3,
if bijk denotes the barycenter of the face [vi, vj, vk] of [v0, v1, v2, v3], then a couple of the 24
members of the decomposition are [b, b012, b01, v0] and [b, b012, b01, v1], which we could write as
[b0123, b012, b01, b0] and [b0123, b012, b01, b1] if we wished to employ our notation to its fullest extent
(the barycenter bi of [vi] being, of course, vi itself). See Figure 5. In general the barycentric
subdivision of [v0, . . . , vn] is the collection B[v0, . . . , vn] of n-simplices{[

b, b`n−1
0 ···`n−1

n−1
, b`n−2

0 ···`n−2
n−2
, . . . , b`10`11 , v`00

]
: `ki−1 < `ki & {`k−1

0 , . . . , `k−1
k−1} ⊂ {`

k
0, . . . , `

k
k}
}
,

where of course `ki ∈ {0, . . . , n}, and

b`k0 ···`kk =
k∑
i=0

1

k + 1
v`ki .

is the barycenter of the k-dimensional face [v`k0 , . . . , v`kk ] of [v0, . . . , vn] for 1 ≤ k ≤ n. Simply

put, a member of B[v0, . . . , vn] has as its vertices the barycenter of [v0, . . . , vn], the barycenter
of an (n − 1)-dimensional face F of [v0, . . . , vn], the barycenter of an (n − 2)-dimensional face
of F , and so on down the dimensions to conclude with a point that is a vertex of F .

2As with many results hereabouts, this proof is modeled along the lines of the one found in Allen Hatcher’s
“Algebraic Topology.”
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b

v0

v1

v2

v3

b01

b12

b03
b23

b

v0

v1

v2

v3

b01

b12

b03
b23

Figure 5. Part of the barycentric subdivision of a 3-simplex [v0, v1, v2, v3].

Letting |p− q| denote the Euclidean distance between points p and q in Rm, we define the
diameter of [v0, . . . , vn] to be

diam[v0, . . . , vn] = max{|p− q| : p, q ∈ [v0, . . . , vn]},

which is a real value that is attained for some p̂, q̂ ∈ [v0, . . . , vn] since the set is compact. If p
and

∑
i tivi are two points in [v0, . . . , vn], then∣∣∣p−∑

i
tivi

∣∣∣ =
∣∣∣∑

i
tip−

∑
i
tivi

∣∣∣ =
∣∣∣∑

i
ti(p− vi)

∣∣∣
≤
∑

i
ti|p− vi| =

∑
i
ti max

0≤i≤n
|p− vi|

= max
0≤i≤n

|p− vi| = |p− vi0|

for some i0 ∈ {0, . . . , n}. Letting p =
∑

i sivi and repeating the process, we find that

|p− vi0| =
∣∣∣vi0 −∑

i
sivi

∣∣∣ ≤ |vi0 − vi1|
for some i1. Hence for any p, q ∈ [v0, . . . , vn] we find that |p − q| ≤ |vi − vj| for some i, j ∈
{0, . . . , n}, and therefore diam[v0, . . . , vn] = max0≤i,j≤n |vi − vj|.

What we will want to show is that

max{diam(W ) : W ∈ B[v0, . . . , vn]} ≤ n

n+ 1
diam[v0, . . . , vn]. (5)

This is trivially true when n = 0 since the only member of B[v0] is [v0] itself, and diam[v0] = 0.
For n = 1 we have B[v0, v1] = {[b, v0], [b, v1]}, with

diam[b, v0] = |b− v0| =
∣∣1

2
v0 + 1

2
v1 − v0

∣∣ = 1
2
|v1 − v0| = 1

2
diam[v0, v1]

and similarly diam[b, v1] = 1
2

diam[v0, v1].
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Employing induction, let n be arbitrary and suppose (5) holds for every n-simplex [v0, . . . , vn].
Let V = [v0, . . . , vn+1] be any (n+ 1)-simplex, and let BV be its barycentric subdivision. Let

W = [b, w0, . . . , wn] ∈ BV,

b being the barycenter of V . First suppose that wi and wj are vertices of W such that wi, wj 6= b.
Then the points wi and wj must lie on the n-dimensional face F of V that has w0 as its
barycenter, and since [w0, . . . , wn] is a member of BF and F is an n-simplex, by (5) we obtain

|wi − wj| ≤ diam([w0, . . . , wn]) ≤ max{diam(U) : U ∈ BF} ≤ n

n+ 1
diam(F ).

Of course, F ⊂ V implies that diam(F ) ≤ diam(V ), so finally

|wi − wj| ≤
n

n+ 1
diam(V ) ≤ n+ 1

n+ 2
diam(V ).

Next, take vertices wj and b of W . Since wj, b ∈ V we have

|b− wj| ≤ max
0≤i≤n+1

|b− vi| = |b− vk|

for some k. Let bk be the barycenter of [v0, . . . , v̂k, . . . , vn+1], so

bk =
∑n+1

i=0,i 6=k

1

n+ 1
vi.

Now, since
1

n+ 2
vk +

n+ 1

n+ 2
bk =

1

n+ 2
vk +

∑n+1

i=0,i 6=k

1

n+ 2
vi = b,

we obtain

|vk − b| =
∣∣∣∣vk − ( 1

n+ 2
vk +

n+ 1

n+ 2
bk

)∣∣∣∣ =

∣∣∣∣n+ 1

n+ 2
vk −

n+ 1

n+ 2
bk

∣∣∣∣
=
n+ 1

n+ 2
|vk − bk| ≤

n+ 1

n+ 2
diam(V )

and therefore

|b− wj| ≤
n+ 1

n+ 2
diam(V ).

Combining the two cases analyzed above leads to the general result

diam(W ) = max
p,q∈{b,w0,...,wn}

|p− q| ≤ n+ 1

n+ 2
diam(V ),

which finally implies

max{diam(W ) : W ∈ BV } ≤ n+ 1

n+ 2
diam(V ).

We move on now to the next stage of the proof. Let Y ⊂ Rm be a convex set, and let C(Y )
be the singular chain complex

· · · −→ Cn+1(Y )
∂n+1−−−→ Cn(Y )

∂n−−−→ Cn−1(Y )
∂n−1−−−→ · · ·

A linear transformation ` : ∆n → Y can be uniquely determined by defining, for each
0 ≤ i ≤ n, some wi ∈ Y for which `(ui) = wi; indeed, since for each q ∈ ∆n there exist
nonnegative scalars ti such that

∑
i ti = 1 and q =

∑
i tiui, we obtain `(q) = `(

∑
i tiui) =
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i ti`(ui) =

∑
i tiwi ∈ Y by Proposition 2.9, and therefore Im(`) ⊂ Y as required. Now, if

L(∆n, Y ) is the collection of all linear transformations ` : ∆n → Y , then we can define Ln(Y ) to
be the subgroup of Cn(Y ) generated by L(∆n, Y ). The boundary maps ∂n : Cn(Y )→ Cn−1(Y )
then give rise to a chain complex L(Y )

· · · −→ Ln+1(Y )
∂n+1−−−→ Ln(Y )

∂n−−−→ Ln−1(Y ) −→ · · ·

which is called a subcomplex of C(Y ). In what follows it will be convenient to denote a map
` ∈ L(∆n, Y ) given by `(ui) = wi by the symbol bw0, . . . , wnc.3 It will also be convenient to
extend L(Y ) to dimension −1 by letting L−1(Y ) be the free group generated by the unique map
[∅] 7→ Y , where [∅] is taken to be the “empty simplex” that has no vertices; we can denote
this map by b∅c, so L−1(Y ) ∼= 〈b∅c〉 ∼= Z.

For any point y ∈ Y define a homomorphism yn : Ln(Y )→ Ln+1(Y ) by

yn(bw0, . . . , wnc) = by, w0, . . . , wnc,

where by, w0, . . . , wnc : ∆n+1 → Y is given by by, w0, . . . , wnc(ui) = wi−1 for 1 ≤ i ≤ n+ 1, and
by, w0, . . . , wnc(u0) = y. Now,

∂n+1(yn(bw0, . . . , wnc)) =
n+1∑
i=0

(−1)iby, w0, . . . , wnc|[u0,...,ûi,...,un+1] ◦ δn

= by, w0, . . . , wnc|[u1,...,un+1] ◦ δn +
n+1∑
i=1

(−1)iby, w0, . . . , wnc|[u0,...,ûi,...,un+1] ◦ δn

= bw0, . . . , wnc+
n+1∑
i=1

(−1)iby, w0, . . . , ŵi−1, . . . , wnc

= bw0, . . . , wnc+
n∑
i=0

(−1)i+1by, w0, . . . , ŵi, . . . , wnc

= bw0, . . . , wnc −
n∑
i=0

(−1)iyn−1(bw0, . . . , ŵi, . . . , wnc)

= bw0, . . . , wnc −
n∑
i=0

(−1)iyn−1(bw0, . . . , wnc|[u0,...,ûi,...,un] ◦ δn−1)

= bw0, . . . , wnc − yn−1(∂n(bw0, . . . , wnc)),

where, for instance, the sixth equality is justified as follows: bw0, . . . , ŵi, . . . , wnc takes uk ∈
∆n−1 and returns wk for k < i, and wk+1 for k ≥ i, while bw0, . . . , wnc|[u0,...,ûi,...,un] ◦ δn−1 maps
as

uk ∈ ∆n−1 7→ uk ∈ ∆n 7→ wk
for k < i, and

uk ∈ ∆n−1 7→ uk+1 ∈ ∆n 7→ wk+1

for k ≥ i.

3It seems to me highly inadvisable to denote ` by [w0, . . . , wn], since this symbol is already “taken” and
might lead one to wrongly believe that Im(`) must necessarily be an n-simplex).
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Since bw0, . . . , wnc is a basis element for Ln(Y ), the preceding shows that

(∂n+1 ◦ yn)(σ) = σ − (yn−1 ◦ ∂n)(σ) = ( n − yn−1 ◦ ∂n)(σ). (6)

for any σ ∈ Ln(Y ), with n : Ln(Y )→ Ln(Y ) being the identity map. Therefore we have

∂n+1 ◦ yn + yn−1 ◦ ∂n = n.

We now define a family of homomorphisms Sn : Ln(Y )→ Ln(Y ) inductively. To start, we
have S−1 : L−1(Y )→ L−1(Y ) given by S−1(b∅c) = b∅c. For any k, given

` = bw0, . . . , wkc ∈ L(∆k, Y ),

let bk be the barycenter of ∆k, set `(bk) = p, and define the homomorphism pk : Lk(Y ) →
Lk+1(Y ) by

pk(`) = bp, w0, . . . , wkc.
Then we define Sn for n ≥ 0 to be given by

Sn(`) = (pn−1 ◦ Sn−1 ◦ ∂n)(`).

In particular

S0(bpc) = p−1(S−1(∂0(bpc))) = p−1(S−1(b∅c)) = p−1(b∅c) = bpc

shows that S0 is the identity on L0(Y ).
If ` = by0, y1c : ∆1 → Y is in L1(Y ) and has image equalling the simplicial 1-simplex

[y0, y1], so that y0 6= y1, then `(b1) = p with p 6= y0, y1, and

S1(`) = (p0 ◦ S0 ◦ ∂1)(`) = p0(S0(`|[u1] − `|[u0]))

= p0(`|[u1] − `|[u0]) = p0(by1c − by0c)

= bp, y1c − bp, y0c

shows that S1(`) equals a linear combination of singular 1-simplices with images [p, y0] and
[p, y1], which are elements of B[y0, y1].

Proceeding with an induction argument, let n ≥ 1 and suppose that for any ` = by0, . . . , ync ∈
Ln(Y ) with Im(`) = [y0, . . . , yn], Sn(`) is a linear combination of singular n-simplices with im-
ages that are elements of B[y0, . . . , yn]. For any

` = by0, . . . , yn+1c ∈ Ln+1(Y )

with
Im(`) = [y0, . . . , yn+1] := V

and `(bn+1) = p,

Sn+1(`) = (pn ◦ Sn ◦ ∂n+1)(by0, . . . , yn+1c)

= pn(Sn(∂n+1by0, . . . , yn+1c))

=
∑n+1

i=0
(−1)ipn(Sn(by0, . . . , ŷi, . . . , yn+1c))
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For each i,

Im(by0, . . . , ŷi, . . . , yn+1c := `i) = [y0, . . . , ŷi, . . . , yn+1] := Vi,

and so by hypothesis Sn(`i) is a linear combination of singular n-simplices with images that
are elements of BVi. Let W ∈ BVi be any one of these images. Then W = [w0, . . . , wn], where
w0 is the barycenter of Vi, w1 is the barycenter of an (n − 1)-dimensional face Fn−1 of Vi, w2

is the barycenter of an (n− 2)-dimensional face Fn−2 of Fn−1, and so on until we arrive at wn,
which will be a vertex of Fn−1. Now

pn(bw0, . . . , wnc) = bp, w0, . . . , wnc,

which is a basis element of Ln+1(Y ) with image [p, w0, . . . , wn], and since p is the barycenter
of V , w0 is the barycenter of the n-dimensional face Fn = Vi of V , and all lower-dimensioned
faces Fn−1, . . . , F0 of Vi are faces of V , it is clear that [p, w0, . . . , wn] ∈ BV . Therefore Sn+1(`)
is a linear combination of singular (n+ 1)-simplices with images that are elements of BV .

To show that the maps Sn define a chain map L(Y )→ L(Y ), the commutativity property
Sn−1 ◦ ∂n = ∂n ◦ Sn must be verified. The base case (when n = −1) is clear:

(S−1 ◦ ∂0)(bpc) = S−1(b∅c) = b∅c = ∂0(bpc) = (∂0 ◦ S0)(bpc).

For arbitary n suppose that ∂n ◦ Sn = Sn−1 ◦ ∂n is true. Let ` ∈ L(∆n+1, Y ) with `(b) = p.
Noting that

∂n+1 ◦ pn = n − pn−1 ◦ ∂n,
we obtain

(∂n+1 ◦ Sn+1)(`) = (∂n+1 ◦ pn ◦ Sn ◦ ∂n+1)(`)

= (( n − pn−1 ◦ ∂n) ◦ (Sn ◦ ∂n+1))(`)

= (Sn ◦ ∂n+1)(`)− (pn−1 ◦ ∂n ◦ Sn ◦ ∂n+1)(`)

= (Sn ◦ ∂n+1)(`)− (pn−1 ◦ Sn−1 ◦ ∂n ◦ ∂n+1)(`)

= (Sn ◦ ∂n+1)(`),

since ∂n ◦ ∂n+1 ≡ 0.
Now, define homomorphisms Tn : Ln(Y )→ Ln+1(Y ) inductively as follows. Let T−1(b∅c) =

0, and for n ≥ 0 set

Tn(`) = pn(`− Tn−1(∂n(`)))

for each ` ∈ L(∆n, Y ), with pn defined as above. Referring to the diagram

· · · L2(Y ) L1(Y ) L0(Y ) L−1(Y ) 0
∂2 ∂1 ∂0

· · · L2(Y ) L1(Y ) L0(Y ) L−1(Y ) 0
∂2 ∂1 ∂0

12S2 11S1 10S0 1−1S−1

T1 T0 T−1
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it will be shown by induction that the collection of maps {Tn}∞n=−1 is a chain homotopy between
the chain maps {Sn}∞n=−1 and { n}∞n=−1, which entails demonstrating that

n − Sn = ∂n+1 ◦ Tn + Tn−1 ◦ ∂n (7)

for n ≥ −1. The base case is easy to secure since T−1 ≡ 0 and T−2 ≡ 0 (by definition), and
S−1 = −1. For arbitrary n suppose that

n − Sn = ∂n+1 ◦ Tn + Tn−1 ◦ ∂n

holds. Then, for ` ∈ L(∆n+1, Y ),

(∂n+2 ◦ Tn+1)(`) = ∂n+2(pn+1(`− Tn(∂n+1(`))))

= (∂n+2 ◦ pn+1)(`− Tn(∂n+1(`)))

= ( n+1 − pn ◦ ∂n+1)(`− Tn(∂n+1(`)))

= ( n+1(`− Tn(∂n+1(`)))− (pn ◦ ∂n+1)(`− Tn(∂n+1(`)))

= ( n+1 − Tn ◦ ∂n+1 − pn ◦ ∂n+1 + pn ◦ (∂n+1 ◦ Tn) ◦ ∂n+1)(`)

= ( n+1 − Tn ◦ ∂n+1 − pn ◦ ∂n+1 + pn ◦ ( n − Sn − Tn−1 ◦ ∂n) ◦ ∂n+1)(`)

= ( n+1 − Tn ◦ ∂n+1 − pn ◦ ∂n+1 + pn ◦ ∂n+1 − pn ◦ Sn ◦ ∂n+1)(`)

= ( n+1 − Tn ◦ ∂n+1 − Sn+1)(`),

where again we make use of ∂n ◦ ∂n+1 ≡ 0, and therefore

n+1 − Sn+1 = ∂n+2 ◦ Tn+1 + Tn ◦ ∂n+1.

Since T−1 ≡ 0 on L−1(Y ) ∼= Z, we can replace L−1(Y ) with 0 and obtain a truncated
diagram in which {Tn}∞n=0 is a chain homotopy between {Sn}∞n=0 and { n}∞n=0.

Now begins the third part of the proof. Fix n ≥ 0. For each generator σ : ∆n → X of
Cn(X) there are induced homomorphisms σ̄nk : Ck(∆

n) → Ck(X) given by σ̄nk (f) = σ ◦ f for
each integer k and map f : ∆k → ∆n. Also there are the maps Snk : Lk(∆

n) → Lk(∆
n) that

operate in the manner discussed above and define a chain map L(∆n)→ L(∆n). Finally there
are the identity maps ∆k = bu0, . . . , ukc : ∆k → ∆k. Using all these maps, we define a new
homomorphism S̄n : Cn(X) → Cn(X) by S̄n(σ) = σ̄nn(Snn( ∆n)). To show the maps S̄n define
a chain map C(X) → C(X), we verify the commutativity property S̄n−1 ◦ ∂n = ∂n ◦ S̄n for
each n. In doing so, we use the symbol δn−1

i to denote the canonical linear homeomorphism
∆n−1 → [u0, . . . , ûi, . . . , un]. Thus,

(∂n ◦ S̄n)(σ) = ∂n(σ̄nn(Snn( ∆n))) = (∂n ◦ σ̄nn)(Snn( ∆n))

= (σ̄nn−1 ◦ ∂n)(Snn( ∆n)) = (σ̄nn−1 ◦ (∂n ◦ Snn))( ∆n)

= (σ̄nn−1 ◦ (Snn−1 ◦ ∂n))( ∆n) = (σ̄nn−1 ◦ Snn−1)(∂n ∆n)
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=
n∑
i=0

(−1)i(σ̄nn−1 ◦ Snn−1)( ∆n|[u0,...,ûi,...,un] ◦ δn−1
i )

=
n∑
i=0

(−1)i
(

(σ|[u0,...,ûi,...,un] ◦ δn−1
i )n−1

n−1 ◦ Sn−1
n−1

)
( ∆n−1)

=
n∑
i=0

(−1)iS̄n−1(σ|[u0,...,ûi,...,un] ◦ δn−1
i )

= S̄n−1

(
n∑
i=0

(−1)iσ|[u0,...,ûi,...,un] ◦ δn−1
i

)
= S̄n−1(∂nσ) = (S̄n−1 ◦ ∂n)(σ),

where it must be admitted that there is a “leap” in going from the fourth to the fifth row that
would require some work to justify.

Next, define T̄n : Cn(X)→ Cn+1(X) by

T̄n(σ) = σ̄nn+1(T nn ( ∆n)),

where for each k the map T nk : Lk(∆
n)→ Lk+1(∆n) operates as described above. To be shown

is that {T̄n}∞n=0 is a chain homotopy between the chain maps {S̄n}∞n=0 and { n : Cn(X) →
Cn(X)}∞n=0 (the identity maps on C(X)). Thus it must be shown that

n − S̄n = ∂n+1 ◦ T̄n + T̄n−1 ◦ ∂n (8)

for all n ≥ 0, which will be done inductively.
Let n = 0. Since S0

0 : L0(∆0) → L0(∆0) is the identity map, we have for any generator
σ : ∆0 → X of C0(X),

S̄0(σ) = σ̄0
0(S0

0( ∆0)) = σ̄0
0( ∆0) = σ ◦ ∆0 = σ,

so that S̄0 = 0 : C0(X) → C0(X) and we obtain 0 − S̄0 = 0. Since T k−1 ≡ 0 for any k, we
have T̄−1 ≡ 0 and so

(∂1 ◦ T̄0 + T̄−1 ◦ ∂0)(σ) = ∂1(T̄0(σ)) = ∂1(σ̄0
1(T 0

0 ( ∆0)))

= (∂1 ◦ σ̄0
1)(p0( ∆0 − T 0

−1(∂0( ∆0))))

= (∂1 ◦ σ̄0
1)(p0( ∆0)) = (∂1 ◦ σ̄0

1)(p0(bu0c))

= (∂1 ◦ σ̄0
1)(bu0, u0c) = ∂1(σ ◦ bu0, u0c) = 0,

where p(bu0c) = bu0, u0c since the barycenter of ∆0 is u0 and ∆0(u0) = u0, and the last
equality follows from the observation that σ ◦ bu0, u0c : ∆1 → ∆0 → X is a constant function.
It has now been established that

0 − S̄0 = ∂1 ◦ T̄0 + T̄−1 ◦ ∂0.
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For the inductive step, let n ≥ 0 be arbitrary and suppose that equation (8) holds. Take
M
n+1 to be the identity map on Cn+1(∆n+1) so that M

n+1( ∆n+1) = ∆n+1 . Referring to the
diagram

· · · Cn+2(∆n+1) Cn+1(∆n+1) Cn(∆n+1) · · ·∂M
n+2 ∂M

n+1

· · · Cn+2(X) Cn+1(X) Cn(X) · · ·∂n+2 ∂n+1

σ̄n+1
n+2 σ̄n+1

n+1 σ̄n+1
n

we obtain, for any basis element σ : ∆n+1 → X of Cn+1(X),

(∂n+2 ◦ T̄n+1)(σ) = ∂n+2(σ̄n+1
n+2(T n+1

n+1 ( ∆n+1))) = (∂n+2 ◦ σ̄n+1
n+2)(T n+1

n+1 ( ∆n+1))

= (σ̄n+1
n+1 ◦ ∂Mn+2)(T n+1

n+1 ( ∆n+1)) = (σ̄n+1
n+1 ◦ (∂Mn+2 ◦ T n+1

n+1 ))( ∆n+1)

= (σ̄n+1
n+1 ◦ ( M

n+1 − T n+1
n ◦ ∂Mn+1 − Sn+1

n+1))( ∆n+1), by (7)

= (σ̄n+1
n+1 ◦ M

n+1 − σ̄n+1
n+1 ◦ T n+1

n ◦ ∂Mn+1 − σ̄n+1
n+1 ◦ Sn+1

n+1)( ∆n+1)

= σ ◦ ∆n+1 − (σ̄n+1
n+1 ◦ T n+1

n ◦ ∂Mn+1)( ∆n+1)− S̄n+1(σ)

= n+1(σ)− (T̄n ◦ ∂n+1)(σ)− S̄n+1(σ)

= ( n+1 − T̄n ◦ ∂n+1 − S̄n+1)(σ),

where σ ◦ ∆n+1 = σ = n+1(σ), and the remaining justifications for the eighth equality are left
to the reader.

Now the fourth and last stage of the lemma’s proof commences. For m ≥ 0 let
S̄◦mn : Cn(X)→ Cn(X) be the mth iterate of S̄n, with the understanding that S̄◦0n = n. (The
notation S̄◦mn is used here instead of S̄mn simply because superscripts are already being used
liberally for indexing purposes in the proof.) Define a homomorphism Dm

n : Cn(X)→ Cn+1(X)
by

Dm
n (σ) =

m−1∑
i=0

(T̄n ◦ S̄◦in )(σ)

for σ : ∆n → X and m ≥ 0 (with D0
n(σ) = 0), resulting in the diagram

· · · Cn+1(X) Cn(X) Cn−1(X) · · ·∂n+1 ∂n

· · · Cn+1(X) Cn(X) Cn−1(X) · · ·∂n+1 ∂n

1n+1S̄◦mn+1 1nS̄◦mn 1n−1S̄◦mn−1

Dm
n Dm

n−1

For fixed m it will be shown that the maps Dm
n provide a chain homotopy between { n}∞n=0

and {S̄◦mn }∞n=0; that is,

n − S̄◦mn = ∂n+1 ◦Dm
n +Dm

n−1 ◦ ∂n (9)
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for all n ≥ 0. Since the maps S̄◦1n = S̄n have been verified to define a chain map C(X)→ C(X),
it easily follows that ∂n ◦ S̄◦in = S̄◦in−1 ◦ ∂n holds for all i. Now, for any σ : ∆n → X and m ≥ 1,

(∂n+1 ◦Dm
n +Dm

n−1 ◦ ∂n)(σ) = ∂n+1(Dm
n (σ)) +Dm

n−1(∂n(σ))

= ∂n+1

(
m−1∑
i=0

(T̄n ◦ S̄◦in )(σ)

)
+

m−1∑
i=0

(T̄n−1 ◦ S̄◦in−1)(∂n(σ))

=
m−1∑
i=0

[
(∂n+1 ◦ T̄n)(S̄◦in (σ)) + (T̄n−1 ◦ S̄◦in−1 ◦ ∂n)(σ)

]
=

m−1∑
i=0

[
(∂n+1 ◦ T̄n)(S̄◦in (σ)) + (T̄n−1 ◦ ∂n)(S̄◦in (σ))

]
=

m−1∑
i=0

(∂n+1 ◦ T̄n + T̄n−1 ◦ ∂n)(S̄◦in (σ)) =
m−1∑
i=0

( n ◦ S̄n)(S̄◦in (σ))

=
m−1∑
i=0

(S̄◦in − S̄◦(i+1)
n )(σ) = (S̄◦0n − S̄◦mn )(σ) = ( n − S̄◦mn )(σ)

which verifies (9).
Recall that for any by0, . . . , ync : ∆n → Y in Ln(Y ) with image the n-simplex [y0, . . . , yn],

Sn(by0, . . . , ync) is a chain of singular n-simplices with images that are elements of B[y0, . . . , yn],
and so Snn( ∆n) is a chain of maps with images that are elements of B∆n. Thus, S̄n(σ) is a
chain of maps of the form

σ ◦ αi1 : ∆n αi1−−−→
onto

Wi1 ∈ B∆n σ−−−→
onto

σ(Wi1) ⊂ X.

For any of the maps σ ◦ αi1 we find that S̄n(σ ◦ αi1) in turn yields a chain of maps of the form

σ ◦ αi1 ◦ αi2 : ∆n αi2−−−→
onto

Wi2 ∈ B∆n αi1−−−→
onto

Wi1 ∈ B∆n σ−−−→
onto

σ(Wi1) ⊂ X.

In general S̄◦mn (σ) is a linear combination of maps of the form σ ◦ αi1 ◦ · · · ◦ αim :

∆n αim−−−→ Wim

αim−1−−−→ Wim−1

αim−2−−−→ · · ·
αi2−−−→ Wi2

αi1−−−→ Wi1
σ−−−→ σ(Wi1) ⊂ X, (10)

where Wij ∈ B∆n and αij : ∆n → Wij for each j.
For any n-simplex V , define B1V = BV , B2V =

⋃
{BW1 : W1 ∈ B1V }, and in general

BnV =
⋃{
BWn−1 : Wn−1 ∈ Bn−1V

}
for n ≥ 1. Recalling (5), it’s seen that if W2 ∈ B2V , then W2 ∈ BW1 for some W1 ∈ BV , and
so

diam(W2) ≤ n

n+ 1
diam(W1) ≤

(
n

n+ 1

)2

diam(V ).

More generally for Wm ∈ BmV ,

diam(Wm) ≤
(

n

n+ 1

)m
diam(V ). (11)
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Now, for any ` = by0, . . . , ync : ∆n → [y0, . . . , yn], if W ∈ B∆n then `(W ) ∈ B[y0, . . . , yn].
This is easily seen by noticing that if b is a barycenter for some k-dimensional face of ∆n, where
0 ≤ k ≤ n, then `(b) will be the barycenter of the corresponding face of [y0, . . . , yn]. Referring
to (10), it follows that αim−1 maps Wim ∈ B∆n to some

W ′
im−1
∈ BWim−1 ⊂ B2∆n,

αim−2 maps W ′
im−1
∈ B2∆n to some

W ′
im−2
∈ B2Wim−2 ⊂ B3∆n,

and so on until we arrive at αi1 : ∆n → Wi1 , which maps W ′
i2
∈ Bm−1∆n to some

W ′
i1
∈ Bm−1Wi1 ⊂ Bm∆n.

It is seen, then, that S̄◦mn (σ) is a linear combination of maps σ̂ of the form σ ◦ α, where
each α maps from ∆n onto some Wm ∈ Bm∆n. Thus each σ̂ is effectively a restriction of σ to
some Wm ∈ Bm∆n, where

diam(Wm) ≤
(

n

n+ 1

)m
diam(∆n)

by (11).
Since X =

⋃
k U
◦
k and σ : ∆n → X is continuous, the collection {σ−1(U◦k )} forms an open

cover for ∆n. Since ∆n is compact there exists some εσ > 0 (a Lebesgue number for the cover)
such that, for any set W ⊂ ∆n with diam(W ) < εσ, there exists some k for which W ⊂ σ−1(U◦k ).
Let m be sufficiently large so that(

n

n+ 1

)m
diam(∆n) < εσ.

Then S̄◦mn (σ) is a chain of maps σ̂, each having image σ̂(W ) in X for some set W ⊂ ∆n with
diam(W ) < εσ, so that W ⊂ σ−1(U◦k ) for some k. Hence, each singular n-simplex σ̂ in the chain
S̄◦mn (σ) maps into some Uk ⊂ X, and therefore S̄◦mn (σ) ∈ C Un (X).

For each singular n-simplex σ let

mσ = min{m ∈ Z : S̄◦mn (σ) ∈ C Un (X)},

and define D̄n : Cn(X)→ Cn+1(X) by

D̄n(σ) = Dmσ
n (σ).

From (9) we have

σ − S̄◦mσn (σ) = (∂n+1 ◦Dmσ
n )(σ) + (Dmσ

n−1 ◦ ∂n)(σ)

(∂n+1 ◦Dmσ
n )(σ) + D̄n−1(∂nσ) = σ −

[
S̄◦mσn (σ) + (Dmσ

n−1 ◦ ∂n)(σ)− D̄n−1(∂nσ)
]

(∂n+1 ◦ D̄n)(σ) + (D̄n−1 ◦ ∂n)(σ) = n(σ)− ϕn(σ),
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where ϕn(σ) is defined to be the expression in the brackets, and so

∂n+1 ◦ D̄n + D̄n−1 ◦ ∂n = n − ϕn. (12)

It will be shown that ϕn : Cn(X)→ C Un (X). Clearly S̄◦mσn (σ) ∈ C Un (X), so attention turns to
(Dmσ

n−1 ◦ ∂n)(σ)− D̄n−1(∂nσ). Let σi = σ|[u0,...,ûi,...,un] ◦ δn−1
i and

mσi = min{m ∈ Z : S̄◦mn−1(σi) ∈ C Un (X)},

and observe that mσi ≤ mσ for each 0 ≤ i ≤ n. Now,

(Dmσ
n−1 ◦ ∂n)(σ)− D̄n−1(∂nσ) =

n∑
i=0

(−1)iDmσ
n−1(σi)−

n∑
i=0

(−1)iDmσi
n−1(σi)

=
n∑
i=0

(−1)i

(
mσ−1∑
j=0

(T̄n−1 ◦ S̄◦jn−1)(σi)−
mσi−1∑
j=0

(T̄n−1 ◦ S̄◦jn−1)(σi)

)

=
n∑
i=0

mσ−1∑
j=mσi

(−1)i(T̄n−1 ◦ S̄◦jn−1)(σi). (13)

Since
S̄◦jn−1(σi) ∈ C Un−1(X)

for j ≥ mσi and

T̄n−1 : C Un−1(X)→ C Un (X),

it’s readily seen from (13) that

(Dmσ
n−1 ◦ ∂n)(σ)− D̄n−1(∂nσ) ∈ C Un (X),

and therefore ϕn(σ) ∈ C Un (X).
To show that the maps ϕn constitute a chain map C(X) → C U(X) as illustrated in the

diagram

· · · Cn+1(X) Cn(X) Cn−1(X) · · ·∂n+1 ∂n

· · · C Un+1(X) C Un (X) C Un−1(X) · · ·∂n+1 ∂n

ϕn+1 ϕn ϕn−1

we show that ϕn−1 ◦ ∂n = ∂n ◦ ϕn. Using (12), we obtain

∂n ◦ ϕn = ∂n ◦ n − ∂n ◦ ∂n+1 ◦ D̄n − ∂n ◦ D̄n−1 ◦ ∂n = ∂n − ∂n ◦ D̄n−1 ◦ ∂n

and

ϕn−1 ◦ ∂n = n−1 ◦ ∂n − ∂n ◦ D̄n−1 ◦ ∂n − D̄n−2 ◦ ∂n−1 ◦ ∂n = ∂n − ∂n ◦ D̄n−1 ◦ ∂n,

which verifies commutativity.
Now, the inclusion maps ιn constitute a chain map C U(X)→ C(X), and since (12) implies

∂n+1 ◦ D̄n + D̄n−1 ◦ ∂n = n − ιn ◦ ϕn (14)
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for all n, it follows that {ιn ◦ ϕn} is chain homotopic to { n}.
Next, we show that ϕn ◦ ιn = U

n , where U
n : C Un (X) → C Un (X) is the identity map. Let

σ : ∆n → Uk for some k, so that σ is a basis element for C Un (X). Since σi : ∆n−1 → Uk for
each i, we have mσi = 0 as well as mσ = 0. Hence,

(ϕn ◦ ιn)(σ) = ϕn(σ) = ( n − ∂n+1 ◦ D̄n − D̄n−1 ◦ ∂n)(σ)

= σ − ∂n+1(D0
n(σ))−

n∑
i=0

(−1)iD0
n−1(σi)

= σ − ∂n+1(0)−
n∑
i=0

(−1)i(0) = σ,

which completes the argument and so U
n − ϕn ◦ ιn = 0. Defining 0̄Un : C Un (X) → C Un+1(X) to

be the trivial homomorphism, what we have shown is

∂n+1 ◦ 0̄Un + 0̄Un−1 ◦ ∂n = 0 = U
n − ϕn ◦ ιn,

and therefore {ϕn ◦ ιn} is chain homotopic to { Un }.
At last we see that {ιn} is a chain-homotopy equivalence, and so by Proposition 2.5 each

ιn∗ : H Un (X)→ Hn(X) is an isomorphism. �

Proof of the Excision Theorem. Let U = {A,B}, where A and B are subspaces of X such
that A◦ ∪B◦ = X. Define C Un (X,A) = C Un (X)/C Un (A).

The maps ιn : C Un (X) ↪→ Cn(X) induce homomorphisms on quotient groups ῑn : C Un (X,A)→
Cn(X,A) given by

ῑn(α + C Un (A)) = ιn(α) + Cn(A) = α + Cn(A)

for each α ∈ C Un (X). It’s easy to verify that the maps ῑn form a chain map C U(X,A) →
C(X,A),

· · · C Un+1(X,A) C Un (X,A) C Un−1(X,A) · · ·∂̄ Un+1 ∂̄ Un

· · · Cn+1(X,A) Cn(X,A) Cn−1(X,A) · · ·∂̄n+1 ∂̄n

ῑn+1 ῑn ῑn−1

with the maps ∂̄n in the diagram being defined as in section 2.4, and the maps ∂̄ Un being the
obvious restrictions. Thus each ῑn in turn induces a homomorphism on homology groups

ῑn∗ : Ker ∂̄ Un / Im ∂̄ Un+1 := H Un (X,A)→ Ker ∂̄n/ Im ∂̄n+1 := Hn(X,A)

defined according to the general algebraic formula given in section 2.1.
Next, the maps ϕ̄n : Cn(X,A)→ C Un (X,A) defined by

ϕ̄n(α + Cn(X)) = ϕn(α) + C Un (A)

for each α ∈ Cn(X) give rise to a chain map C(X,A) → C U(X,A); and so, defining maps
¯̄Dn and ¯

n on Cn(X,A) in the canonical fashion from the maps D̄n and n in the proof of
Lemma 2.22, the diagram
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· · · Cn+1(X) Cn(X) Cn−1(X) · · ·∂n+1 ∂n

· · · Cn+1(X) Cn(X) Cn−1(X) · · ·∂n+1 ∂n

1n+1ιn+1 ◦ ϕn+1 1nιn ◦ ϕn ιn−1 ◦ ϕn−11n−1

D̄n D̄n−1

induces a diagram on quotient groups,

· · · Cn+1(X,A) Cn(X,A) Cn−1(X,A) · · ·∂̄n+1 ∂̄n

· · · Cn+1(X,A) Cn(X,A) Cn−1(X,A) · · ·∂̄n+1 ∂̄n

1̄n+1ῑn+1 ◦ ϕ̄n+1 1̄nῑn ◦ ϕ̄n ῑn−1 ◦ ϕ̄n−11̄n−1

¯̄Dn
¯̄Dn−1

Again referring to the proof of Lemma 2.22, from ϕn ◦ ιn = U
n and (14) we readily obtain

ϕ̄n ◦ ῑn = ¯U
n and

∂̄n+1 ◦ ¯̄Dn + ¯̄Dn−1 ◦ ∂̄n = ¯
n − ῑn ◦ ϕ̄n

for all n, where ¯U
n = C Un (X,A) and ¯

n = Cn(X,A). Thus {ϕ̄n ◦ ῑn} is chain-homotopic to
{ C Un (X,A)}, and {ῑn ◦ ϕ̄n} is chain-homotopic to { Cn(X,A)}, which implies that {ῑn} is a chain-

homotopy equivalence and therefore the maps ῑn∗ : H Un (X,A)→ Hn(X,A) are isomorphisms.
Now, define κn : Cn(B) ↪→ C Un (X) to be inclusion maps, which induce homomorphisms

κ̄n : Cn(B,A ∩B)→ C Un (X,A) given by

κ̄n(β + Cn(A ∩B)) = κn(β) + C Un (A) = β + C Un (A)

for each β ∈ Cn(B), noting that Cn(B) = C Un (B) ⊂ C Un (X). Since the maps κn form a chain
map, the maps κ̄n constitute a chain map at the quotient group level,

· · · Cn+1(B,A ∩B) Cn(B,A ∩B) Cn−1(B,A ∩B) · · ·∂̄Bn+1 ∂̄Bn

· · · C Un+1(X,A) C Un (X,A) C Un−1(X,A) · · ·∂̄ Un+1 ∂̄ Un

κ̄n+1 κ̄n κ̄n−1

and so induce homomorphisms

κ̄n∗ : Ker ∂̄Bn / Im ∂̄Bn+1 := Hn(B,A ∩B)→ Ker ∂̄ Un / Im ∂̄ Un+1 := H Un (X,A).

Fix n, and suppose that κ̄n(β+Cn(A∩B)) = C Un (A), the zero element of C Un (X,A). Then
β ∈ C Un (A), but since β ∈ C Un (B) also, it follows that β ∈ C Un (A ∩B) and so

β + Cn(A ∩B) = Cn(A ∩B).

Thus κ̄n is one-to-one.
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Next, let γ+C Un (A) ∈ C Un (X,A), so that γ ∈ C Un (X). We can assume that γ is a generator
for C Un (X) so that γ : ∆n → U for some U ∈ U . If U = A, then

κ̄n(Cn(A ∩B)) = C Un (A) = γ + C Un (A);

and if U = B, then γ + Cn(A ∩B) ∈ Cn(B,A ∩B) with

κ̄n(γ + Cn(A ∩B)) = κn(γ) + C Un (A) = γ + C Un (A).

Thus κ̄n is onto, and Proposition 2.2 implies that κ̄n∗ is an isomorphism.
Now we have isomorphisms

ῑn∗ ◦ κ̄n∗ : Hn(B,A ∩B)→ H Un (X,A)→ Hn(X,A)

for all n. Since ῑn∗ ◦ κ̄n∗ = (ῑn ◦ κ̄n)∗ by Proposition 2.4, it is a routine matter to show that
ῑn∗ ◦ κ̄n∗ = ̄n∗ by showing ῑn ◦ κ̄n = ̄n, so the proof is done. �

One result that follows fairly easily from the Excision Theorem is the following proposition,
which makes a nice connection between relative and absolute homology.

Proposition 2.23. If (X,A) is a good pair, then the quotient map

q : (X,A)→ (X/A,A/A)

induces isomorphisms

q̄n∗ : Hn(X,A)→ Hn(X/A,A/A) ∼= H̃n(X/A)

for all n ≥ 0.

Proof. Let V be a neighborhood in X that deformation retracts to A. Define homomorphisms
ln : Cn(X,A)→ Cn(X, V ) as follows: for each basis element σ : ∆n → X of Cn(X), let

ln(σ + Cn(A)) = σ + Cn(V );

similarly, define kn : Cn(V,A)→ Cn(X,A) by

kn(σ + Cn(A)) = σ + Cn(A)

for each σ : ∆n → V . Note that

0 −→ Cn(V,A)
kn−−−→ Cn(X,A)

ln−−−→ Cn(X, V ) −→ 0

is a short exact sequence, and thus we can construct a short exact sequence of chain complexes
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· · · Cn+1(V,A) Cn(V,A) Cn−1(V,A) · · ·∂n+1 ∂n

· · · Cn+1(X,A) Cn(X,A) Cn−1(X,A) · · ·∂n+1 ∂n

· · · Cn+1(X, V ) Cn(X, V ) Cn−1(X, V ) · · ·∂n+1 ∂n

kn+1 kn kn−1

ln+1 ln ln−1

0 0 0

0 0 0

with maps ∂n defined in the usual way (verification of commutativity is omitted here). From
this we obtain a long exact sequence for the triple (X, V,A),

· · · −→ Hn(V,A)
kn∗−−−→ Hn(X,A)

ln∗−−−→ Hn(X, V )
∂n∗−−−→ Hn−1(V,A) −→ · · · (15)

in the manner outlined in section 2.4.
The natural quotient map q : (X,A) → (X/A,A/A) given by q(x) = x + A induces

homomorphisms qn : Cn(X) → Cn(X/A) given by qn(σ) = q ◦ σ, which in turn induce maps
q̄n : Cn(X,A)→ Cn(X/A,A/A) given by

q̄n(σ + Cn(A)) = q ◦ σ + Cn(A/A).

Now we construct the diagram4

Cn(X,A) Cn(X, V ) Cn(X − A, V − A)
ln ̄n

Cn(X/A,A/A) Cn(X/A, V/A) Cn(X/A− A/A, V/A− A/A)
in ̄′n

q̄n q̄′n q̄′′n

where
in(σ + Cn(A/A)) = σ + Cn(V/A)

for each singular n-simplex σ : ∆n → X/A, and ̄n and ̄′n are defined as in equation (4). Much
like q̄n we have

q̄′n(σ + Cn(V )) = q ◦ σ + Cn(V/A),

and
q̄′′n(σ + Cn(V − A)) = q ◦ σ + Cn(V/A− A/A).

The diagram is commutative since

in(q̄n(σ + Cn(A))) = in(q ◦ σ + Cn(A/A)) = q ◦ σ + Cn(V/A)

= q̄′n(σ + Cn(V )) = q̄′n(ln(σ + Cn(A)))

4It is a quick matter to verify that X/A−A/A = (X −A)/A and so on.
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and

q̄′n(̄n(σ + Cn(V − A))) = q̄′n(σ + Cn(V )) = q ◦ σ + Cn(V/A)

= ̄′n(q ◦ σ + Cn(V/A− A/A)) = ̄′n(q̄′′n(σ + Cn(V − A))),

and therefore the diagram

Hn(X,A) Hn(X, V ) Hn(X − A, V − A)
ln∗ ̄n∗

Hn(X/A,A/A) Hn(X/A, V/A) Hn(X/A− A/A, V/A− A/A)
in∗ ̄′n∗

q̄n∗ q̄′n∗ q̄′′n∗

is also commutative.
The maps ̄n∗ and ̄′n∗ are isomorphisms by the Excision Theorem. The map q̄′′n is an

isomorphism since it is induced by the homeomorphism

q : (X − A, V − A)→ (X/A− A/A, V/A− A/A);

indeed, we find that q : X −A→ X/A−A/A and the restriction q : V −A→ V/A−A/A are
each homeomorphisms, and hence homotopy equivalences, and so we can invoke the result of
Proposition 2.18

Since V deformation retracts to A, there exists a retraction r : (V,A) → (A,A). Thus,
r : V → A is a homotopy equivalence, as is the restriction r : A → A (which in fact is simply
the identity map on A and so is a homeomorphism). Using Proposition 2.18 once more we
conclude that rn∗ : Hn(V,A)→ Hn(A,A) is an isomorphism, and since Hn(A,A) = 0 for all n
it follows that Hn(V,A) ∼= 0 for all n. Now, from the exact sequence (15) it can be seen that
ln∗ is an isomorphism as well. A similar argument will show that in∗ is an isomorphism since
r : (V,A)→ (A,A) induces a retraction (V/A,A/A)→ (A/A,A/A).

The commutativity of the diagram above leads to the conclusion that

q̄n∗ = (in∗)
−1 ◦ ̄′n∗ ◦ q̄′′n ◦ (̄n∗)

−1 ◦ ln∗,

and therefore q̄n∗ is an isomorphism. �

In section 2.4 we obtained the long exact sequence

· · · −→ H̃n(A)
in∗−−−→ H̃n(X)

jn∗−−−→ H̃n(X,A)
∂̄n∗−−−→ H̃n−1(A) −→ · · · −→ H̃0(X,A) −→ 0,

and since H̃n(X,A) = Hn(X,A) for all n ≥ 0 if A 6= ∅, it follows from Proposition 2.23 that

there is an isomorphism ϕn∗ : H̃n(X,A)→ H̃(X/A), and so we arrive at an exact sequence

· · · −→ H̃n(A)
in∗−−−→ H̃n(X)

qn∗−−−→ H̃n(X/A)
∂̂n∗−−−→ H̃n−1(A) −→ · · · −→ H̃0(X/A) −→ 0

with qn∗ = ϕn∗ ◦ jn∗ and ∂̂n∗ = ∂̄n∗ ◦ ϕ−1
n∗ . Thus Theorem 2.17 is proven once it is verified that

the maps qn∗ here are indeed the maps induced by q : X → X/A.
Enough machinery has now been developed to entertain a few interesting examples.
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Example 2.24. Here we will find explicit relative cycles representing generators of the infinite
cyclic groups Hn(Dn, ∂Dn).

Starting with (Dn, ∂Dn), pass to the equivalent pair (∆n, ∂∆n). It will be shown by induc-
tion that the identity map in : ∆n → ∆n is a cycle generating

Hn(∆n, ∂∆n) =
Ker[∂n : Cn(∆n, ∂∆n)→ Cn−1(∆n, ∂∆n)]

Im[∂n+1 : Cn+1(∆n, ∂∆n)→ Cn(∆n, ∂∆n)]

for n ≥ 0. Note an element of Hn(∆n, ∂∆n) has the form

(ϕ+ Cn(∂∆n)) + ∂n+1(Cn+1(∆n, ∂∆n))

for ϕ ∈ Cn(∆n) such that ϕ + Cn(∂∆n) ∈ Ker ∂n, so in fact it’s better to say it will be shown
that Hn(∆n, ∂∆n) = 〈[̄ın]〉, where

[̄ın] := (in + Cn(∂∆n)) + ∂n+1(Cn+1(∆n, ∂∆n))

is the generator.
Now,

∂n(in) =
n∑
k=0

(−1)kin|[u0,...,ûk,...,un],

where for each k we have in|[u0,...,ûk,...,un] : ∆n−1 → ∂∆n since [u0, . . . , ûk, . . . , un] ⊂ ∂∆n is the
kth “face” of ∆n, and so ∂n(in) ∈ Cn−1(∂∆n) and we see that in is a relative cycle.

Let n = 0. We have i0 : ∆0 → ∆0 and we must show that i0 represents a generator for

H0(∆0, ∂∆0) = H0(∆0,∅) ∼= H0(∆0) = H0({u0}) ∼= Z.

Fix [ϕ̄] ∈ H0(∆0, ∂∆0). Then

[ϕ̄] = ϕ̄+ ∂1(C1(∆0, ∂∆0))

with ϕ̄ = ϕ + C0(∂∆0) ∈ Ker ∂ for some ϕ ∈ C0(∆0). Clearly C0(∆0) = 〈i0〉, where i0 is the
map u0 7→ u0, and so ϕ = ki0 for some k ∈ Z. Hence[

ki0
]

= ki0 + ∂1(C1(∆0, ∂∆0)),

where

ki0 = ki0 + C0(∂∆0) = k(i0 + C0(∂∆0)) = kı̄0

so that

[ϕ̄] =
[
ki0
]

= [kı̄0] = k [̄ı0]

Therefore H0(∆0, ∂∆0) = 〈[̄ı0]〉 and the base case is done.
For the induction step, let n ≥ 1, and suppose in−1 is a cycle generating Hn−1(∆n−1, ∂∆n−1).

Let Λ be the union of all but one of the (n− 1)-dimensional faces of ∆n. The first claim is that
there exists isomorphisms

Hn(∆n, ∂∆n)
∼=−−−→ Hn−1(∂∆n,Λ)

∼=←−−− Hn−1(∆n−1, ∂∆n−1).
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For each k > 1, since ∆n and Λ are contractible, we obtain from the long exact sequence for
the pair (∆n,Λ)

· · · −→ Hk(∆
n)︸ ︷︷ ︸

0

−→ Hk(∆
n,Λ) −→ Hk−1(Λ)︸ ︷︷ ︸

0

−→ Hk−1(∆n)︸ ︷︷ ︸
0

−→ · · · ,

and so Hk(∆
n,Λ) ∼= 0. Now for the triple (∆n, ∂∆n,Λ) (note Λ ⊂ ∂∆n ⊂ ∆n) we have a long

exact sequence which gives, for n > 2,

· · · −→ Hn(∆n,Λ)︸ ︷︷ ︸
0

−→ Hn(∆n, ∂∆n)
∂̄n−−−→ Hn−1(∂∆n,Λ) −→ Hn−1(∆n,Λ)︸ ︷︷ ︸

0

−→ · · · ,

whence Hn(∆n, ∂∆n) ∼= Hn−1(∂∆n,Λ). When n = 2, since (∆2,Λ) is a good pair and ∆2/Λ

is contractible, it follows that H1(∆2,Λ) ∼= H̃1(∆2/Λ) = 0 and therefore H2(∆2, ∂∆2) ∼=
H1(∂∆2,Λ). The n = 1 case requires a more direct approach: we have

H1(∆1, ∂∆1) ∼= H̃1(∆1/∂∆1) ∼= H̃1(S1) ∼= Z,

and

H0(∂∆1,Λ) ∼= H̃0(∂∆1/Λ) ∼= Z,

where the last isomorphism obtains from the observation that

∂∆1/Λ = {u0 + Λ, u1 + Λ},

a two-point set. HenceH1(∆1, ∂∆1) ∼= H0(∂∆1,Λ), and it’s seen thatHn(∆n, ∂∆n) ∼= Hn−1(∂∆n,Λ)
for all n > 0 as desired.

The map ∂̄n : Hn(∆n, ∂∆n) → Hn−1(∂∆n,Λ) has now been established to be an isomor-
phism for all n ≥ 1, and it remains to determine explicitly how ∂̄n actually works. In general,
consider the long exact sequence for the triple (X,A,B), where of course B ⊂ A ⊂ X:

· · · −→ Hn(A,B) −→ Hn(X,B) −→ Hn(X,A)
∂̂n−−−→ Hn−1(A,B) −→ Hn−1(X,B) −→ · · ·

Let [ϕ̄] ∈ Hn(X,A). Define ∂Xn to be the usual boundary map Cn(X)→ Cn−1(X). Then since

Hn(X,A) =
Ker[∂n : Cn(X,A)→ Cn−1(X,A)]

Im[∂n+1 : Cn+1(X,A)→ Cn(X,A)]
,

we find that ϕ̄ = ϕ+ Cn(A) (where ϕ ∈ Cn(X)) is such that

∂n(ϕ+ Cn(A)) = ∂Xn ϕ+ Cn−1(A) = Cn−1(A),

and hence ∂Xn ϕ ∈ Cn−1(A); that is, ϕ is a “relative cycle”. The homomorphism ∂̂n will map
the class [ϕ̄] represented by the relative cycle ϕ to the class in Hn−1(A,B) represented by the

relative cycle ∂Xn ϕ, denoted here by [∂Xn ϕ]. Recalling

Hn−1(A,B) =
Ker[∂n−1 : Cn−1(A,B)→ Cn−2(A,B)]

Im[∂n : Cn(A,B)→ Cn−1(A,B)]
,

we see that [∂Xn ϕ] = (∂Xn ϕ+ Cn−1(B)) + ∂n(Cn(A,B)). Hence,

∂̂n[ϕ̄] = ∂̂n((ϕ+ Cn(A)) + ∂n+1(Cn+1(X,A)))
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= (∂Xn ϕ+ Cn−1(B)) + ∂n(Cn(A,B)).

Now, the map ∂̄n : Hn(∆n, ∂∆n)→ Hn−1(∂∆n,Λ) above operates in an analogous fashion.
For [̄ın] ∈ Hn(∆n, ∂∆n) we obtain

∂̄n [̄ın] = ∂̄n((in + Cn(∂∆n)) + ∂n+1(Cn+1(∆n, ∂∆n)))

= (∂∆n

n in + Cn−1(Λ)) + ∂n(Cn(∂∆n,Λ)).

As noted earlier, ∂∆n

n in (or simply ∂in) is the singular n-chain
∑n

k=0(−1)kin|[u0,...,ûk,...,un], where
for each 0 ≤ k ≤ n, in|[u0,...,ûk,...,un] acts as the “inclusion map” of ∆n−1 onto the kth face of
∆n (i.e. the face obtained when the kth vertex of ∆n is deleted). All but one of the maps
in|[u0,...,ûk,...,un] therefore maps to Λ. So if Λ is, say, the union of all but the 0th face of ∆n (i.e.
all but [û0, u1, . . . , un]), then it follows that in|[u0,...,ûk,...,un] : ∆n−1 → Λ for all k 6= 0, and thus
(−1)kin|[u0,...,ûk,...,un] ∈ Cn−1(Λ) for all k 6= 0 and we have

∂̄n [̄ın] =

(
n∑
k=0

(−1)kin|[u0,...,ûk,...,un] + Cn−1(Λ)

)
+ ∂n(Cn(∂∆n,Λ))

= (in|[û0,u1,...,un] + Cn−1(Λ)) + ∂n(Cn(∂∆n,Λ))

=
[
in|[û0,u1,...,un]

]
. (16)

Thus the class [
in|[û0,u1,...,un]

]
∈ Hn−1(∂∆n,Λ)

corresponds via an isomorphism to the class [̄ın] ∈ Hn(∆n, ∂∆n).
The next matter to verify is that there exists an isomorphism

ψ : Hn−1(∆n−1, ∂∆n−1)→ Hn−1(∂∆n,Λ).

The map ψ will be shown to be equal to a composition of five isomorphisms p−1
∗ ◦β∗ ◦`∗ ◦α∗ ◦q∗,

where

Hn−1(∆n−1, ∂∆n−1)
q∗−−−→ Hn−1(∆n−1/∂∆n−1, ∂∆n−1/∂∆n−1)

α∗−−−→ H̃n−1(∆n−1/∂∆n−1)

`∗−−−→ H̃n−1(∂∆n/Λ)
β∗−−−→ Hn−1(∂∆n/Λ,Λ/Λ)

p−1
∗−−−→ Hn−1(∂∆n,Λ).

The quotient map

q : (∆n−1, ∂∆n−1)→ (∆n−1/∂∆n−1, ∂∆n−1/∂∆n−1)

given by

q(x) = x+ ∂∆n−1

for each x ∈ ∆n−1 induces the homomorphism q∗ defined by

q∗((ϕ+ Cn−1(∂∆n−1)) + ∂n(Cn(∆n−1, ∂∆n−1)))

= (q ◦ ϕ+ Cn−1(∂∆n−1/∂∆n−1)) + ∂n(Cn(∆n−1/∂∆n−1, ∂∆n−1/∂∆n−1)),



42

where for ϕ =
∑

kmkσk we take q ◦ ϕ =
∑

kmk(q ◦ σk). By Proposition 2.23 q∗ is in fact an
isomorphism.

The isomorphism α∗ is quite natural. Given that

H̃n−1(∆n−1/∂∆n−1) =
Ker[∂n−1 : Cn−1(∆n−1/∂∆n−1)→ Cn−2(∆n−1/∂∆n−1)]

Im[∂n : Cn(∆n−1/∂∆n−1)→ Cn−1(∆n−1/∂∆n−1)]
,

we have

α∗((ϕ+ Cn−1(∂∆n−1/∂∆n−1)) + ∂n(Cn(∆n−1/∂∆n−1, ∂∆n−1/∂∆n−1)))

= ϕ+ ∂n(Cn(∆n−1, ∂∆n−1)).

The proof that α∗ is an isomorphism should be straightforward and will be omitted here.
Next we develop the isomorphism `∗. We start with ι : ∆n−1 → ∂∆n, defined to be the

“inclusion map” of ∆n−1 onto the face of ∆n not included in Λ. The map ι induces

` : ∆n−1/∂∆n−1 → ∂∆n/Λ,

given by

`(x+ ∂∆n−1) = ι(x) + Λ

for all x ∈ ∆n−1. Clearly ` is bijective and continuous, and since ∆n−1/∂∆n−1 is compact (it’s
homeomorphic to Sn−1) it follows that ` is a homeomorphism. Now, ` induces a homomorphism
`∗: recalling

H̃n−1(∂∆n/Λ) =
Ker[∂n−1 : Cn−1(∂∆n/Λ)→ Cn−2(∂∆n/Λ)]

Im[∂n : Cn(∂∆n/Λ)→ Cn−1(∂∆n/Λ)]
,

we find that
`∗(ϕ+ ∂n(Cn(∆n−1/∂∆n−1))) = ` ◦ ϕ+ ∂n(Cn(∂∆n/Λ)),

and since `∗ is induced by a homotopy equivalence it must be an isomorphism.
The homomorphism β∗, like α∗, is a quite natural map. For

ϕ ∈ Ker[∂n−1 : Cn−1(∂∆n/Λ)→ Cn−2(∂∆n/Λ)]

we obtain

β∗(ϕ+ ∂n(Cn(∂∆n/Λ))) = (ϕ+ Cn−1(Λ/Λ)) + ∂n(Cn(∂∆n/Λ,Λ/Λ)).

The map p−1
∗ is the inverse of the isomorphism

p∗ : Hn−1(∂∆n,Λ)→ Hn−1(∂∆n/Λ,Λ/Λ)

induced by the quotient map

p : (∂∆n,Λ)→ (∂∆n/Λ,Λ/Λ)

given by p(x) = x+ Λ. Specifically p∗ is given by

p∗((ϕ+ Cn−1(Λ)) + ∂n(Cn(∂∆n,Λ))) = (p ◦ ϕ+ Cn−1(Λ/Λ)) + ∂n(Cn(∂∆n/Λ,Λ/Λ)).

By the inductive hypothesis [̄ın−1] is a generator for Hn−1(∆n−1, ∂∆n−1). Now,

ψ([̄ın−1]) = p−1(β∗(`∗(α∗(q∗((in−1 + Cn−1(∂∆n−1)) + ∂n(Cn(∆n−1, ∂∆n−1)))))))
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= p−1(β∗(`∗(α∗((q ◦ in−1 + Cn−1(∂∆n−1/∂∆n−1))

+ ∂n(Cn(∆n−1/∂∆n−1, ∂∆n−1/∂∆n−1))))))

= p−1(β∗(`∗(q ◦ in−1 + ∂n(Cn(∆n−1/∂∆n−1)))))

= p−1(β∗(` ◦ q ◦ in−1 + ∂n(Cn(∂∆n/Λ))))

= p−1((` ◦ q ◦ in−1 + Cn−1(Λ/Λ)) + ∂n(Cn(∂∆n/Λ,Λ/Λ))). (17)

For the sake of definiteness let us again assume that Λ is the union of all but the 0th face
of ∆n. Given this assumption, recall from (16) the class[

in|[û0,u1,...,un]

]
∈ Hn−1(∂∆n,Λ).

We find that

p∗

([
in|[û0,u1,...,un]

])
= (p ◦ in|[û0,u1,...,un] + Cn−1(Λ/Λ)) + ∂n(Cn(∂∆n/Λ,Λ/Λ)),

where p ◦ in|[û0,u1,...,un] : ∆n−1 → ∂∆n/Λ such that, for x ∈ ∆n−1, we have

p(in|[û0,u1,...,un](x)) = p(x ∈ 0th face of ∆n) = (x ∈ 0th face of ∆n) + Λ.

On the other hand there is also the map ` ◦ q ◦ in−1 : ∆n−1 → ∂∆n/Λ which, for any x ∈ ∆n−1,
yields

`(q(in−1(x))) = `(q(x)) = `(x+ ∂∆n−1) = ι(x) + Λ = (x ∈ 0th face of ∆n) + Λ.

Hence p ◦ in|[û0,u1,...,un] = ` ◦ q ◦ in−1, which shows that

p∗

([
in|[û0,u1,...,un]

])
= (` ◦ q ◦ in−1 + Cn−1(Λ/Λ)) + ∂n(Cn(∂∆n/Λ,Λ/Λ)),

and therefore since p∗ is an isomorphism

p−1
∗ ((` ◦ q ◦ in−1 + Cn−1(Λ/Λ)) + ∂n(Cn(∂∆n/Λ,Λ/Λ))) =

[
in|[û0,u1,...,un]

]
.

So, from (17) it’s seen that

ψ([̄ın−1]) =
[
in|[û0,u1,...,un]

]
,

which together with (16) yields

∂̄n [̄ın] =
[
in|[û0,u1,...,un]

]
= ψ([̄ın−1]).

Thus we find that [̄ın] ∈ Hn(∆n, ∂∆n) corresponds via the isomorphism ψ−1 ◦ ∂̄ to the class
[̄ın−1] ∈ Hn−1(∆n−1, ∂∆n−1), and since [̄ın−1] is a generator for Hn−1(∆n−1, ∂∆n−1), it follows
that [̄ın] is a generator for Hn(∆n, ∂∆n).

Therefore for all n ≥ 0 the singular n-simplex h ◦ in : ∆n → Dn is a relative cycle that
represents a generator for Hn(Dn, ∂Dn), where h : (∆n, ∂∆n) → (Dn, ∂Dn) is taken to be any
homeomorphism. �
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Example 2.25. We can build on the result of the previous example by finding an explicit cycle
representing a generator of the infinite cyclic group Hn(Sn) for each n ≥ 1.

To start, define two singular n-simplices τ1 : ∆n → Sn and τ2 : ∆n → Sn, where τ1 maps
to one hemisphere A of Sn, and τ2 maps to the opposite hemisphere B such that τ2 = ρ ◦ τ1

with ρ : Sn → Sn being reflection about the plane containing A ∩ B. In the n = 1 case τ1

can be thought of as mapping ∆1 = [u0, u1] to S1 ⊂ R2 in linear fashion from p = (1, 0) to
q = (−1, 0) through H2

+ (the “upper” semicircle), while τ2 maps [u0, u1] from p to q through
H2
− (the “lower” semicircle). Now,

∂(τ1 − τ2) = ∂τ1 − ∂τ2

= (τ1|[û0,u1] − τ1|[u0,û1])− (τ2|[û0,u1] − τ2|[u0,û1])

= (q − p)− (q − p) = 0,

so we see that τ1 − τ2 ∈ C1(S1) is a cycle, and in general τ1 − τ2 ∈ Cn(Sn) is a cycle for each
n ≥ 1. The claim will be that [τ1− τ2] ∈ Hn(Sn) is a generator for the group. To establish this,
we will examine the isomorphisms in the diagram

Hn(Sn)
j∗−−−→ Hn(Sn, τ2(∆n))

∼=←−−− Hn(∂∆n+1,Λ)
ψ←−−− Hn(∆n, ∂∆n) (18)

for n ≥ 1. Note that τ2(∆n), being a closed hemisphere of Sn ⊂ Rn+1, is homeomorphic to Dn,
which in turn is homeomorphic to ∆n itself.

The first isomorphism in (18) is precisely the map jn∗ : Hn(Sn) → Hn(Sn, τ2(∆n)) in the
long exact sequence for the pair (Sn, τ2(∆n)), which by definition is induced by the quotient
map

j : Cn(Sn)→ Cn(Sn, τ2(∆n))

given by j(ϕ) = ϕ+Cn(τ2(∆n)), and therefore for any singular n-chain ϕ ∈ Ker[∂n : Cn(Sn)→
Cn−1(Sn)] we have

jn∗(ϕ+ ∂n+1(Cn+1(Sn))) = j(ϕ) + ∂n+1(Cn+1(Sn, τ2(∆n)))

= (ϕ+ Cn(τ2(∆n))) + ∂n+1(Cn+1(Sn, τ2(∆n))).

In particular,

jn∗([τ1 − τ2]) = jn∗((τ1 − τ2) + ∂n+1(Cn+1(Sn)))

= ((τ1 − τ2) + Cn(τ2(∆n))) + ∂n+1(Cn+1(Sn, τ2(∆n)))

= (τ1 + Cn(τ2(∆n))) + ∂n+1(Cn+1(Sn, τ2(∆n))),

where the last equality holds since of course τ2 ∈ Cn(τ2(∆n)).
The third isomorphism is the map ψ of previous acquaintance, only with the integer n− 1

replaced with n. It’s known from Example 2.24 that [̄ın] ∈ Hn(∆n, ∂∆n) is a generator for the
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group, and if we assume that Λ is the union of all but the 0th face of ∆n+1 (which is opposite
the vertex u0), then

ψ([̄ın]) = (in+1|[û0,u1,...,un+1] + Cn(Λ)) + ∂n+1(Cn+1(∂∆n+1,Λ))

Noting that ∂∆n+1 is homeomorphic to Sn and Λ is homeomorphic to τ2(∆n), the second
isomorphism above is induced by a homeomorphism

h : (∂∆n+1,Λ)→ (Sn, τ2(∆n))

that can be constructed using the Pasting Lemma. Let λ denote the 0th face of ∆n+1, so
∂∆n+1 = Λ∪λ. Let T : λ→ ∆n be the canonical linear homeomorphism and define h|λ = τ1◦T ,
so h|λ maps the 0th face of ∂∆n+1 homeomorphically onto the hemisphere τ1(∆n) of Sn. Next,
let L : Λ→ ∆n be a homeomorphism such that L|Λ∩λ = T |Λ∩λ (observe that ∂Λ = Λ∩λ = ∂λ),
and define h|Λ = τ2 ◦L. Then h|Λ maps Λ homeomorphically onto the hemisphere τ2(∆n), and
since τ1|∂∆n = τ1|∂∆n it follows that h|λ(x) = h|Λ(x) for all x ∈ Λ∩ λ and thus h : ∂∆n+1 → Sn
is a homeomorphism. It induces isomorphisms

hn∗ : Hn(∂∆n+1,Λ)→ Hn(Sn, τ2(∆n)).

given by

hn∗((in+1|[û0,u1,...,un+1] + Cn(Λ)) + ∂n+1(Cn+1(∂∆n+1,Λ)))

= (h ◦ in+1|[û0,u1,...,un+1] + Cn(τ2(∆n))) + ∂(Cn+1(Sn, τ2(∆n)))

= (h ◦ in+1|λ + Cn(τ2(∆n))) + ∂(Cn+1(Sn, τ2(∆n))).

Here h ◦ in+1|λ is as usual implicitly precomposed with a canonical linear homeomorphism
∆n 7→ λ which is in fact T−1. Now, for x ∈ ∆n, we have

(h ◦ in+1|λ ◦ T−1)(x) = h(in+1|λ(T−1(x)))

= h(T−1(x)) (since T−1(x) ∈ λ)

= h|λ(T−1(x))

= (τ1 ◦ T )(T−1(x)) (by definition of h|λ)

= τ1(x),

and so h ◦ in+1|λ ◦ T−1 = τ1. Suppressing T−1 as is customary, it’s seen that

hn∗((in+1|[û0,u1,...,un+1] + Cn(Λ)) + ∂n+1(Cn+1(∂∆n+1,Λ)))

= (τ1 + Cn(τ2(∆n))) + ∂n+1(Cn+1(Sn, τ2(∆n))).

Hence

hn∗(ψ([̄ın])) = (τ1 + Cn(τ2(∆n))) + ∂n+1(Cn+1(Sn, τ2(∆n))) = jn∗([τ1 − τ2]),
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or simply

[τ1 − τ2] = ((jn∗)
−1 ◦ hn∗ ◦ ψ)([̄ın]).

So [τ1− τ2] ∈ Hn(Sn) corresponds via isomorphism to the generator [̄ın] ∈ Hn(∆n, ∂∆n), which
shows that [τ1 − τ2] is a generator for Hn(Sn). �

Example 2.26. We are now in a position to find explicit generators for H1(T2), which will
prove useful later on when we turn our attention toward calculating homology groups using
Mayer-Vietoris sequences.

This will be done by finding the generators for H1(S1 × S1) (where we view S1 × S1 as
a subspace of R4) and invoking the usual homeomorphism S1 × S1 7→ T2. Considering two
copies of the 1-sphere, S1

1 and S1
2, we define τ1, τ2 : ∆1 → S1

1 as in Example 2.25, and we define
σ1, σ2 : ∆1 → S1

2 the same way. Then [τ1 − τ2] is an explicit generator for H1(S1
1) and [σ1 − σ2]

is an explicit generator for H1(S1
2), and it follows that {([τ1− τ2], 0), (0, [σ1−σ2])} is a basis for

the free abelian group H1(S1
1) �H1(S1

2).
Define ι1 : S1

1 → S1
1 × S1

2 and ι2 : S1
2 → S1

1 × S1
2 by

ι1(x1, y1) = ((x1, y1), (1, 0)) and ι2(x2, y2) = ((1, 0), (x2, y2))

(viewing each copy of the 1-sphere as a subspace of R2). Also define τ̂i = ιi ◦ τi and σ̂i = ιi ◦σi,
all being maps ∆1 7→ S1

1 × S1
2. Finally, define JξK := ξ + ∂2(C2(S1

1 × S1
2)) for any cycle ξ. The

claim here is that Jτ̂1 − τ̂2K and Jσ̂1 − σ̂2K are generators for H1(S1
1 × S1

2) ∼= Z � Z. To verify
this claim, define a homomorphism

ω : H1(S1
1) �H1(S1

2)→ H1(S1
1 × S1

2)

by

ω(m[τ1 − τ2], n[σ1 − σ2]) := mω([τ1 − τ2], 0) + nω(0, [σ1 − σ2])

= mJτ̂1 − τ̂2K + nJσ̂1 − σ̂2K
= Jm(τ̂1 − τ̂2) + n(σ̂1 − σ̂2)K.

It remains to show that ω is an isomorphism.
Suppose ω (m[τ1 − τ2], n[σ1 − σ2]) = J0K, so

m(τ̂1 − τ̂2) + n(σ̂1 − σ̂2) ∈ ∂2(C2(S1
1 × S1

2))

and there exists some

α =
∑̀
i=1

kiαi ∈ C2(S1
1 × S1

2)

such that ∂2(α) = m(τ̂1 − τ̂2) + n(σ̂1 − σ̂2) (here αi : ∆n → S1
1 × S1

2 for each i). That is,

∑̀
i=1

ki
(
αi|[u1,u2] − αi|[u0,u2] + αi|[u0,u1]

)
= m(τ̂1 − τ̂2) + n(σ̂1 − σ̂2).
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Assume to start that n = 0, so ∂2(α) = m(τ̂1 − τ̂2). Letting x ∈ ∆2, then for each i, αi(x) =
(f 1
i (x); f 2

i (x)) for f ji : ∆2 → S1
j . Defining α̃i : ∆2 → S1

1 by α̃i(x) = f 1
i (x), we readily find for

α̃ =
∑̀
i=1

kiα̃i

that ∂2(α̃) = m(τ1−τ2) and hence m(τ1−τ2) ∈ ∂2(C2(S1
1)). Now, since τ1−τ2 is a generator for

H1(S1
1) we cannot have m(τ1−τ2) ∈ ∂2(C2(S1

1)) unless m = 0, otherwise we obtain H1(S1
1) ∼= Zk

for some 1 ≤ k ≤ |m|. Thus if n = 0, then m = 0 also. Similarly m = 0 must imply that n = 0.
We must rule out the possibility that m,n 6= 0. To do this, for each i we redefine αi

such that any restriction of αi to a face of ∆2 that equals σ̂1 or σ̂2 is replaced with τ̂1 or τ̂2,
respectively—along with a corresponding change in the definition of αi in the interior of ∆2 to
maintain continuity. In this way we obtain a new map α̃i, and by extension a new chain α̃ such
that

∂2(α̃) = m(τ̂1 − τ̂2) + n(τ̂1 − τ̂2) = (m+ n)(τ̂1 − τ̂2).

Then m+ n = 0 must hold, or n = −m, and we’re led to conclude that

∂2(α) = m(τ̂1 − τ̂2)−m(σ̂1 − σ̂2).

From here, manipulating αi’s to replace the cycle σ̂1 − σ̂2 with σ̂2 − σ̂1 will give 2m = 0 and
hence m,n = 0.

So ω (m[τ1 − τ2], n[σ1 − σ2]) = J0K implies that (m[τ1 − τ2], n[σ1 − σ2]) = (0, 0), which
shows that Kerω is trivial and hence ω is injective.

Now let JξK ∈ H1(S1
1 × S1

2) be arbitrary. Then the 1-chain ξ =
∑`

i=1 kiξi is a cycle, so
ξi : ∆1 → S1

1 × S1
2 such that ∑̀

i=1

ki(ξi(u1)− ξi(u0)) = 0.

Such a cycle will be homotopic to the cycle

m(τ̂1 − τ̂2) + n(σ̂1 − σ̂2)

for some m,n ∈ Z, which is a loop based at ((1, 0), (1, 0)); thus, since homotopic cycles are
homologous, we find that

ω(m[τ1 − τ2], n[σ1 − σ2]) = Jm(τ̂1 − τ̂2) + n(σ̂1 − σ̂2)K = JξK

for (m[τ1 − τ2], n[σ1 − σ2]) ∈ H1(S1
1) �H1(S1

2). It follows that ω is surjective.
It’s now established that ω is an isomorphism, and since Jτ̂1− τ̂2K and Jσ̂1− σ̂2K correspond

via this isomorphism to the generators ([τ1 − τ2], 0) and (0, [σ1 − σ2]) for H1(S1
1) � H1(S1

2), it
follows that

Jτ̂1 − τ̂2K, Jσ̂1 − σ̂2K ∈ H1(S1
1 × S1

2)

are explicit generators for H1(S1
1 × S1

2). Now, if h : S1
1 × S1

2 → T2 is any homeomorphism, then
Jh ◦ τ̂1 − h ◦ τ̂2K and Jh ◦ σ̂1 − h ◦ σ̂2K are generators for H1(T2). �
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Example 2.27. In keeping with the philosophy that being explicit oftentimes trumps being
“elegant” at least when it comes to being pedagogically useful, what follows is a simple example
of how a path in S1

1 × S1
2 can be homotoped to a path of the form m(τ̂1 − τ̂2) + n(σ̂1 − σ̂2).

Let γ : [0, 1]→ S1
1 × S1

2 be given by

γ(t) = ((1, 4πt), (1, 2πt)),

so γ is a path in S1
1 × S1

2 that runs twice around S1
1 whilst simultaneously running once around

S1
2. (In T2 this map can be characterized as a path that wends twice around the girth of the

torus while going once around its central hole.) Set γ0 = γ and define γ1 : [0, 1]→ S1
1 × S1

2 by

γ1(t) =

{
((1, 8πt), (1, 0)), if 0 ≤ t ≤ 1/2

((1, 4π), (1, 4πt− 2π)), if 1/2 ≤ t ≤ 1

Note that γ1 is a path that first runs twice around S1
1 (staying stationary in S1

2), then runs once
around S1

2 (staying stationary in S1
1). Thus γ1 is in fact (homotopic to) the singular 1-chain

2(τ̂1 − τ̂2) + (σ̂1 − σ̂2). Now, let {γs}s∈[0,1] be the family of functions given by

γs(t) =

{
((1, 4π(t+ st)), (1, 2π(t− st))), if 0 ≤ t ≤ 1/2

((1, 4π(t− st+ s)), (1, 2π(t+ st− s))), if 1/2 ≤ t ≤ 1

It is straightforward to verify that {γs}s∈[0,1] is a homotopy, and therefore γ is homotopic to
2(τ̂1 − τ̂2) + (σ̂1 − σ̂2). �
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2.9 – Mayer-Vietoris Sequences

Let X be a topological space, and let A,B ⊂ X such that X = A◦ ∪B◦. Define Cn(A+B)
to be the subgroup of Cn(X) consisting of chains that are reducible to the form σ + τ ,5 where
σ ∈ Cn(A) and τ ∈ Cn(B). The boundary map ∂Xn : Cn(X) → Cn−1(X) has restriction ∂+

n :
Cn(A+B)→ Cn−1(A+B), and also ∂∩n : Cn(A ∩B)→ Cn−1(A ∩B), ∂An : Cn(A)→ Cn−1(A),
and ∂Bn : Cn(B) → Cn−1(B). All boundary maps ∂ defined here give rise to chain complexes
since ∂∂ = 0 always holds, and so in particular there are the homology groups

HA+B
n (X) =

Ker[∂+
n : Cn(A+B)→ Cn−1(A+B)]

Im[∂+
n+1 : Cn+1(A+B)→ Cn(A+B)]

.

Lemma 2.28. Define ϕn : Cn(A + B) → Cn(A) � Cn(B) by ϕn(σ) = (σ,−σ), and define
ψn : Cn(A) � Cn(B)→ Cn(A+B) by ψn(σ, τ) = σ + τ . Then

0 −→ Cn(A ∩B)
ϕn−−−→ Cn(A) � Cn(B)

ψn−−−→ Cn(A+B) −→ 0 (19)

is a short exact sequence.

Proof. Let σ ∈ Kerϕn, so ϕn(σ) = (σ,−σ) = (0, 0). This implies that σ = 0 ∈ Cn(A), and
since a subgroup must have the same identity element as the group that contains it, it follows
that σ = 0 ∈ Cn(A ∩B). Thus Kerϕn = {0}.

For any σ ∈ Cn(A ∩B) we have

ψn(ϕn(σ)) = ψn(σ,−σ) = σ + (−σ) = 0,

so Imϕn ⊂ Kerψn.
Next, suppose that (σ, τ) ∈ Kerψn. Then ψn(σ, τ) = σ + τ = 0, implying that σ = −τ

and so σ ∈ Cn(A ∩ B) (since σ ∈ Cn(A), and τ ∈ Cn(B) implies −τ ∈ Cn(B)). Now,
ϕn(σ) = (σ,−σ) = (σ, τ) shows that (σ, τ) ∈ Imϕn. So Kerψn ⊂ Imϕn.

Finally, fix ξ ∈ Cn(A + B). Then ξ = σ + τ for some σ ∈ Cn(A) and τ ∈ Cn(B). Now,
(σ, τ) ∈ Cn(A) � Cn(B), and ψn(σ, τ) = σ + τ = ξ shows ξ ∈ Imψn. Therefore Imψn =
Cn(A+B). �

The Mayer-Vietoris sequence is the long exact sequence of homology groups

· · · −→ Hn(A ∩B)
Φn−−−→ Hn(A) �Hn(B)

Ψn−−−→ Hn(X)
∂n−−−→ Hn−1(A ∩B) −→ · · ·

· · · −→ H0(X) −→ 0 (20)

associated with the short exact sequence of chain complexes in Figure 6 formed by the sequences
(19), where we define ∂◦n = ∂An � ∂Bn . It must be verified that the diagram is commutative, and
the definitions of the homomorphisms Φn, Ψn and ∂n in (20) should be made explicit. Once
this is done, it will be confirmed that (20) is indeed exact.

For z ∈ Cn(A ∩B) we have ϕn−1(∂∩n z) = (∂∩n z,−∂∩n z) while

∂◦n(ϕn(z)) = (∂An � ∂Bn )(z,−z) = (∂An z, ∂
B
n (−z)) = (∂∩n z,−∂nz),

5Cn(A+B) is also denoted by C U
n (X) for U = {A,B}.
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· · · Cn+1(A ∩B) Cn(A ∩B) Cn−1(A ∩B) · · ·∂ ∩n+1 ∂ ∩n

· · · Cn+1(A) � Cn+1(B) Cn(A) � Cn(B) Cn−1(A) � Cn−1(B) · · ·∂◦n+1 ∂◦n

· · · Cn+1(A+B) Cn(A+B) Cn−1(A+B) · · ·∂+
n+1 ∂+

n

ϕn+1 ϕn ϕn−1

ψn+1 ψn ψn−1

0 0 0

0 0 0

Figure 6

since ∂An |Cn(A∩B) = ∂∩n and ∂Bn |Cn(A∩B) = ∂∩n . Hence ϕn−1 ◦ ∂∩n = ∂◦n ◦ ϕn.
Next, for (σ, τ) ∈ Cn(A) � Cn(B),

ψn−1(∂◦n(σ, τ)) = ψn−1(∂An σ, ∂
B
n τ) = ∂An σ + ∂Bn τ,

while

∂+
n (ψn(σ, τ)) = ∂+

n (σ + τ) = ∂+
n σ + ∂+

n τ = ∂An σ + ∂Bn τ,

where the last equality holds since ∂+
n : Cn(A+B)→ Cn−1(A+B) has restrictions ∂+

n |Cn(A) = ∂An
and ∂+

n |Cn(B) = ∂Bn . Hence ψn−1 ◦ ∂◦n = ∂+
n ◦ ψn. So the diagram is commutative.

Define the map

Φn : Hn(A ∩B)→ Hn(A) �Hn(B)

by Φn([z]∩) = ([z]A, [−z]B). Given that

Hn(A ∩B) =
Ker[∂∩n : Cn(A ∩B)→ Cn−1(A ∩B)]

Im[∂∩n+1 : Cn+1(A ∩B)→ Cn(A ∩B)]
,

we could write more explicitly

Φn(z + ∂∩n+1(Cn+1(A ∩B))) = (z + ∂An+1(Cn+1(A)),−z + ∂Bn+1(Cn+1(B))).

We take Ψn : Hn(A) � Hn(B) → Hn(X) as being given by Ψn = ι∗ ◦ ψ∗, where the map
ψ∗ : Hn(A) �Hn(B)→ HA+B

n (X) is the homomorphism induced by ψn:

ψ∗([σ]A, [τ ]B) = [ψn(σ, τ)]+ = [σ + τ ]+ := (σ + τ) + ∂+
n+1(Cn+1(A+B)),

for any σ ∈ Ker ∂An and τ ∈ Ker ∂Bn . By Lemma 2.22 the inclusion map ι : Cn(A+B) ↪→ Cn(X)
induces an isomorphism ι∗ : HA+B

n (X)→ Hn(X) given by ι∗([z]+) = [z], or more explicitly

ι∗(z + ∂+
n+1(Cn+1(A+B))) = z + ∂Xn+1(Cn+1(X)).

Thus

Ψn([σ]A, [τ ]B) = ι∗([σ + τ ]+) = [σ + τ ],
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where ∂An σ = 0 and ∂Bn τ = 0 imply that

∂Xn (σ + τ) = ∂Xn σ + ∂Xn τ = ∂An σ + ∂Bn τ = 0

as required.
Let [x] ∈ Hn(X), so x ∈ Ker ∂Xn ⊂ Cn(X). Since ι∗ is an isomorphism there exists some

[ξ]+ ∈ HA+B
n (X) such that ι∗([ξ]+) = [x], or [ξ] = [x]. Hence x is homologous to ξ ∈ Ker ∂Xn ,

and since ξ ∈ Ker ∂+
n ⊂ Cn(A+B) there exist σ ∈ Cn(A) and τ ∈ Cn(B) such that ξ = σ + τ ,

and thus [x] = [σ + τ ]. But ∂Xn ξ = 0 implies that ∂Xn (σ + τ) = 0, so ∂Xn σ = −∂Xn τ ; and since
∂Xn σ ∈ Cn−1(A) and ∂Xn τ ∈ Cn−1(B), it follows that ∂Xn σ ∈ Cn−1(A) ∩ Cn−1(B) and therefore
∂Xn σ ∈ Cn−1(A ∩ B). Now to define ∂n : Hn(X) → Hn−1(A ∩ B). We have [x] = [σ + τ ] for
σ + τ ∈ Cn(A+B), and ψn(σ, τ) = σ + τ for (σ, τ) ∈ Cn(A) � Cn(B). Since

ψn−1(∂◦n(σ, τ)) = ψn−1(∂An σ, ∂
B
n τ) = ψn−1(∂Xn σ, ∂

X
n τ) = ∂Xn σ + ∂Xn τ = ∂Xn (σ + τ) = 0

shows that ∂◦n(σ, τ) ∈ Kerψn−1 and Kerψn−1 = Imϕn−1, there must be some z ∈ Cn−1(A ∩B)
for which ϕn−1(z) = ∂◦n(σ, τ) = (∂Xn σ, ∂

X
n τ). However since

ϕn−1(∂Xn σ) = (∂Xn σ,−∂Xn σ) = (∂Xn σ, ∂
X
n τ)

and ϕn−1 is injective, it must be that z = ∂Xn σ! We define ∂n([x]) = [∂Xn σ]∩. This manner
of defining ∂n mirrors that of the previous section and thus is assured of being a well-defined
homomorphism.

It remains to demonstrate that the sequence (20) is exact.

Proof.
• Im Φn ⊂ Ker Ψn. Let [z]∩ ∈ Hn(A ∩B). Now,

Ψn(Φn([z]∩) = Ψn([z]A, [−z]B) = [z + (−z)] = [0],

and so Φn([z]∩) ∈ Ker Ψn.

• Im Ψn ⊂ Ker ∂n. Let [z] ∈ Im Ψn. Then there is some ([x]A, [y]B) ∈ Hn(A)�Hn(B) such that
Ψn([x]A, [y]B) = [z], whence [z] = [x + y] with x ∈ Ker ∂An ⊂ Cn(A) and y ∈ ∂Bn ⊂ Cn(B). By
the definition of ∂n,

∂n[z] = ∂n[x+ y] = [∂Xn x]∩ = [∂An x]∩ = [0]∩,

where the third equality holds since ∂An = ∂Xn |Cn(A). Hence [z] ∈ Ker ∂n.

• Im ∂n ⊂ Ker Φn−1. Let [z]∩ ∈ Im ∂n, so there exists some [x] ∈ Hn(X) with ∂n[x] = [z]∩. As
before, we can find some σ ∈ Cn(A) and τ ∈ Cn(B) such that [x] = [σ + τ ], and then

∂n[x] = ∂n[σ + τ ] = [∂Xn σ]∩.

Thus [z]∩ = [∂Xn σ]∩, and

Φn−1([z]∩) = Φn−1([∂Xn σ]∩) = ([∂An σ]A, [−∂An σ]B) = ([∂An σ]A, [∂
B
n τ ]B),

where the last equality holds since

∂Xn (σ + τ) = 0 ⇒ ∂Xn τ = −∂Xn σ ⇒ ∂Bn τ = −∂An σ.
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Now,

[∂An σ]A = ∂An σ + ∂An (Cn(A)) = ∂An (Cn(A)) = [0]A

and similarly [∂Bn τ ]B = [0]B. Thus we have Φn−1([z]∩) = ([0]A, [0]B), giving [z]∩ ∈ Ker Φn−1.

•Ker Ψn ⊂ Im Φn. Let ([σ]A, [τ ]B) ∈ Ker Ψn, so σ ∈ Ker ∂An ⊂ Cn(A), τ ∈ Ker ∂Bn ⊂ Cn(B),
and

Ψ([σ]A, [τ ]B) = ι∗(ψ∗([σ]A, [τ ]B)) = 0

implies that [σ + τ ]+ = ψ∗([σ]A, [τ ]B) = [0]+ since ι∗ is injective. Hence

(σ + τ) + ∂+
n+1(Cn+1(A+B)) = ∂+

n+1(Cn+1(A+B)),

so that there exists some c′ ∈ Cn+1(A+ B) such that ∂+
n+1c

′ = σ + τ = ψn(σ, τ). Since ψn+1 is
surjective there exists some (σ′, τ ′) ∈ Cn+1(A)� Cn+1(B) such that ψn+1(σ′, τ ′) = σ′ + τ ′ = c′.

Now, (σ, τ)− ∂◦n+1(σ′, τ ′) ∈ Cn(A) � Cn(B), and

ψn((σ, τ)− ∂◦n+1(σ′, τ ′)) = ψn(σ, τ)− ψn(∂◦n+1(σ′, τ ′))

= ψn(σ, τ)− ∂+
n+1(ψn+1(σ′, τ ′))

= (σ + τ)− ∂+
n+1c

′ = (σ + τ)− (σ + τ) = 0

shows that

(σ, τ)− ∂◦n+1(σ′, τ ′) ∈ Kerψn = Imϕn,

so there’s some a ∈ Cn(A ∩B) such that ϕn(a) = (σ, τ)− ∂◦n+1(σ′, τ ′). Since

(a,−a) = ϕn(a) = (σ, τ)− (∂An+1 � ∂Bn+1)(σ′, τ ′) = (σ − ∂An+1σ
′, τ − ∂Bn+1τ

′)

we have a = σ − ∂An+1σ
′ and −a = τ − ∂Bn+1τ

′.
Forging on,

ϕn−1(∂∩n (a)) = ∂◦n(ϕn(a)) = ∂◦n(σ, τ)− ∂◦n∂◦n+1(σ′, τ ′)

= ∂◦n(σ, τ) = (∂An σ, ∂
B
n τ) = (0, 0),

and since ϕn−1 is injective we get ∂∩n (a) = 0, so that a ∈ Ker ∂∩n and [a]∩ ∈ Hn(A∩B). Finally,

Φn([a]∩) = ([a]A, [−a]B) = ([σ − ∂An+1σ
′]A, [τ − ∂Bn+1τ

′]B) = ([σ]A, [τ ]B),

where the last equality holds since

[σ − ∂An+1σ
′]A = (σ − ∂An+1σ

′) + ∂An+1(Cn+1(A))

= (σ + ∂An+1(−σ′)) + ∂An+1(Cn+1(A))

= σ + ∂An+1(Cn+1(A)) = [σ]A,

and similarly for [τ ]B. So ([σ]A, [τ ]B) ∈ Im Φn.



53

•Ker ∂n ⊂ Im Ψn. Recalling that Ψn = ι∗ ◦ ψ∗, it will first be shown that Ker ∂n ◦ ι∗ ⊂ Imψ∗.
Let

[c]+ ∈ Ker ∂n ◦ ι∗ ⊂ HA+B
n (X),

so c ∈ Ker ∂+
n ⊂ Cn(A + B) and there exists σ ∈ Cn(A), τ ∈ Cn(B) such that c = σ + τ . Set

b = (σ, τ), so ψn(b) = σ + τ = c. Now

ψn−1(∂◦nb) = ∂+
n (ψn(b)) = ∂+

n c = 0

implies ∂◦nb ∈ Kerψn−1 = Imϕn−1, so there exists an a ∈ Cn−1(A ∩B) such that

(a,−a) = ϕn−1(a) = ∂◦nb = (∂An σ, ∂
B
n τ).

We see that ∂Xn σ = ∂An σ = a ∈ Cn−1(A ∩ B), and from ∂∩n−1a = ∂∩n−1∂
X
n σ = 0 it’s clear that

[a]∩ = [∂Xn σ]∩ ∈ Hn−1(A ∩B).
By the definition of ∂n,

(∂n ◦ ι∗)([c]+) = ∂n([c]) = ∂n([σ + τ ]) = [∂Xn σ]∩ = [a]∩.

Recalling [c]+ ∈ Ker ∂ ◦ ι∗, we must have

[a]∩ = a+ ∂∩n (Cn(A ∩B)) = ∂∩n (Cn(A ∩B)),

and thus there’s some a′ ∈ Cn(A ∩ B) with ∂∩n a
′ = a. The chain b− ϕn(a′) ∈ Cn(A) � Cn(B)

is a cycle:

∂◦n(b− ϕn(a′)) = ∂◦nb− ∂◦n(ϕn(a′)) = ∂◦nb− ϕn−1(∂∩n a
′)

= ∂◦nb− ϕn−1(a) = ∂◦nb− ∂◦nb = (0, 0);

but also we have

∂◦n(b− ϕn(a′)) = (∂An σ, ∂
B
n τ)− ∂◦n(a′,−a′)

= (∂An σ, ∂
B
n τ)− (∂An a

′,−∂Bn a′)

= (∂An (σ − a′), ∂Bn (τ + a′)),

which shows that ([σ − a′]A, [τ + a′]B) ∈ Hn(A) �Hn(B). Then

ψ∗([σ − a′]A, [τ + a′]B) = [ψ(σ − a′, τ + a′)]+ = [(σ + a′) + (τ + a′)]+ = [σ + τ ] = [c]+

shows that [c]+ ∈ Imψ∗.
Suppose that χ ∈ Ker ∂n, so χ ∈ Hn(X) such that ∂nχ = 0. Since ι∗ is an isomorphism

there exists ξ ∈ HA+B
n (X) such that ι−1

∗ (χ) = ξ. Also

(∂n ◦ ι∗)(ξ) = (∂n ◦ ι∗)(ι−1
∗ (χ)) = ∂nχ = 0,

so ξ ∈ Ker ∂n ◦ ι∗ ⊂ Imψ∗ and it follows that there exists some ω ∈ Hn(A) �Hn(B) such that
ψ∗(ω) = ξ. Then

Ψn(ω) = ι∗(ψ∗(ω)) = ι∗(ξ) = χ
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shows that χ ∈ Im Ψn.

•Ker Φn−1 ⊂ Im ∂n. Let [a]∩ ∈ Ker Φn−1, so ∂∩n−1a = 0, which implies that ∂An−1a = ∂Bn−1a = 0
and thus ([a]A, [−a]B) ∈ Hn−1(A) �Hn−1(B). Now, by hypothesis,

Φn−1([a]∩) = ([a]A, [−a]B) = (∂An (Cn(A)), ∂Bn (Cn(B))),

implying a ∈ ∂An (Cn(A)) and −a ∈ ∂Bn (Cn(B)), and hence there exists (σ, τ) ∈ Cn(A)� Cn(B)
such that

∂◦n(σ, τ) = (∂An σ, ∂
B
n τ) = (a,−a) = ϕn−1(a).

Observe that ψn(σ, τ) ∈ Cn(A+B) is a cycle:

∂+
n (ψn(σ, τ)) = ψn−1(∂◦n(σ, τ)) = ψn−1(ϕn−1(a)) = 0

since Imϕn−1 = Kerψn−1, so [ψn(σ, τ)]+ ∈ HA+B
n (X). Now,

(∂n ◦ ι∗)([ψn(σ, τ)]+) = ∂n([σ + τ ]) := [∂Xn σ]∩ = [∂An σ]∩ = [a]∩,

and therefore [a]∩ ∈ Im ∂n. �

The examples that will be examined below will serve to illustrate the uses of another Mayer-
Vietoris sequence that arises from A,B ⊂ X, where X = A ∪ B with A,B being deformation
retracts of open sets U, V ⊂ X such that A ∩ B is a deformation retract of U ∩ V . Thus for
retractions rA : U → A and rB : V → B we find that rA|U∩V = rB|U∩V . To establish this
sequence we start with the following commutative diagram:

Hn(U∩V )
Φn−−−→Hn(U)�Hn(V )

ψ∗−−−→HU+V
n (X)

∂n◦ι∗−−−→Hn−1(U∩V )
Φn−1−−−→Hn−1(U)�Hn−1(V )

i∗

x j∗

x k∗

x i∗

x j∗

x
Hn(A∩B)

Φ′n−−−→Hn(A)�Hn(B)
ψ′∗−−−→HA+B

n (X)
∂′n◦ι′∗−−−→Hn−1(A∩B)

Φ′n−1−−−→Hn−1(A)�Hn−1(B)

Here i∗ is induced by i : A∩B ↪→ U∩V , and j∗ = jA∗ �jB∗ with jA∗ induced by jA : A ↪→ U and
jB∗ induced by jB : B ↪→ V . Since i, jA and jB are homotopy equivalences, all i∗ and j∗ maps
are isomorphisms, and so in particular j∗ has inverse r∗ = rA∗ �rB∗ (rA∗ and rB∗ being the inverses
of jA∗ and jB∗ ); that is, j−1

∗ = r∗. The homomorphism k∗ arises from k : Cn(A+B) ↪→ Cn(U+V )
given by k(σ+ τ) = jA ◦σ+ jB ◦ τ for σ ∈ Cn(A) and τ ∈ Cn(B) (if, say, σ = n1σ1 +n2σ2 with
σ1, σ2 : ∆n → A, we take jA ◦σ = n1(jA ◦σ1) +n2(jA ◦σ2)), so that k∗([σ+ τ ]+) = [k(σ+ τ)]+.
Also we define ψ′∗ in the same way as ψ∗, Φ′n by Φ′n = j−1

∗ ◦Φn◦i∗, and ∂′n : Hn(X)→ Hn−1(A∩B)
by ∂′n = i−1

∗ ◦ ∂n. Finally, ι′∗ : HA+B
n (X) → Hn(X) is induced by ι′ : Cn(A + B) ↪→ Cn(X)

so that ι′∗([ξ]+) = [ι′(ξ)] = [ξ]. With these definitions it is straightforward to verify that the
diagram is commutative. Also the exactness of the upper row follows easily from the exactness
of sequence (20). What is not wholly trivial is demonstrating that the lower row is exact, but
once it is confirmed to be so, the Five-Lemma implies that k∗ is an isomorphism. Then the
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commutative diagram

HU+V
n (X)

ι∗−−−→ Hn(X)

k∗

x ∼=
x

HA+B
n (X)

ι′∗−−−→ Hn(X)

makes clear that ι′∗ is an isomorphism. Knowing this is all that is required in order to construct
a Mayer-Vietoris sequence for the decomposition X = A ∪ B with A ⊂ U and B ⊂ V as
described above.

For the benefit of the obsessive-compulsive among us, the proof of the exactness of the rows
of the diagram above follows.

Proof.
• Im Φn ⊂ Kerψ∗. Let x ∈ Im Φn = Ker Ψn, so Ψn(x) = (ι∗ ◦ ψ∗)(x) = 0. Since ι∗ is an
isomorphism we obtain ψ∗(x) = 0 and thus x ∈ Kerψ∗.

•Kerψ∗ ⊂ Im Φn. Let x ∈ Kerψ∗, so ψ∗(x) = 0 implies Ψn(x) = ι∗(ψ∗(x)) = 0, which shows
that x ∈ Ker Ψn = Im Φn.

• Imψ∗ ⊂ Ker(∂n ◦ ι∗). Let ξ ∈ Imψ∗, so there exists x ∈ Hn(U)�Hn(V ) such that ψ∗(x) = ξ,
and thus ι∗(ψ∗(x)) = ι∗(ξ) implies that

ι∗(ξ) ∈ Im(ι∗ ◦ ψ∗) = Im Ψn = Ker ∂n.

This leads to ∂n(ι∗(ξ)) = 0 and therefore ξ ∈ Ker(∂n ◦ ι∗).

•Ker(∂n ◦ ι∗) ⊂ Imψ∗. Let ξ ∈ Ker(∂n ◦ ι∗), so ι∗(ξ) ∈ Ker ∂n = Im Ψn and Ψn(x) = ι∗(ξ) for
some x. That is, ι∗(ψ∗(x)) = ι∗(ξ), and since ι∗ is injective, ψ∗(x) = ξ and therefore ξ ∈ Imψ∗.

• Im(∂n ◦ ι∗) ⊂ Ker Φn−1. Let z ∈ Im(∂n ◦ ι∗), so ∂n(ι∗(ξ)) = z for some ξ, from which it’s clear
that z ∈ Im ∂n = Ker Φn−1.

•Ker Φn−1 ⊂ Im(∂n ◦ ι∗). Let z ∈ Ker Φn−1 = Im ∂n. Then ∂n(x) = z for some x ∈ Hn(X).
Since ι∗ is surjective ∃ ξ ∈ HA+B

n (X) s.t. ι∗(ξ) = x, and thus ∂n(ι∗(ξ)) = ∂n(x) = z shows that
z ∈ Im(∂n ◦ ι∗). This completes the verification that the top row is exact.

• Im Φ′n ⊂ Kerψ′∗. Let ([σ]A, [τ ]B) ∈ Im Φ′n, so ∃[ξ]∩ ∈ Hn(A ∩ B) s.t. Φ′n([ξ]∩) = ([σ]A, [τ ]B),
whence

([σ]A, [τ ]B) = (r∗ ◦ Φn ◦ i∗)([ξ]∩) = r∗([ξ]U , [−ξ]V )

= ([rA ◦ ξ]A, [−rB ◦ ξ]B) = ([ξ]A, [ξ]B).

The last equality holds since ξ ∈ Cn(A∩B), and rA, rB behave as the identity when restricted
to A ∩B so that rA ◦ ξ = ξ, rB ◦ ξ = ξ. Now

ψ′∗([σ]A, [τ ]B) = ψ′∗([ξ]A, [ξ]B) = [ξ − ξ]+ = 0
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as desired.

•Kerψ′∗ ⊂ Im Φ′n. Let ([σ]A, [τ ]B) ∈ Kerψ′∗. Then

ψ∗(j∗([σ]A, [τ ]B)) = k∗(ψ
′
∗([σ]A, [τ ]B)) = k∗(0) = 0

by commutativity, so

j∗([σ]A, [τ ]B) ∈ Kerψ∗ = Im Φn

and

Φn([ξ]∩) = j∗([σ]A, [τ ]B)

for some [ξ]∩ ∈ Hn(U ∩ V ). Now

j−1
∗ (Φn([ξ]∩)) = ([σ]A, [τ ]B) = Φ′n(i−1

∗ ([ξ]∩))

shows that ([σ]A, [τ ]B) ∈ Im Φ′n.

• Imψ′∗ ⊂ Ker(∂′n ◦ ι′∗). Let [ξ]+ ∈ Imψ′∗, so ∃([σ]A, [τ ]B) ∈ Hn(A) �Hn(B) such that

ψ′∗([σ]A, [τ ]B) = [σ + τ ]+ = [ξ]+.

Now,

ψ′∗(j∗([σ]A, [τ ]B)) = [σ + τ ]+ ∈ Imψ∗ = Ker(∂n ◦ ι∗)
implies that

∂n(ι∗([σ + τ ]+)) = ∂n([σ + τ ]) = 0.

Thus

∂′n ◦ ι′∗([ξ]+) = ∂′n ◦ ι′∗([σ + τ ]+) = ∂′n([σ + τ ]) = 0

and we get [ξ]+ ∈ Ker(∂′n ◦ ι′∗).

•Ker(∂′n ◦ ι′∗) ⊂ Imψ′∗. Let [ξ]+ ∈ Ker(∂′n ◦ ι′∗), so

∂n ◦ ι∗ ◦ k∗([ξ]+) = i∗ ◦ ∂′n ◦ ι′∗([ξ]+) = 0

yields k∗([ξ]+) ∈ Ker ∂n ◦ ι∗ = Imψ∗, and thus there is some

([µ]U , [ν]V ) ∈ Hn(U) �Hn(V )

such that [µ+ ν]+ = [ξ]+ ∈ HU+V
n (X). What remains to show is that

ψ′∗(j
−1
∗ ([µ]U , [ν]V )) = ψ′∗([r

A ◦ µ]A, [r
B ◦ ν]B) = [rA ◦ µ+ rB ◦ ν]+ = [ξ]+

in HA+B
n (X), or equivalently ∃ω ∈ Cn+1(A+B) such that

∂+
n+1ω = rA ◦ µ+ rB ◦ ν − ξ.

But notice rA ' U and rB ' V imply that rA∗ = U∗ and rB∗ = V ∗, so

([µ]U , [ν]V ) = ([rA ◦ µ]U , [r
B ◦ ν]V )
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and we obtain [rA ◦ µ+ rB ◦ ν]+ = [ξ]+ in HU+V
n (X). Hence ∃ω′ ∈ Cn+1(U + V ) such that

∂+
n+1ω

′ = rA ◦ µ+ rB ◦ ν − ξ,

and we can write ω′ = σ + τ for some σ ∈ Cn+1(U), τ ∈ Cn+1(V ). Now, if we define

ω := rA ◦ σ + rB ◦ τ ∈ Cn+1(A+B),

then ∂+
n+1ω = rA ◦ µ+ rB ◦ ν − ξ as desired. Therefore [ξ]+ ∈ Imψ′∗.

• Im(∂′n ◦ ι′∗) ⊂ Ker Φ′n−1. Let [z]∩ ∈ Im(∂′n ◦ ι′∗), so ∃ [ξ]+ ∈ HA+B
n (X) such that

∂′n ◦ ι′∗([ξ]+) = [z]∩.

That is,
[z]∩ = ∂′n([ξ]) = (i−1

∗ ◦ ∂n)([ξ]).

Now,
(∂n ◦ ι∗)(k∗([ξ]+)) = (∂n ◦ ι∗)([ξ]+) = ∂n[ξ],

so ∂n[ξ] ∈ Im(∂n ◦ ι∗) = Ker Φn−1 and we obtain Φn−1(∂n[ξ]) = 0. From Φn−1 ◦ i∗ = j∗ ◦ Φ′n−1

comes

(Φn−1 ◦ i∗)([z]∩) = (Φn−1 ◦ i∗)((i−1
∗ ◦ ∂n)([ξ])) = Φn−1(∂n[ξ]) = 0 = (j∗ ◦ Φ′n−1)([z]∩),

so Φ′n−1([z]∩) = 0 since j∗ is an isomorphism. Hence [z]∩ ∈ Ker Φ′n−1.

•Ker Φ′n−1 ⊂ Im(∂′n ◦ ι′∗). Let [z]∩ ∈ Ker Φ′n−1, so

Φ′n−1([z]∩) = ([z]A, [−z]B) = (0, 0)

and ∃x ∈ Cn(A), y ∈ Cn(B) s.t. ∂An x = z, ∂Bn y = −z. Now, x+ y ∈ Cn(A+B) with

∂+
n (x+ y) = ∂An x+ ∂Bn y = z − z = 0,

so [x + y]+ ∈ HA+B
n (X). Then, letting r∩ denote the retraction of U ∩ V onto A ∩ B so that

r∩∗ := (r∩)∗ = (i∗)
−1 := i−1

∗ ,

(∂′n ◦ ι′∗)([x+ y]+) = i−1
∗ (∂n[x+ y]) = i−1

∗ ([∂Xn x]∩) = r∩∗ ([∂An x]∩) = r∩∗ ([z]∩) = [r∩ ◦ z]∩.

However, z is a chain in Cn−1(A ∩ B) and r∩|A∩B = A∩B, so in fact r∩ ◦ z = z and we obtain
(∂′n ◦ ι′∗)([x + y]+) = [z]∩. Therefore [z]∩ ∈ Im(∂′n ◦ ι′∗) and the bottom row of the diagram is
exact. �

Example 2.29. The surface Mg of genus g, embedded in R3 in the standard way, bounds a
compact regionR. Two copies ofR, glued together by the identity map between their boundary
surfaces Mg, form a closed 3-manifold X. Here we will compute the homology groups of X,
Hn(X); also we will find the relative homology groups Hn(R,Mg).

6

First assume that g = 1, so Mg = T2 ⊂ R3 (the embedding of S1 × S1 ⊂ R4 in R3). Let T
be the region in R3 that T2 bounds, so T is a solid “donut” in space which is homeomorphic
to D2 × S1 ⊂ R4, and ∂T = T2. Let TA and TB be two copies of T , and let ι : ∂TA → ∂TB be

6This appears as problem 2.29 in Hatcher.
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the identity map. Then the space X in this case is given as X = TA tι TB, and indeed TA tι TB
constitutes a natural decomposition of X for which there can be found neighborhoods U and V
in X that deformation retract to TA and TB while U ∩V deformation retracts to TA∩TB = T2.
It has been found earlier that

Hn(T2) ∼=


Z, if n = 0, 2

Z� Z, if n = 1

0, if n ≥ 3,

and so, noting that TA, TB ' S1, we obtain the Mayer-Vietoris sequence

· · · −→ H̃2(TA ∩ TB)︸ ︷︷ ︸
H2(T2)∼=Z

Φ2−−−→ H̃2(TA) � H̃2(TB)︸ ︷︷ ︸
0

Ψ2−−−→ H̃2(X)
∂2−−−→ H̃1(TA ∩ TB)︸ ︷︷ ︸

H1(T2)∼=Z�Z

Φ1−−−→ H̃1(TA) � H̃1(TB)︸ ︷︷ ︸
Z�Z

Ψ1−−−→ H̃1(X)
∂1−−−→ H̃0(TA ∩ TB)︸ ︷︷ ︸

H̃0(T2)∼=0

−→ · · · (21)

Of course H0(X) ∼= Z since X is path-connected. From Im Ψ1 = Ker ∂1 = H1(X) we see
that Ψ1 is surjective, so

H1(X) ∼= H1(TA) �H1(TB)/Ker Ψ1
∼= H1(TA) �H1(TB)/ Im Φ1.

The workings of Φ1 must be determined.
Recall the cycles τ̂ := τ̂1 − τ̂2 and σ̂ := σ̂1 − σ̂2 from a few pages back. It has been shown

that Jτ̂K and Jσ̂K are generators for H1(S1×S1) (it seems safe at this point to drop the subscripts
that formerly distinguished the two copies of S1). A homeomorphism h : S1 × S1 → T2 can be
found that maps τ̂ and σ̂ to cycles τ̌ and σ̌, respectively, on the surface T2 as shown in Figure 7.
Specifically we have τ̌ = h ◦ τ̂1 − h ◦ τ̂2, with h ◦ τ̂1 going halfway around the girth of the torus
and −h ◦ τ̂2 completing the loop; and we have σ̌ = h ◦ σ̂1 − h ◦ σ̂2 making a loop around the
center hole of the torus. Now [τ̌ ], [σ̌] ∈ H1(T2) are explicit generators for H1(T2) since they
correspond via the isomorphism h∗ to the generators Jτ̂K and Jσ̂K, and since H1(T2) ∼= Z � Z
we can naturally identify [τ̌ ] with (1, 0) and [σ̌] with (0,1).

By definition Φ1 = iA∗ ⊕ (−iB∗ ), where iA∗ : H1(TA ∩ TB) → H1(TA) is the homomorphism
induced by iA : TA∩TB ↪→ TA, and iB∗ : H1(TA∩TB)→ H1(TB) is induced by iB : TA∩TB ↪→ TB.
Letting τ̌i := h ◦ τ̂i for i = 1, 2, we have

iA∗ ([τ̌ ]) = [iA ◦ τ̌1 − iA ◦ τ̌2] = [0]

since the cycle iA ◦ τ̌1 − iA ◦ τ̌2 is a nulhomotopic loop in TA. Bearing in mind that H1(TA) ∼=
H1(S1) ∼= Z, we can write iA∗ (1, 0) = 0. Similarly iB∗ ([τ̌ ]) = [0], or iB∗ (1, 0) = 0. Let’s examine
the cycle σ̌ in TA ∩ TB = T2 more closely. Letting σ̌i := h ◦ σ̂i, we have σ̌ = σ̌1 − σ̌2 such
that σ̌1 goes halfway around the center hole of the torus, and σ̌2 completes the circuit. The
space TA deformation retracts to S1, and so the resultant retraction r : TA → S1 is a homotopy
equivalence and therefore induces an isomorphism r∗ : H1(TA)→ H1(S1). It is straightforward
to engineer the function r so that it maps the paths iA ◦ σ̌i in TA onto σi in S1; that is,
r ◦ iA ◦ σ̌i : ∆1 → S1 is equal to σi : ∆1 → S1. Thus for [iA ◦ σ̌1 − iA ◦ σ̌2] ∈ H1(TA) we have

r∗([i
A ◦ σ̌1 − iA ◦ σ̌2]) = [r ◦ iA ◦ σ̌1 − r ◦ iA ◦ σ̌2] = [σ1 − σ2] ∈ H1(S1).
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Since [σ1 − σ2] is known to be a generator for H1(S1) is readily follows that [iA ◦ σ̌1 − iA ◦ σ̌2]
is a generator for H1(TA). Now we note that

[iA ◦ σ̌1 − iA ◦ σ̌2] = iA∗ ([σ̌1 − σ̌2]) = iA∗ ([σ̌]),

and so we can naturally write iA∗ (0, 1) = 1. In similar fashion iB∗ maps [σ̌] ∈ H1(TA∩TB) to the
corresponding generator for H1(TB), so that i∗B(0, 1) = 1 also.

We have, then,

Φ1([τ̌ ]) := Φ1(1, 0) = (0, 0) and Φ1([σ̌]) := Φ1(0, 1) = (1,−1).

If we let H1(TA) = 〈a〉 and H1(TB) = 〈b〉, then Φ1 is given by Φ1(1, 0) = 0a + 0b = 0 and
Φ1(0, 1) = 1a− 1b = a− b, and in general

Φ1(m,n) = Φ1((m, 0) + (0, n)) = mΦ1(1, 0) + nΦ1(0, 1) = m · 0 + n(a− b) = n(a− b).

Hence Im Φ1 = 〈a− b〉, and we find that

H1(X) ∼=
〈a〉 ⊕ 〈b〉
〈a− b〉

=
Ab〈a, b〉
〈a− b〉

∼=
Ab〈a− b, b〉
〈a− b〉

∼= 〈b〉 ∼= Z.

Next, Ker ∂2 = Im Ψ2 = 0 implies that ∂2 is injective, which in turn implies that H2(X) ∼=
Im ∂2 = Ker Φ1. Now,

Ker Φ1 = {(m,n) ∈ Z� Z : Φ1(m,n) = (0, 0)}

= {(m,n) : (n,−n) = (0, 0)}

= {(m, 0) : m ∈ Z} ∼= Z,

so it is concluded that H2(X) ∼= Z.
We extend our long exact sequence (21) a little to the left,

· · · −→ H3(TA ∩ TB)
Φ3−−−→ H3(TA) �H3(TB)︸ ︷︷ ︸

0

Ψ3−−−→ H3(X)
∂3−−−→ H2(TA ∩ TB)

τ̌

σ̌

Figure 7. The cycles τ̌ and σ̌ in T2.
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Φ2−−−→ H2(TA) �H2(TB)︸ ︷︷ ︸
0

−→ · · · , (22)

and find immediately that H3(X) ∼= H2(TA ∩ TB) ∼= H2(T2) ∼= Z. Therefore

Hn(X) ∼=

{
Z, if n ≤ 3

0, if n > 3.

We now turn to the task of finding the relative homology groups Hn(T ,T2) (i.e. Hn(R,Mg)
for g = 1). There is the long exact sequence for this pair

· · · −→ H̃3(T2)︸ ︷︷ ︸
0

i3∗−−−→ H̃3(T )︸ ︷︷ ︸
0

j3∗−−−→ H̃3(T ,T2)
∂3∗−−−→ H̃2(T2)︸ ︷︷ ︸

Z

i2∗−−−→ H̃2(T )︸ ︷︷ ︸
0

j2∗−−−→ H̃2(T ,T2)

∂2∗−−−→ H̃1(T2)︸ ︷︷ ︸
Z�Z

i1∗−−−→ H̃1(T2)︸ ︷︷ ︸
Z

j1∗−−−→ H̃1(T ,T2)
∂1∗−−−→ H̃0(T2)︸ ︷︷ ︸

0

i0∗−−−→ H̃0(T )︸ ︷︷ ︸
0

−→ · · · , (23)

which straightaway gives H3(T ,T2) ∼= H2(T2) ∼= Z.
Next,

Im j2
∗ = 0 ⇒ Ker ∂2

∗ = 0 ⇒ ∂2
∗ is 1-1 ⇒ H2(T ,T2) ∼= Im ∂2

∗ = Ker i1∗.

The map

i1∗ : H1(T2) ∼= Z� Z→ H1(T ) ∼= Z

works the same way as

iA∗ : H1(TA ∩ TB)→ H1(TA),

so i1∗(1, 0) = 0 and i1∗(0, 1) = 1, and

Ker i1∗ = {(m,n) ∈ Z� Z : i1∗(m,n) = 0} = {(m,n) : n = 0} ∼= Z

implies that H2(T ,T2) ∼= Z.
Moving on, H1(T ,T2) = Ker ∂1

∗ = Im j1
∗ implies that j1

∗ is surjective, whence we get

H1(T ,T2) ∼= H1(T )/Ker j1
∗ = H1(T )/ Im i1∗.

But i1∗ is surjective also: for any n ∈ Z ∼= H1(T ) we have (0, n) ∈ Z � Z ∼= H1(T2) such that
i1∗(0, n) = ni1∗(0, 1) = n. Hence

H1(T ,T2) ∼= H1(T )/H1(T ) ∼= 0.

Finally, noting that (T ,T2) is a good pair, Proposition 2.23 implies that H0(T ,T2) ∼=
H̃0(T /T2) = 0 (since the quotient space T /T2 is clearly path connected). Therefore

Hn(T ,T2) ∼=

{
0, if n = 0, 1 or n ≥ 4

Z, if n = 2, 3.

Now let g ≥ 2, and let M be the region in R3 that Mg bounds. Let MA and MB be two
copies of M, and let ι : ∂MA → ∂MB be the identity map. Then the space X in this case is
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given as X = MA tιMB, and indeed MA tιMB constitutes a natural decomposition of X
for which there can be found neighborhoods U and V in X that deformation retract to MA

and MB while U ∩ V deformation retracts to MA ∩MB = Mg. We know

Hn(Mg) ∼=


Z, if n = 0, 2⊕2g

i=1 Z, if n = 1

0, if n ≥ 3,

and so, noting that MA, MB '
∨g
i=1 S1, we obtain the Mayer-Vietoris sequence

· · · −→ H̃2(MA∩MB)︸ ︷︷ ︸
H2(Mg)∼=Z

Φ2−−−→ H̃2(MA) � H̃2(MB)︸ ︷︷ ︸
0

Ψ2−−−→ H̃2(X)
∂2−−−→ H̃1(MA ∩MB)︸ ︷︷ ︸

H1(Mg)∼=
⊕2g
i=1 Z

Φ1−−−→ H̃1(MA) � H̃1(MB)︸ ︷︷ ︸
∼=(

⊕g
i=1 Z)�(

⊕g
i=1 Z)

Ψ1−−−→ H̃1(X)
∂1−−−→ H̃0(MA ∩MB)︸ ︷︷ ︸

H̃0(Mg)∼=0

−→ · · · (24)

H0(X) ∼= Z since X is path-connected. From Im Ψ1 = Ker ∂1 = H1(X) we find Ψ1 is
surjective, so

H1(X) ∼= H1(MA) �H1(MB)/Ker Ψ1
∼= H1(MA) �H1(MB)/ Im Φ1.

The group H1(Mg) is generated by the homology classes [τ̌k] and [σ̌k] for 1 ≤ k ≤ g, where the
cycles τ̌k and σ̌k are shown in Figure 8 (i.e. τ̌k loops through the kth hole of Mg and σ̌k loops
around it). For each k we can define

[τ̌k] = ((0, 0), . . . , (1, 0)︸ ︷︷ ︸
kth pair

, . . . , (0, 0)) and [σ̌k] = ((0, 0), . . . , (0, 1)︸ ︷︷ ︸
kth pair

, . . . , (0, 0)).

By definition Φ1 = iA∗ ⊕ (−iB∗ ), or alternatively (iA∗ ,−iB∗ ), where iA∗ and iB∗ are homomor-
phisms induced by inclusions iA : MA ∩MB ↪→ MA and iB : MA ∩MB ↪→ MB as before.
Now, each τ̌k becomes nulhomotopic when embedded in MA or MB, so for each k

Φ1([τ̌k]) = (iA∗ ,−iB∗ )((0, 0), . . . ,

kth pair︷ ︸︸ ︷
(1, 0) , . . . , (0, 0))

= (iA∗ ((0, 0), . . . , (1, 0) , . . . , (0, 0)) , −iB∗ ((0, 0), . . . , (1, 0) , . . . , (0, 0)))

= ( (0, . . . , 0)︸ ︷︷ ︸
g-tuple

, (0, . . . , 0)︸ ︷︷ ︸
g-tuple

).

!!

!

k

k"

Figure 8. The cycles τ̌k and σ̌k in Mg.



62

In a similar vein, a close examination of Φ1 in (24) as well as the g = 1 case should make
it clear that for each k

Φ1([σ̌k]) = (iA∗ ((0, 0), . . . , (0, 1), . . . , (0, 0)) , −iB∗ ((0, 0), . . . , (0, 1), . . . , (0, 0)))

= ( (0, . . . ,

kth entry︷︸︸︷
1 , . . . , 0)︸ ︷︷ ︸

g-tuple

, (0, . . . ,

kth entry︷︸︸︷
−1 , . . . , 0)︸ ︷︷ ︸
g-tuple

).

Letting H1(MA) = Ab〈a1, . . . , ag〉 and H1(MB) = Ab〈b1, . . . , bg〉, it’s seen that Im Φ1 =
Ab〈a1 − b1, . . . , ag − bg〉, and then

H1(X) ∼=
H1(MA) �H1(MB)

Im Φ1

∼=
Ab〈a1, . . . , ag, b1, . . . , bg〉
Ab〈a1 − b1, . . . , ag − bg〉

∼=
g⊕
i=1

Z.

As before,

Ker ∂2 = Im Ψ2 = 0 ⇒ ∂2 is 1-1 ⇒ H2(X) ∼= Im ∂2 = Ker Φ1;

thus since it ought to be clear that Ker Φ1
∼=
⊕g

i=1 Z, it follows immediately that

H2(X) ∼=
g⊕
i=1

Z.

Next, we extend the sequence (24) to the left to get

· · · −→ H3(MA ∩MB)
Φ3−−−→ H3(MA) �H3(MB)︸ ︷︷ ︸

0

Ψ3−−−→ H3(X)
∂3−−−→ H2(MA ∩MB)

Φ2−−−→ H2(MA) �H2(MB)︸ ︷︷ ︸
0

−→ · · · ,

which informs us that H3(X) ∼= H2(MA ∩MB) ∼= H2(Mg) ∼= Z. Therefore

Hn(X) ∼=


Z, if n = 0, 3⊕g

i=1 Z, if n = 1, 2

0, if n ≥ 4.

At last we compute the relative homology groups Hn(M,Mg). The relevant long exact
sequence is

· · · −→ H̃3(Mg)︸ ︷︷ ︸
0

i3∗−→ H̃3(M)︸ ︷︷ ︸
0

j3∗−→ H̃3(M,Mg)
∂3∗−→ H̃2(Mg)︸ ︷︷ ︸

Z

i2∗−→ H̃2(M)︸ ︷︷ ︸
0

j2∗−→ H̃2(M,Mg)

∂2∗−→ H̃1(Mg)︸ ︷︷ ︸⊕2g
i=1 Z

i1∗−→ H̃1(M)︸ ︷︷ ︸⊕g
i=1 Z

j1∗−→ H̃1(M,Mg)
∂1∗−→ H̃0(Mg)︸ ︷︷ ︸

0

i0∗−→ H̃0(M)︸ ︷︷ ︸
0

−→ · · · ,

which straightaway implies that H3(M,Mg) ∼= H2(Mg) ∼= Z.
Next,

Im j2
∗ = 0 ⇒ Ker ∂2

∗ = 0 ⇒ ∂2
∗ is 1-1 ⇒ H2(M,Mg) ∼= Im ∂2

∗ = Ker i1∗.
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The map

i1∗ : H1(Mg) ∼=
2g⊕
i=1

Z→ H1(M) ∼=
g⊕
i=1

Z

works the same way as iA∗ above, so

i1∗((0, 0), . . . , (1, 0), . . . , (0, 0)) = (0, . . . , 0)︸ ︷︷ ︸
g-tuple

and

i1∗((0, 0), . . . , (0, 1), . . . , (0, 0)) = (0, . . . ,

kth entry︷︸︸︷
1 , . . . , 0)︸ ︷︷ ︸

g-tuple

,

and we find that Ker i1∗
∼=
⊕g

i=1 Z, whence

H2(M,Mg) ∼=
g⊕
i=1

Z.

Moving on, H1(M,Mg) = Ker ∂1
∗ = Im j1

∗ implies that j1
∗ is surjective, whence we get

H1(M,Mg) ∼= H1(M)/Ker j1
∗ = H1(M)/ Im i1∗.

However i1∗ is surjective as well: for any

(n1, . . . , ng) ∈
g⊕
i=1

Z ∼= H1(M)

we have

((0, n1) , . . . , (0, ng)) ∈
2g⊕
i=1

Z ∼= H1(Mg)

such that

i1∗((0, n1) , . . . , (0, ng)) = i1∗(n1((0, 1) , . . . , (0, 0)) + · · ·+ ng((0, 0) , . . . , (0, 1)))

= n1i
1
∗((0, 1) , . . . , (0, 0)) + · · ·+ ngi

1
∗((0, 0) , . . . , (0, 1))

= n1(1, 0, . . . , 0) + · · ·+ ng(0, . . . , 0, 1)

= (n1, . . . , ng),

and therefore
H1(M,Mg) ∼= H1(M)/H1(M) ∼= 0.

Finally, noting that (M,Mg) is a good pair, we have H0(M,Mg) ∼= H̃0(M/Mg) = 0 since
the quotient space M/Mg is path-connected. Therefore

Hn(M,Mg) ∼=


0, if n = 0, 1 or n ≥ 4⊕g

i=1 Z, if n = 2

Z, if n = 3

�


