CHAPTER 2 — HOMOLOGY

2.1 — HOMOLOGICAL ALGEBRA

Let F), be an abelian group for each n > 0, and let f, : F;,, — F},_1 be homomorphisms such
that f, o fua1 = 0 (the trivial homomorphism) for all n > 0, with fy = 0. Then the sequence
F given as

Jfn—1 L f1 fo

Jnt1 F, In F_ y F) s F)

> 0 (1)

is called a chain complex. In this general algebraic setting nothing compels the index n to
consist strictly of the whole numbers, but unless otherwise specified we will always assume that
a chain complex ends at index value (or “dimension”) 0, with fo = 0. Thus, to say something
holds “for all n” in this context is intended to mean for all n > 0. There will be times, in certain
topological settings, when it will be convenient to extend a chain complex out to dimension
n = —1. From f, o f,;1 = 0 we obtain Im f,,,; C Ker f,, C F},, so Im f,,; is a normal subgroup
of Ker f,, and we can meaningfully construct a quotient group

Hn(F) = Kerfn/lmfn+17

called the n!™ homology group of F, for each n > 0. The elements of H,(F) are cosets of the
form x + Im f,,, 1, usually called homology classes and denoted by [x] when it does not lead
to ambiguity. If z,y € Ker f,, are such that [z] = [y], then z and y are said to be homologous
and it follows that x —y € Im f,, 1.

Suppose that the diagram

i Fn+1 fot1 Fn i

l‘ﬂrw 1 \l‘ﬂn l‘ﬂn— 1

: ? Gn+1 Intl Gn In Gn—l >

has sequences F' and G that are chain complexes, and suppose also that the diagram is com-
mutative given the maps ¢, : F,, = G,,. Then the maps ¢,, taken together define a chain map
F — @, and it’s convenient to denote the chain map by either ¢, : FF — G or {p,}. Now,
if ¢, : I — G is another chain map, and if there also exist maps A\, : F,, — G,41 as in the
diagram

n
wn+1 Pn+1 7/}71 ®n Qpn—l Pn—1

In+1 gn
: ? GnJrl Gn anl >

such that
On = Vn = Gnt1 0 Ay + A1 0 fn
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for all n, then we call the collection of maps {A,} a chain homotopy between the chain maps
{¢n} and {1}, and say that {¢,} and {¢,} are chain homotopic.

Proposition 2.1. If {¢,} is a chain map F — G, then each map @, induces a well-defined
homomorphism pp. : Hy(F) — H,(G) given by

s (T +1Im fri1) = n(z) + Im gnpy

for each x € Ker f,.

Proposition 2.2. If {©,} is a chain map F — G such that each map ¢, is an isomorphism,
then each map . s an isomorphism.

Proof. Suppose that each ¢, : F,, — G, of the chain map F' — G is an isomorphism. Fix
n > 0. Suppose that @,.(z + Im f,,11) = Im g,+1. Then p,(z) € Im g,,1, so there exists some
y € Gp4q such that g,41(y) = pn(z). Since @, is onto, there exists some z € F),;; such that
Pnr1(2) =y. Now, @, 0 fus1 = gni1 0 Pny1, 50

On(frs1(2)) = gnr1(@ns1(2)) = on(x)

and the one-to-oneness of ¢, implies that f,,1(z) = z. Hence x € Im f,,;, from which it
follows that x + Im f,,,1 = Im f,,,; and therefore ,, is one-to-one.

Next, let y +Img,1 € H,(G), so y € Kerg,. Since y € G,, and ¢, is onto, there exists
some z € F,, such that ¢,(z) =y. If n = 0 then x € Ker f; also, so suppose that n > 0. We
obtain

Pn—1(fn()) = gn(pn(2)) = guly) =0,
whence the one-to-oneness of ¢, gives f,(z) = 0 so that z € Ker f,,. Thus, x + Im f,,41 €
H,(F), and
(;On*(x +Im fn-}—l) = Wn(x) + Imgn+1 =Y + Imgn+1

shows that ¢, is onto.
Therefore ¢, is an isomorphism. ]

One useful result that derives easily from a chain homotopy is the following proposition,
which will be used in later developments.

Proposition 2.3. If {¢,} and {1, } are chain-homotopic chain maps F — G, then @n. = n.
for all n.

Proof. Suppose that {¢,} and {¢,} are chain-homotopic maps. Fix n and = € Ker f,,. For
simplicity denote ¢,, 1, : F,, — G, by ¢ and ¥, so ¢., ¥, : H,(F) — H,(G). It must be
demonstrated that

@*(m + Im fn+1) - 90<x) + Imgn-H = ¢(93) + Irngn-i—l = w*(iﬁ + Im fn-i-l)a

or equivalently
(p(r) —¥(z)) + Im gp1 = Im gnya.



But by hypothesis there exist maps \,_; and A, such that

¢_¢:gn+lo)\n+)\n—lofn7

SO

(0 = 9)(@) = gar1(An(@)) + Ana(fu())

= gnt1(An(2)) + Xp1(0) = gn1(An(2)).

Hence (¢ — ¢)(z) € Im g, 11, which implies that (¢ — ¥)(z) + Im g,,41 = Im g,,,1 and therefore

(p*(l’ + Im fn+1) = 1/J*(.T +Im fn+1)
as desired. [ |

In what follows, for any chain complex F' (see the top row of the diagram above) let
1p, : F, — F, be identity maps, which taken together form the chain map 1p, : F' — F. Also
let 1y, (r) be the identity map on H,(F) for all n.

Proposition 2.4. Let 0, : E — F and ¢, : F' — G be chain maps. Then, for all n,

(1) 1pw = Lp,(r)
(2) (Qpn © en)* = ©nx © O

Referring to the diagram above, if there exists a chain map 6,, : G — F such that {6,, 0 ¢, }
is chain homotopic to {1z, } and {p, 06, } is chain homotopic to {1¢,}, then {¢,} is called a
chain-homotopy equivalence.

Proposition 2.5. If {p,} is a chain-homotopy equivalence, then . is an isomorphism for
all n.

Proof. Suppose that the chain map ¢, : F' — G is a chain-homotopy equivalence. Then there
exists a chain map 6, : G — F such that {6, o ¢, } is chain homotopic to {15, } and {¢, 06, }
is chain homotopic to {1¢,}. By Proposition 2.3, (0, 0 ¢,,)« = 1g,. and (¢, © 0,)« = Lg, 4,
and so by Proposition 2.4 we obtain 6,, o @n. = Ly, (r) and @p, 0 0y = 1, (). Therefore, by
Proposition 1.1, ¢, is an isomorphism. ]

The chain complex (1) is said to be an exact sequence if Im f, 1 = Ker f,, for all n, in
which case H,(F) = 0. An exact sequence of the form

0—A—sB—2 vo_—50

is called a short exact sequence. Let E, F', and G be chain complexes in the mold of (1),
and let i, : E — F and j, : F — G be chain maps such that

0— L&, in F, j">Gn—>0

is a short exact sequence for every n. Then the diagram in Figure 1 is commutative and is
called a short exact sequence of chain complexes. By Proposition 2.1 there are well-defined
homomorphisms i, : H,(E) = H,(F) and j,. : H,(F) — H,(G), and what we're interested



0 0 0
! ] !
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i3 ! i3
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FIGURE 1

in doing is constructing homomorphisms p,, : H,(G) — H,_1(F) such that we obtain a long
exact sequence of homology groups

o Hy(E) —2s Hy(F) -2 H\(G) —2" H, ((E) 222 H, ((F) —> -+

Let [z] € H,(G), so z € Kerg,. Since j, is onto, z = j,(y) for some y € F,. Now,
fn(y) € F,,_1, and since
Fn-1(fa(y)) = 9n(in(y)) = gu(2) =0
it follows that f,(y) € Kerj,—1 = Imi,_; and so there exists some x € FE,_; such that
in—1(x) = fu(y). Since
in—2(€n—1(x)) = fac1(in-1(2)) = fa-1(fa(y)) =0

(F is a chain complex so f,_1 o f, = 0) and 4,_5 is one-to-one, we conclude that e, _1(x) = 0
and hence z represents a homology class [z] € H,_1(E). We define p,([z]) = [z].

Theorem 2.6. The sequence
oo Hy(E) ™ H,(F) = H,(G) —2"— H,_(E) 2= H,_(F) —> ---

15 exact.

We round out the section with two last results that are purely a matter of homological
algebra but will have wide utility when dealing with topological matters.

Lemma 2.7 (The Five-Lemma). In a commutative diagram of abelian groups as given
below, if the two rows are exact and the maps «, 3,0, € are isomorphisms, then ~ is also an

1somorphism. P R T S B

bbbk

Al ? B’ J ' k D 4 E




Lemma 2.8 (The Splitting Lemma). For a short exact sequence

0—A—1B J C —0

of abelian groups the following statements are equivalent:

(1) There exists a homomorphism p: B — A such that poi = 14.

(2) There exists a homomorphism s : C'— B such that jo s = 1.

(3) If f: A — A®C is given by f(a) = (a,0) and g : A®C — C' is given by g(a,c) = ¢, then
there is an isomorphism ® : B — A®C such that the following diagram is commutative:



2.2 — SIMPLICIAL HOMOLOGY

Recall that a set A C R™ is convex if tv + (1 —t)w € A whenever v,w € Aand 0 <t < 1,
which is to say that the line segment connecting any two points in A must also lie in A. The
following result will prove useful later on.

Proposition 2.9. Let A C R™ be a convex set. If vi,...,v, € A and ty,...,t, > 0 such that
Zk t, =1, then Zk tyv, € A.

Proof. The statement is clearly true in the case n = 1. Suppose that it is true for some n € N.
Let vy,...,vp01 € Aand ty,...,t,41 > 0 such that ¢ty +---+¢,.1 = 1.

If ¢,41 = 1 then we must have ¢, = 0 for all 1 < k < n, whence ), tyvy = V41 € A and
we're done.

Assuming that t,,41 # 1, observe that from > 7 |t = 1 — t,41 we have

n

Zt—kzl.

k=1 - tn—‘rl

Now,
n+1 n

t
Z trop = Z Lok + tpp1Vner = (1 —thyq) Z —kvk + tnt1Uns1,

k=1 I tn—‘rl

where by the mductlve hypothe81s

k=1 1-— tn+1
is an element of A. Thus, since v,,; € A and A is convex, we conclude that

n+1

Z tkvk
k=1

is also in A. [ |

The convex hull of a set A C R™, denoted by C(A), is the intersection of all convex sets
that contain A; that is,

= m{C : A C C and C is convex}

Proposition 2.10. If A = {vy,...,v,}, then

{Ztkvk Vk’ tk>0 and Ztk—l}

k=0



F1GURE 2. The convex hull of points in space.

Proof. Suppose that A = {vy,...,v,}, and let

{Z trog @ Yk (tx > 0) and Z tk_l}
It is clear that A C S.

Let p,qg € S. Then p = >, spvp and ¢ = ), txvi, for some nonnegative reals si,t; such
that >, sp = > .t = 1. Now, for any 0 < r < 1,

p+(1—1)g = rzk spvp + (1 —7) Zk trop = Zk(rsk + (1 = 7)tg)vg,

where s, + (1 — r)t,, > 0 for each k, and

Zk(T8k+(1—T)tk) :Tzksk+(1—r)zktk:r+<1_r) -1

Hence rp+ (1 —r)q € S and S is a convex set containing A. From this conclusion it follows
that C(A) C S.

Next, let C' be any convex set such that A C C. For any ¢ € S there exist scalars ¢, > 0
such that )", tyvy = 1 and ¢ = ), tyvy. Now, since v, € C for each k and C is convex, it
follows from Proposition 2.9 that ¢ € C'. Hence S C C, and since C' is an arbitrary convex set
that contains A, we obtain S C C(A). |

The stereoscopic figure pair in Figure 2 illustrates the convex hull for a set A of ten points
in R3. Of course, if the three points that appear in the interior of C(A) were removed from A,
the same convex hull would result. We will be particularly interested in finite sets of points for
which no one point can be removed without altering the convex hull.

If A= {vg,...,v,} C R™ for some m > n + 1 and the vectors v; — vy, ..., v, — vy are
linearly independent, then C(A) is called an n-simplex, the points vy are called the vertices
of the simplex, and C(A) is denoted by [vy, . ..,v,]. The ordering of the vertices in the symbol
[vo, - .., v, further specifies an orientation on the n-simplex that is considered an essential
part of its definition: namely, any edge [v;,v;] of [v, ..., v,] is oriented in the direction of the
vector v; — v; if ¢ < j, or v; —v; if ¢ > j. Proposition 2.10 along with the definition of an
n-simplex make clear that any point in [vo, ..., v,] is uniquely expressible in the form ), t,vy,
with the barycentric coordinates ¢, of the point being nonnegative scalars that sum to 1.



U2 U2

Ug U

FIGURE 3. The standard 2-simplex A2,

Defining u;_; = (0,...,1,...,0) € R*™! with the 1 in the ith position for 1 < i < n + 1,
the standard n-simplex A" is the n-simplex [ug, ..., u,] C R™"! and so since Y, tpup =
(to,---,tn),

A" = {(to,...,tn) € R"™ : VEk(t, >0) and Ztk = 1} :
k=0
See Figure 3 for an illustration of the standard 2-simplex.
The canonical linear homeomorphism from A" to any n-simplex [vg,...,v,] is the
linear transformation Zk trug — Zk trv, that preserves orientation.



2.3 — SINGULAR HOMOLOGY

Given a topological space X, a singular n-simplex is a continuous map o : A" — X.
For each n > 0 define C,,(X) to be the free abelian group with basis the set of all singular
n-simplices associated with X. The elements of C,(X) are called n-chains, and are written

as finite formal sums Zle n;o;, where k,n; € Z and o; : A" — X. The singular boundary
maps 0, : C,,(X) = C,_1(X) are homomorphisms defined by

n

3n(a) = Z(_l)ia‘[uo,...,ﬂi,...,un] o 6?71 (2)

=0

for each basis element o € C,(X), where 67! : A"' — [ug,..., ..., u,] is the canonical
linear homeomorphism as discussed in the previous section (it is often suppressed in the interests
of brevity). As with the simplicial boundary maps it can be shown that 9, o 9,1 = 0, so we
obtain a chain complex

e Ot (X) 2 O (X)) 2 O (X)) —

called the singular chain complex of X and denoted by C'(X), which gives rise to homology
groups

H,(X)=Ker0d,/Im0d,

called the singular homology groups of X.

Now, suppose Y is another topological space, and let ¢ : X — Y be continuous. For each
n the map ¢ induces a homomorphism® ¢, : C,(X) — C,(Y) defined by ¢, (c) = ¢ o o for
each basis element o : A™ — X of C,(X). Thus, for any n-chain ) . n,0; we have

o (S, m) = X mapale = Xl )

Denoting the singular boundary maps C,,(X) — C,_1(X) and C,(Y) — C,_1(Y) by 9 and
OY | respectively, we find that

(Pa-1005)(0) = G (Zi<—1>ia|[uO,...,m,...,un] 0 517)
Z 90 co ’[u07~--,ﬁi,-~~7un] © 5?_1)
O (po0a) =0} (pa(0)) = (O) o pn)(0),

and therefore the diagram

s (X)) 2 (X)) =2 O (X)) —

J/Sonﬁ»l J/Qan J/Son 1
i A

= O (V) /= C(Y) —— C 1 (Y) — -

1Other books would represent ©n by ¢y, and I once was tempted to use @ny; but ¢y is uninformative for
obvious reasons, and ¢, conveys no more information than ¢,, already does.
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is commutative and it follows that {¢,} forms a chain map C'(X) — C(Y). By Proposition
2.1 the maps ¢,, induce homomorphisms ¢,. : H,(X) — H,(Y) between homology groups.

The first significant general result we are in a position to obtain in singular homology is
the following.

Proposition 2.11. Let {X,}aca be the path-components of a topological space X. Then
H,(X) = @aen Hn(Xa).

Proof. For [0] := 0 + 0,,41(Cr11(X)) € H,(X) we have 0 = Y ., n;0; for singular n-simplices
o; : A" — X. Each image 0;(A") in X is path-connected, so for each 1 < i < a there exists
some o; € A such that o; : A" = X,,..

Let iy =1, ip = min{l <i < a:a; # a1}, and in general i, = min{i : o; # oy, ..., i, }
for 1 < k < b, where b < a. Then X%, . ,Xaib are the distinct path components of X that
contain the images of the o, and for convenience we can designate each X, by X;, . Let
By ={i|o;: A" — X;,} for each k, and define p, = ;.5 n;0; so that ¢, € Co(X;,). Now
o= ,.%k and o € Kerd, implies ), 0,¢r = 0 and therefore d,¢, = 0 for each k since
Ch(X;,)NCL(X;,) = @ whenever r # s. It follows that each ¢y, is in the kernel of 0, restricted
to Cy (X5, ), so that

[orlin = @k + Onga(Crpa (Xi,))
is in H,(X;,) and we can define a map Q : H,(X) = @4 Hn(X,) by
b
Q[o]) = D _lenlin-
k=1

Suppose that [o] = [7], so 0 — 7 € I(Cp41(X)) and there’s some & € C,41(X) such that
0§ = 0 — 7. As before, we can write 0 = >} _| ¢a, such that ¢, € C,(X,,) and a; # «;
whenever i # j. Similarly, 7 = 22:1 g, such that ¢g, € C,(Xps,) and f5; # B; whenever i # j.
By definition Q([o]) = ([¢a])aca, Where [p,] is a class in H,(X,) with ¢, = 0 if a # a4, for all
1 <k < a. In similar fashion Q([7]) = ([¢a])a With ¢, = 0 if a # By for all 1 < k < b. With

this kind of arrangement we can write

a:Zgaa and T:Z¢a,

acA acA

50 0§ = ) (¢a — o). However, ¢ itself is expressible as ) 4 { with &, € C,11(X,) for each
a, and clearly we must have

8504 = QPa — ¢a € On(ch)

since the X, are disjoint. Since
Yo — Yo € a(CTH—l(Xa))?

we find that [p,] = [)a] as classes in H,,(X,), whence Q([o]) = Q([7]) and Q is well-defined.
Now assume simply that [o], [7] € H,(X). Once again rearrange to write 0 = Y ;_, ¢, and
T = Zzzl g, only such that ay = f for all 1 <k < ¢ < a (assuming a < b for definiteness)
and
{ag:c+1<k<a}nN{fr:c+1<k<b}=2.
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Redesignate indices as follows: (.11 = agi1, Bers = Qaaoy- -+, Py = Qquy, Where b = c + 1.
Now, since 2 is well-defined,

Q([U]+[T])=Q( Z%kﬂLZWk])
:Q< Z(%pak + Ya,) + Z Pay + Z %4)

L k=1 k=c+1 k=a+1

We can let & = @4, + Vo, for 1 < k < ¢, & = @, for c+1 < k < a, and & = 1,, for
a+1<k<a+r, sothat

Q([o] + (

> al) -3,

k=1
c a+r
= [(pak + wak ap T Z 9004/9 ap T Z %k
k=1 k=c+1 k=a+1

Since
[900% + ¢ak]ak = [Spak]ak + [wak]alw
ap = for 1 <k <c, and oo, =g, ,, fora+1<k<a+r,

a a+r

Q([O] + [ ]) Z Qoak ar T Z 77Z)04k ar T Z 77Z)/8k ate ﬁk ate
k=1 k=a+1
c+r

(Pak ap T Z 77Z)5k B T Z 77Z]5k

k=c+1

S|

Recalling that b = ¢ 4 r, we obtain

a b
Qlo]+ 7)) = D _[pas] a;ﬂrzwk = Q([o]) + Q([7])
k=1 =1
and see that 2 is a homomorphism.
Next, suppose that Q([o]) = 0. Proceeding as with the well-definedness argument, we
obtain ([¢a])aca = 0 and hence ¢, € I(Cy11(X,)) for all & € A. But then ¢, € 9(C,41(X))
for all a and

Z wak] — Z o = 3 (g + 0(Cria(X))) = 0,

k=1

_ [Z %] _
acA
where the third equality holds since each ¢,, is, by construction, in the kernel of 0, and so
represents a class in H,(X). Therefore ) is injective.

Now suppose that ([¢a])aca € B cs Hn(Xa), so the set S = {a € A: [p,] # 0} must be
finite. For each av € S we have

0o € Ker[0, : Ch(Xa) = Cro1(Xa)],
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and thus
p = o €Kerld, : Cp(X) = Cpy (X))

a€esS

so that [¢] := ¢+ 0(Cry1(X)) € H,(X). Now,
[e) = D _lpal = Y _la] = ([palaca

since [p,] = 0 for @« € A — S. Therefore ( is surjective. |

In what follows recall the notational convention whereby [u] and [ug, u;] denote the stan-
dard simplices A° and A, respectively.

Proposition 2.12. If X # & is path-connected, then Hy(X) = Z.

Proof. Define the homomorphism € : Co(X) — Z by €(>,n;0:;) = >, n;, so that e(o) =1
for each singular 1-simplex o. If o : AY — X is given by o(ug) = x¢ for some zy € X, then
for any k € Z we have e(ko) = k for ko € Cy(X), showing that e is surjective and thus
Co(X)/Kere = Z.

Fix 7: A - X in C1(X). Then

€(O17) = €(Tljw) = Tliwo)) = €(T ) — €(Tlju)) =1 -1 =0.

Thus, if 0 € Im 0y, then there exists some ) . n;7; € C1(X) such that 0;(D, n;7;) = o, whence

e(o) =¢€ <ZZ n; 81n~> = ZZ n;e(01m) =0

and we conclude that Im 0y C Kere.

Now suppose that ¢ = ). n,0; € Kere, so Y .n, = 0. Fix zy € X. Define 0y € Cy(X)
by oo(ug) = xg. For each i, since o;(ug), o € X and X is path-connected, there exists a path
7+ A — X such that 7;(ug) = ¢ and 7;(u;) = 04(ug). Then

O (ZZ nm) = ZZ n; 017, = ZZ ni(Til[ul] - Ti|[uo]) = ZZ niTz’l[ul] - ZZ niTz"[uo]
= Z.nz‘Uz‘ - Z,nz‘(fo = Z.niai — 0o an = Z.nz‘Uz‘ =,

which shows that ¢ € Im 0; and hence Kere C Im 0.
Therefore Hy(X) = Co(X)/Im 9y = Cy(X)/ Kere = Z. [

Combining the two propositions above it follows that for any space X, if {X,},ca are the
path-components of X, then Hy(X) = P ., Z.

Proposition 2.13. If X = {p}, then H,(X) =0 for alln > 1.

Proof. For X a single point p we find that C,(X) = Z with generator p,, where p, : A" — X
is the singular n-simplex given by p,(z) = p for all z € A™. Fix ¢ € Kerd, C C,(X), so
o = mp, for some m € Z such that 9, (mp,) =0
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Suppose that n is odd. Now, mp,.1 € Cp11(X), and

n+1 n+1
anJrl(manrl) =m Z(_1>1pn+1|[uo ,,,,, UjyerasUng1] mZ(_l)lpn =MmMpp =0
1=0 1=0

shows that o € Im 0,,1. Therefore [o] = 0.
Suppose that n is even. 0,0 = 0 implies that mad,p, = 0; that is,

which implies that m = 0. Thus ¢ = 0 and once again we obtain [o] = 0.
It’s concluded, then, that H,(X) = 0 for any n > 1. |

So for X = {p} Proposition 2.12 implies that Hy(X) = Z, and thus there’s an exception
to the pattern in Proposition 2.13. To fix this (if indeed a “fix” is desired), we can modify
the definition for the Oth homology class to make it also trivial in the case when X is a single
point. The way to do this is to replace the map 9y : Co(X) — 0 with € : Co(X) — Z to form
the augmented chain complex

c s Oy(X) =2 (X)) 2 C(X) —— Z —> 0,

then define Hy(X) = Kere/Imd;. Since it was found in the proof of Proposition 2.12 that
Kere = Im 0y when X is nonempty and path-connected, we find in particular ﬁo({p}) = 0.
Setting H,,(X) = H,(X) for n > 1, we obtain what are known as reduced homology groups
which have the virtue of being trivial in all nonnegative dimensions for one-point spaces.

If X is nonempty but not path-connected we still have Im 0; C Kere. Define € : Hy(X) —
by &([o]) = €(0), and note that € is surjective and Keré = Hy(X). Hence Ho(X)/Ho(X) =
or equivalently Ho(X) = Hy(X) @ Z.

y/
Z,

Theorem 2.14. If the maps f,g: X — Y are homotopic, then fu. = gns : Ho(X) — Hy(Y)
for all n.

Proof. Suppose that f,g: X — Y are homotopic. In light of Proposition 2.3 it will suffice to
show that the chain maps f,, g, : Ch(X) — C,(Y) are chain-homotopic. That is, it must be
shown that there exists, for all n > 0, maps A, : C,,(X) — Cpy1(Y) such that

Qn—fn=3§+10)\n+)\n,108ff.

Let FF: X x I — Y be a homotopy from f to g, so F'(-,0) = f(-) and F(-,1) = g(-). As
usual A" will be designated by [uq, . . ., u,], and for the product space A™ x I define A" x {0} =
[vo,...,v,] and A™ x {1} = [wy,...,w,]|. Finally, define the homomorphism A, : C,(X) —
Cn+1<Y) by

An(0) =D (=1)'F 0 (0% 1)|ug,...opwrrmin]

=0



14
for each o : A™ — X, where Flo (o x1): A" x I - X x I — Y and each term in the sum we
take to be precomposed by the canonical linear homeomorphism

A s g, v wiy L wn] €A XL

It’s instructive to examine the n = 0 case and show that gy — fo = 0¥ oA+ A_; 0 83( .
Designating A\_; = 0, this entails showing 8 o Ay = go — fo. Letting 6" denote appropriate
canonical linear homeomorphisms A" — [z, ..., 2, for any n-simplex [z, ..., z,], we have for
any o : AY — X,

(0F 0 X)(0) = O (F o (0 X Dljsoue1 081) = 8 (F o (0 x 1) 0 8,
where the second equality holds since [vg, wo] = A® x I. Pressing on,
(0 oXo)(0) =Fo(0x1)0d" 400" —Fo(ox1)od"yod.
Now,
(Fo(ox1)0d"u,0d8) (up) = (Fo(ocx1)od)(u)
= (Fo (o x1))(up,1)
= F(o(up), 1),

where F(o(up),1) = g(c(u)) = (9o(0))(uo) and thus Fo (o x 1)0d8'|p,100° = go(o). In similar
fashion we find F o (o x 1) 0 8|,y 0 8” = fo(0), and so (9} o Xg)(0) = go(0) — fo(o) and we're
done.

The n = 2 case is the highest dimensioned case that can be readily visualized, so let’s
consider it next. Let o : A* = X. For brevity let H = Fo(o x 1) and [j] = [ug,. .., ;,. .., us].

Also it will be convenient to define [z, ..., 2,]; = [20,- -, 2, .-, 2n). Now,
3 3
83/()\2(0')) = Z(_l)JHhvo,wo,whwﬂ © 53|[j] 0 4% — Z(_lyH‘[voﬂ)l,whwﬂ © 53|[ﬂ 0 ¢
=0 =0

3
+ Z(_]‘)]HHUOWL’U%“’Q] © 53|[ﬂ 0 ¢

7=0
3
= Z<_1)j [H’[U07w01w17w2]j 0% — H|['U07U17w17w2]j 0 0% + H‘[vo,vl,vmwﬂj © 62} )

j
and from \; (05 (o)) = Z?ZO(—l)j)\l(ahuO ..... iy,uz) © 01) We obtain

/\1(85(0)) = Z(_l)j [F o (0| [u,..., aj,eeyuz] © & % 1) {vg wo,u1] © 0
7=0
—Fo (J|[uo ..... g, U2] 0d X ]1)|[v0 v1,w1] 0d } (3)

Consider the workings of

(0'|[u1,u2} 051 X ﬂ>|[v0,wo,w1} o (52 : A2 — AI x I — X xI.
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The 2-simplex [vg, wy, w1 ] is regarded as a subspace of Al x I, so for a point p € A? we have
6%(p) = (q,t) for g € Al and 0 < ¢t < 1. Now,

(O sz © 0" X 1)(q,) = (0lfur,ua) X 1)(07 (), 1) = (0 x 1)(d"(q), 1),
where 6'(q) € [uy, us] with [uy, us] regarded as a subspace of A? so that
(64 (q),t) € [v1,wy, wo] C A* x I.
Thus (0fuyus) © 6* X 1)|jug wo,w1] © 02 18 equal t0 (o7 X 1)|[p; wyuws] © 6% since

(0 X )]s 01,021 © 0°) () = (0 X )y 1 (8" (0), 1) = (0 x 1)(8"(q), 2)

(note that 6% : A% — [vy,wy,ws] C A? x I will canonically carry p directly to (6'(q),t)).
Expanding (3) (and suppressing the canonical homeomorphisms), we obtain

M (03 () = [F 0 (0ljusual X Dlwo,won] = F 0 (0 fugua) X 1)l fuoyor)]
— [ 0 (0l fugua) X Dlivo.aosun] = F 0 (0]l X 1)l wg.01,01]
+ [F 0 (0l ugun) X Dlpoasoan) = F 0 (@l fug.an) X 1)lfuo.or 0]
and thus
M (05 (0)) = Hlyawna] = Hlwn o.an) = Hlfwoo.a0n) + H s wa) + H lpog.nno0] = H g0,
Now at last we add:
95 (Ma(0)) + M(95(0)) = F 0 (0 X 1) |fwowr,9) © 0> — F 0 (0 X 1) yg01,09] © 6
For p € A2,
(F o (0% 1)) © ) () = F 0 (0 X 1)l fwo,u1,0] (P, 1)
= F(o(p),1) = g(o(p))
= (g00)(p) = (92(0))(p),
80 F o (00 X 1) |jwow1,ws] © 0% = g2(0), and similarly F o (0 X 1)|jug 01,00 © 0> = fo(o). Hence
(95 0 Xa+ A1 005 )(0) = (92— f2)(0)

for the basis element o of Cy(X).
The general case for arbitrary n requires careful bookkeeping and will be addressed at a
later time. |

Lemma 2.15. Let X,Y,Z be topological spaces, and let f : X — Y and g : Y — Z be
continuous maps. Then, for all n,

(1) (Ix)nse = Lo, (x)
(2) (g % f)n* = Gnx © frs
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Proof. Fix n. For 0 : A" — X we have (1x),(c) = 1x oo = o so that (1x), = 1¢,(x). Now,
by Proposition 2.4, (1x)ns = Le,(x)s = 1m,(x), which proves part (1).
Next, from go f : X — Z we obtain the map (g o f), : Ch,(X) = C,(Z), where

(go flnlo) =(gofloo=go(foo)=gu(foo)=gnlfulo)) = (gno fn)(o),
and so we obtain
(90 flns = (gn © fa)e = s © frs
by once again appealing to Proposition 2.4. This proves part (2). |

Corollary 2.16. If f : X — Y is a homotopy equivalence, then f,. : H,(X) — H,(Y) is an
tsomorphism for all n.

Proof. Suppose that f: X — Y is a homotopy equivalence. Then there is a map g : Y — X
such that gof ~ 1 x and fog ~ 1y. By Theorem 2.14, (g0 f)ns = (Lx)ns and (f0g)ns = (Ly )na,
and thus by Lemma 2.15 we obtain g, o fn« = 1y, (x) and fy. © gn« = L, (v). Therefore f,, is
an isomorphism by Proposition 1.1. ]

If X is a space and A is a nonempty closed subspace that is a deformation retract of some
neighborhood of X, then the pair (X, A) is known as a good pair. The following theorem will
be proven over course of the next two sections, with the maps 0,, to be determined along the
way.

Theorem 2.17. If (X, A) is a good pair, then there is an exact sequence
o Hy(A) =y Ho(X) =2 Ho(X/A) =2 Hy 1 (A) — -+« — Hy(X/A) — 0,

where i, 1s induced by the inclusion map i : A — X and g, is induced by the quotient map

q: X = X/A.
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2.4 — RELATIVE HOMOLOGY

Given a topological space X, let A C X be a subspace. From the free abelian groups
Cn(X) and C,,(A) we form the quotient group C, (X, A) = C,(X)/C,(A), and define 0, to be

the homomorphism induced by
O+ (Cn(X), Cn(A)) = (Cra(X), O (A))

so that

On(o+ Ch(A)) = 0u(o) + Cr_1(A)
for each o € C,,(X). It’s easy to check that Oy, oénﬂ = 0 holds for all n, and so a chain complex
s O (XL A) 2 O (XL A) <2 O (X A) —

results. The homology groups associated with this chain complex, given as
Ker[0, : C,,(X, A _1(X, A
1. 4) — K CulX. 4) = G (X, )]
Im[0, 11 : Cri1 (X, A) = Ch(X, A)]

are called relative homology groups.
If AC X and B C Y, a continuous map f : (X, A) — (Y, B) induces homomorphisms

o 2 (Cn(X), Cu(A)) = (Cu(Y'), Cu(B))

in the usual fashion given in section 2.1, and these in turn induce homomorphisms f, :

Chn(X,A) — C,(Y, B) given by

folo+Ch(A)) = fulo) + Co(B) = foo + Cy(B)

for each basis element o € C,,(X). The maps f, constitute a chain map C(X,A) — C(Y, B),
and so by Proposition 2.1 they induce well-defined homomorphisms f,.. : H,(X, A) — H,(Y, B)
given by

Frr (0 4+ Ca(A)) + On41(Coia (X, A))) = fulo + Cu(A)) + Oni1(Cora (Y, B)).
Slightly more compactly we can write
J?n* ((U + Cn(A)) + Im 5’2(4*1) = (f co + Cn(B)) + Im 571;1-

Let i : A < X be the inclusion map. This map induces homomorphisms i, : C,(A) —
C,(X) given by i,(c) = ioo for each map o : A" — A. Also we introduce the homomorphism
Jn @ Cn(X) = Ch(X, A) given by j,(0) = 0 + C,(A) for each ¢ : A" — X. Clearly each
in is injective and each j, is surjective. If ¢ € Imi,, then 0 € C,(A) and so j,(0) = o +
Ch(A) = C,(A) (the zero element of C, (X, A)), which shows that o € Kerj,. If 0 € Ker j,,
then 0 € C,(A) and it follows that i,(0) = i o 0 = o, which shows that ¢ € Imi,. Thus,
Im i, = Ker j,, and we conclude that

0 — Cp(A) —2s O (X) —2s CW(X, A) — 0
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0 0 0
Lo
in+1 Zn infl
D O (X) _ O C(X) RN Cri(X) — -
jn+1 jn jnfl
S Cn+1(X7 A) M Cn(X7 A) L Cn—l(XJ A) —
i3 i3
0 0 0
FIGURE 4

is a short exact sequence. The claim is that i, : C(4) — C(X) and j, : C(X) — C(X, A) are
chain maps, which is to say the diagram in Figure 4 is commutative and therefore a short exact
sequence of chain complexes. We have, for any o : A™ — A,

= Zi(—l)ial[uo ..... irein] = O (0) = 07 (in(0)) = (07 ©in)(0);

and for any o : A" — X,

= > (1 (lugreniirsial + Cnr(A4)

I
Qo —~
|
=
S
&
&
%
kS
N—
+
N
L
=
|
=
2
+
N
L
=

We now define homomorphisms p,, : H, (X, A) — H,_1(A) in the same manner as the maps
pn in section 2.1, where H,_;(A) = Ker 92 | /Im 92, Let

(0 4+ Ch(A) +1Imd, 41 € Hy(X, A),

so 0+ Ch(A) € Kerd, C C,(X,A). Since o € C,(X) we have j,(0) = o0 + C,(A), and from

Jn_1 00X =0, 0 j, comes OXc € Kerj, 1 = Imi,_ ;. So there is some 7 € C,,_;(A) such that
in—1(T) = 00, which immediately implies 7 = 9;Xo. Define

pn ((0+ Co(A) + Impyq) = 95 0+ Im o,
By Theorem 2.6 we obtain a long exact sequence

e Ho(A) 2 (X)) —22 H (X, A) =2 Hy g (A) 2255 Hy (X)) — -
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Proposition 2.18. For A C X and B C Y, let f : (X,A) — (Y,B) be a map such that
[+ X =Y and fla : A — B are each homotopy equivalences. Then for all n the maps
fox : Hy(X, A) — H, (Y, B) are isomorphisms.

Proof. By Corollary 2.16 the maps f,. : H,(X) — H,(Y) and f2 = (fla)ne : Ho(A) —
H,(B) are isomorphisms for all n. Fix n > 0. The diagram

Ho(A) — s H(X) s H (X, A) —2% s H ((A) —22s H(X)

J/fn* J/f'rlqu* J/ n—1x%
Y

Y . Y .
H,(B) —™— H,(Y) —!>— H,(Y,B) —— H,_(B) ==~ H,_,(Y)

C(A) —m s O (X)) —I s (X, A)

P A
Y Y

Cn(B) —>— C,(Y) —— C,(Y, B)

is commutative. For instance
(fa 0 dn )(0) = fulo + Cu(A)) = fulo) + Cu(B) = 4y (fa(@)) = (4 © fa)(0)

clinches commutativity of the second square, and a similar routine will show commutativity of

the first square. Now, {f.}, {fn}, {jX} and {j}'} are chain maps that induce the well-defined

homomorphisms found in the first diagram, and since the functor * preserves commutativity,

we conclude that the second and first squares in the first diagram are likewise commutative.
Next, for

(0 4+ Cp(A) +Im0yy1 € Hy(X, A)
we obtain
(fil1. 0 ) (0 4 Cu(A) +Im X 1) = 11, (0)0 +1mO))

n—1x n
= fae1(07(0)) +Im a7 = fur(07 (0)) + Im Dy
=0, (fu(0)) +Im 8 = p;, ((ful0) + Cu(B)) +Im ;)
= (o © fae)((0 + Cu(A)) +Tm 0¥, 1),
where the third equality holds since 9Xo € C,,_1(A4) C C,,_1(X) and f? | is the restriction of
fn—1 to Cp_1(A); and the fourth equality holds since {f,} is a chain map C(X) — C(Y). This

shows commutativity of the third square. B
Therefore, by the Five-Lemma, the maps f,, are isomorphisms. |
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Example 2.19. Show amap f : (D",S"!) — (D", D"—{0}) cannot be a homotopy equivalence
of pairs; that is, there’s no map g : (D", D" — {0}) — (D", S"!) such that fog and go f are
homotopic to Ip» through maps (D", D" —{0}) — (D", D" —{0}) and (D",S"" 1) — (D", S"1),
respectively.

Solution. Suppose there is such a map g. Let
{or 2 (D", 8"71) = (D", 8" M kes

be a homotopy such that ¢y = 1p. and p; = go f. Since f(z) = x for all z € D", we have
v1(x) = g(f(z)) = g(x) so that ¢; = g and hence g ~ 1Ipn.

Let 4 : S"! < D" be the inclusion map. Since g : D" — {0} — S"~! is continuous and
0 is in the closure of D™ — {0}, we must have g(0) € S*™! so that g : D* — S"! and hence
goi=glgn-1:S"t — STl

Now, for each n > 1 we have

H, ((S"Y) =2 H, (D") —Z— H, ,(S" ),

where H,_,(S"™) = Z and H,_,(D") = 0 so that g, oi, = 0. On the other hand the maps
{pt]sn—1 : S"71 — S"1},c; constitute a homotopy goi =~ lgs-1, so by Theorem 2.14 and Lemma
2.15 we obtain

Gy Oty = (9 © Z)* = lgn-1, = ﬂﬁn_l(gn—l)a

and hence for 1 € H,_1(S"!) we obtain (g, 04,)(1) = 1; that is, g, o i, # 0, which is a
contradiction. n
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2.5 — THE EXCISION THEOREM

Let A and B be subspaces of X. The inclusion map j : (B,AN B) — (X, A) induces
homomorphisms j, : C,,(B) — C,(X) given by j,(5) = j o § for a basis element 5 : A" — B
of Cy,(B). Each j,, in turn, induces a homomorphism of quotient groups

Jn:Ch(B,ANB) = C,(X, A)

given by
In(B+ Cu(AN B)) = jn(B) + Ca(A) = j o f+ Cn(A) = § 4 Cu(A). (4)

The Excision Theorem states circumstances when the maps 7, will induce isomorphisms of
relative homology groups.

Theorem 2.20 (Excision Theorem). If A, B C X such that X = A°UB°, then the inclusion
Jj: (B, AN B) <= (X, A) induces isomorphisms J,. : H,(B, AN B) — H,(X, A) for all n.

The reason for the use of the term “excision” is perhaps made clearer by the following
result.

Corollary 2.21. Given subspaces Z C A C X such that Z C A°, then the inclusion
j (X —=2Z,A—-27) = (X,A) induces isomorphisms Jn. : H(X — Z,A — Z) — H,(X,A)
for all n.

Proof. Let B = X — Z, and note that AN B = A — Z. It remains to show that A°U B° = X
Let » € X, and suppose that x ¢ A°. Since Z C A°, we have x ¢ Z and thus x € X — Z. Now,
X — Z is open, so there exists some open set O such that

reOcX-ZcX—-Z=B.

Hence = € B° and we conclude that X = A° U B°.
Therefore, by the Excision Theorem, j : (X — Z, A — Z) — (X, A) induces isomorphisms
H,(X—-Z,A-27)= H,(X,A). [

To prove the Excision Theorem there is a technical result that first needs to be established.
Let U = {Uy} be a collection of subspaces of X such that X = |J, Uy, and let C¥(X) be the
subgroup of C,,(X) consisting of n-chains ), n;o; such that for each ¢ there is some k for which
0;(A") C Uy. It’s easy to see that if @ € CH¥(X), then d,a € CY ,(X); thus, if we let 9%
denote the restriction of 9, to C¥(X), and define ¢, : C¥(X) — C,(X) to be the inclusion
map, we obtain a commutative diagram of chain complexes:

871{{1 n
i (X) == CH(X) —— L (X) — -

J/Ln+l J/Ln J/Ln— 1

. HCnH(X)%Cn(X) LCn_I(X)H

81/{
- — Y
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As usual H,(X) = Kerd,/Imd,;1, and now we also define HY(X) = Ker0%/ImoY ,. In
accordance with the developments in section 2.1, the induced map iy, : H¥(X) — H,(X) is
given by

(@ + Im O, ) = (@) + Im Dppiq

for each a € Ker 9.

Lemma 2.22. Let U = {Uy} be a collection of subspaces of X such that X = |J, Up. If
by CH(X) — Cn(X) is the inclusion map, then the map i, : HY(X) — H,(X) is an
tsomorphism.

To prove the lemma it will be shown that the chain map ¢, : CY(X) — C(X) is a chain
homotopy equivalence, which means there is a chain map ¢, : C(X) — CY(X) such that
{tn © pn} is chain homotopic to {1,} (the identity maps on C,(X)) and {¢, o ¢,} is chain
homotopic to {14} (the identity maps on C¥(X)). The result follows from Proposition 2.5.

Proof. We start with barycentric subdivision of simplices.? By definition of an n-simplex,

[Voy - vy U] = {thi : Vi(t; >0) and Zt" = 1} CcR™
i=0 i=0
for some m > n + 1, where the set of vectors {v; — vg,...,v, — vo} is linearly independent.
The barycenter of [vy, ..., v,] is the point b= ), #1“%” and the barycentric subdivision of
[vo, - - -, Up] 18 the subdivision of [vg, . . ., v,] into smaller n-simplices of the form [b, wy, . .., w,_1]
which we now specify inductively. When n = 0, the barycentric subdivision of [vy] is defined
to be [vg] itself. For n = 1 we decompose [vg, v1] with barycenter b = vy + vy into [b, vo]
and [b,v1]. For n = 2, let b;; be the barycenter of the face [v;,v;] of [vg, v1,vs], and decompose
[Uo, U1, 1)2] into [b, b()l, Uo], [b, b()l, 1)1]7 [b, bog, UO], [b7 bog, 'UQ], [b, blg, 1)1], and [b, b12, ’Ug]. For n = 3,
if b;jr denotes the barycenter of the face [v;,v;,vg] of [vg,v1,v2,v3], then a couple of the 24
members of the decomposition are [b, bo12, bo1, vo] and [b, bo12, bo1, v1], which we could write as
[bo123, bo12, bo1, bo] and [bo123, bo12, bo1, b1] if we wished to employ our notation to its fullest extent
(the barycenter b; of [v;] being, of course, v; itself). See Figure 5. In general the barycentric

subdivision of [vg, ..., v,] is the collection Blvy, ..., v,]| of n-simplices

{[b,%71.,_62:1,bggfz,,,a:g,...,bgéf%,wg} DO < R & {6 {e’g,...,e’;}},

where of course % € {0,...,n}, and
U
bgé...gllz = ZZ; T 11)4;.
is the barycenter of the k-dimensional face [U@S, o ’WZ] of [vg,...,v,) for 1 <k < n. Simply
put, a member of Blvy,...,v,] has as its vertices the barycenter of [vg,...,v,], the barycenter
of an (n — 1)-dimensional face F' of [vy, ..., v,], the barycenter of an (n — 2)-dimensional face

of F', and so on down the dimensions to conclude with a point that is a vertex of F.

2As with many results hereabouts, this proof is modeled along the lines of the one found in Allen Hatcher’s
“Algebraic Topology.”
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FIGURE 5. Part of the barycentric subdivision of a 3-simplex [vg, v1, vg, v3].

Letting |p — ¢| denote the Euclidean distance between points p and ¢ in R™, we define the
diameter of |vg,...,v,] to be

diam|[vg, ..., v,] = max{|p —q| : p,q € [vo, ..., v},
which is a real value that is attained for some p,q € [vo, ..., v,] since the set is compact. If p
and ), t;,v; are two points in [vg, ..., v,], then

’p — ZZ tiv;

= ‘ZZ tip — Zz tiv;

= ‘ZZ ti(p — v;)

Sziti|p_vi|: iti(il?ﬂp—vﬂ
= fax [p — vif = |p — vi|

for some iy € {0,...,n}. Letting p = . s,v; and repeating the process, we find that

Ip — vip| = |vip — ZZ sivi| < [vip — vy |
for some 4;. Hence for any p,q € [vo,...,v,] we find that |p — ¢| < |v; — vj| for some 4,5 €
{0,...,n}, and therefore diam[vy, . .., v,| = maxo<; j<n |v; — vj|.

What we will want to show is that

max{diam(W) : W &€ Blvg,...,v,|} < . diamlvy, . .., vy). (5)

n —+

This is trivially true when n = 0 since the only member of Blug] is [vo] itself, and diam[vg] = 0.
For n = 1 we have Bluvg, v1] = {[b, vo], [b, v1]}, with

diam[b, vg| = |b — vo| = ‘%UO + %vl — vo‘ = %|vl — | = %diam[vo,vl]

and similarly diam(b, v;] = § diam[vg, vy].
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Employing induction, let n be arbitrary and suppose (5) holds for every n-simplex [vy, . . ., vy).
Let V = [vo, ..., vn41] be any (n + 1)-simplex, and let BV be its barycentric subdivision. Let
W = [b,wo, ..., w,] € BV,

b being the barycenter of V. First suppose that w; and w; are vertices of W such that w;, w; # b.
Then the points w; and w; must lie on the n-dimensional face F' of V' that has wy as its

barycenter, and since [wy, ..., w,] is a member of BF and F' is an n-simplex, by (5) we obtain
|w; —w;| < diam([wo, ..., w,]) < max{diam(U) : U € BF} < Z ] diam(F).
n
Of course, F' C V implies that diam(F') < diam(V), so finally
1
s — ] £ —— diam(V) < 2 1 ~ diam(V).
Next, take vertices w; and b of W. Since w;,b € V' we have
[b—wyl < max [b—vi| =1[b— v
for some k. Let by be the barycenter of [vg, ..., 0k, ..., Vns1], SO
n+1 1
b - 7 -
F Zizo,z'aék n+ll
Now, since
1 n+1 1 n+1 1
b - i — b,
2k T n+2v’“+zi:o,i¢kn+27j
we obtain
| b 1 L n—+ 1b n+1 n+1
v — bl = |vp — v = Vg —
g \n+2F T2 n+2 " nt2"
n+1 n+1
= —b| < diam(V
n+2|vk kl_n—i—Q fam(V)
and therefore 1
n .
|b—w;| < —— diam(V).
Combining the two cases analyzed above leads to the general result
n+1
diam(W) = max —q| < diam(V),
() P,a€{bwo,....wn } p—dl = n—+ 2 (V)
which finally implies
: n+1 .
max{diam(W) : W e BV} < 9 diam(V).
n

We move on now to the next stage of the proof. Let Y C R™ be a convex set, and let C(Y')
be the singular chain complex
e O (V) 2 O (Y) =2 0 (V) 2
A linear transformation ¢ : A™ — Y can be uniquely determined by defining, for each
0 < i < mn, some w; €Y for which ¢(u;) = w;; indeed, since for each ¢ € A" there exist
nonnegative scalars t; such that ) .t; = 1 and ¢ = ), t;u;, we obtain {(q) = ((>_, tiw;) =
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Yo til(u;) = Y. tyaw; € Y by Proposition 2.9, and therefore Im(¢) C Y as required. Now, if
L(A™Y) is the collection of all linear transformations ¢ : A" — Y, then we can define L, (Y) to
be the subgroup of C,,(Y) generated by L(A",Y"). The boundary maps 9, : C,,(Y) — C,,_1(Y)
then give rise to a chain complex L(Y)

e L (V) 2 DY) s L (V) —

which is called a subcomplex of C(Y). In what follows it will be convenient to denote a map
¢ € LIA™Y) given by ¢(u;) = w; by the symbol |wy,...,w,]|.* Tt will also be convenient to
extend L(Y') to dimension —1 by letting L_1(Y") be the free group generated by the unique map
[@] — Y, where [@] is taken to be the “empty simplex” that has no vertices; we can denote
this map by @], so L1(Y) = (|9]) = Z.

For any point y € Y define a homomorphism y,, : L,(Y) — L,+1(Y) by

vollwo, ..., wa]) = |y, wo, ..., W],

where |y, wy, ..., w,] : A" — Y is given by |y, wo, . .., wy,]|(u;) = w;_y for 1 <i<n+1, and
Lyv Wo, - - - 7wnJ (UO) =Y. :NOW7
n+1

an—i—l(yn( Lw07 e ,’anJ )) - Z(_l)l Lyv Wo, - - - 7wnJ |[uo,...,ﬂi,...,un+1] od"
1=0
n+1

=[5, w0, -, Wy o] © 6" F D (=) [y w0, - W] gt © 0
=1

n+1
= [wo, ... wa] + > _(=1)[y,wo, ... iy, ..., w,]
=1

= |wo, ..., w,| + Z(—l)”%y,wm ey Wiy Wy
i=0

n

= |wo, ..., wy] —Z(—l)iyn,l(Lwo,...,wi,...,wnJ)

= |_w07 s >wnJ - Z(_l)iyn—l(LwM cee awnJ ’[uO,...,m,...,un} o 5n—1)

1=0

= |wo, ..., Wy | — Yn_1(0n(|wo, - - -, wy])),

where, for instance, the sixth equality is justified as follows: |wy,...,W;,...,w,] takes uy €
A" and returns wy, for k < i, and wyy1 for k > 4, while [wo, ..., W] |uo,...a,..un] © 0" ' maps
as

UkEAnill—)ukEAnHwk
for k < i, and
up € A" s upy € A" = wpg
for k > 1.

31t seems to me highly inadvisable to denote £ by [wy,...,w,], since this symbol is already “taken” and
might lead one to wrongly believe that Im(¢) must necessarily be an n-simplex).
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Since |wy, ..., w,] is a basis element for L, (Y"), the preceding shows that
(Ont105n)(0) =0 = (Yn-1000)(0) = (Ln = Yn-10 ) (0). (6)
for any o € L, (Y), with 1,, : L,(Y) — L,(Y") being the identity map. Therefore we have
On+10Yn + Yn-100, = 1,.

We now define a family of homomorphisms S,, : L,,(Y) — L, (Y) inductively. To start, we
have S_y : L_1(Y) — L_1(Y) given by S_1(|@]) = |&]. For any k, given

0= |wy,...,wy] € LIAFY),
let b, be the barycenter of A*  set £(by) = p, and define the homomorphism py : Li(Y) —
Li41(Y) by
ka‘<£) = Lp7 Wo, - - - 7wa .
Then we define S,, for n > 0 to be given by
Sn<€) = (pn—l o Sn—l o 6n)(€)

In particular

So(lp)) = P-1(5-1(do([p]))) = P-1(S-1(12])) = P-1([2]) = [p]

shows that Sy is the identity on Lo(Y).
If £ = |yo,y1] : A' = Y is in L;(Y) and has image equalling the simplicial 1-simplex
[0, y1], so that yo # y1, then £(b1) = p with p # yo,y1, and

S1(£) = (po © So 0 1) (£) = Po(So(£lfur) — Lliue]))
= Po(llpu) — o)) = Po(ly1] — [wo))
= I_p7 le - I_p7 yOJ

shows that Si(¢) equals a linear combination of singular 1-simplices with images [p,yo] and
[p, y1], which are elements of Blyo, y1].

Proceeding with an induction argument, let n > 1 and suppose that for any ¢ = [yo,...,ys| €
L,(Y) with Im(¢) = [yo, ..., Yn), Sn(¢) is a linear combination of singular n-simplices with im-
ages that are elements of Blyo, ..., y,]. For any

= 1Y0s- s Ynt1] € Lpta(Y)
with
Im(4) = [Yo,- - s Yns1] =V
and (b,+1) = p,

Sn+1(€) = (lpn oS,o0 8n+1)(ty0> ce ayn+1J>
= Pn(Sn(Ont1Y0, - - - Ynt1]))

= Znﬂ(—l)i]pn(sn(wo, Ui Yng]))

1=0
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For each i,
Im(\\you'-wgiu"'?yn—f—lJ = gz) = [y07"'7@ia"'7yn+l] = ‘/Z‘a

and so by hypothesis S,(¢;) is a linear combination of singular n-simplices with images that
are elements of BV;. Let W € BV be any one of these images. Then W = [wy, ..., w,]|, where
wy is the barycenter of V;, w; is the barycenter of an (n — 1)-dimensional face F,_; of V;, wy
is the barycenter of an (n — 2)-dimensional face F), 5 of F;,_1, and so on until we arrive at w,,
which will be a vertex of F,,_;. Now

Pullwo, - w,]) = |pywo, ..., w,],

which is a basis element of L,.;(Y) with image [p, wo,...,w,|, and since p is the barycenter
of V', wy is the barycenter of the n-dimensional face F,, = V; of V, and all lower-dimensioned
faces F,,_1,..., Fy of V; are faces of V| it is clear that [p,wy,...,w,] € BV. Therefore S, 1(¢)
is a linear combination of singular (n + 1)-simplices with images that are elements of BV .

To show that the maps S, define a chain map L(Y) — L(Y), the commutativity property
Sp_1 00, = 0, 0S5, must be verified. The base case (when n = —1) is clear:

(S-1000)([p]) = S-1([2]) = [&] = do([p]) = (9o o So)(Lp])-

For arbitary n suppose that 9, 05, = S, 039, is true. Let ¢ € LA™ Y) with £(b) = p.
Noting that

an+1 O Pn = ]ln — Pn-19° 8n7

we obtain

(Ont1 0 Snt1)(0) On+1 0 Pn © Sy © Ongr ) ()

=
= (Lo — Pa1 ©84) © (S 0 1)) (0)

= (S, 00p41)(f) — (Pr_1 00,05, 00,11)(¢)
= (S 00ht1)(l) — (Pr_10S,-1 00, 00,11)(0)
= (Sp 0 Op41)(0),

since 0, 0 Oy = 0.
Now, define homomorphisms 7T}, : L, (Y) — L,1(Y) inductively as follows. Let T_1(| &) =
0, and for n > 0 set

T,(0) = Pn(f — Tr—1(0n(0)))

for each ¢ € L(A™,Y), with p,, defined as above. Referring to the diagram
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it will be shown by induction that the collection of maps {7},}2% _; is a chain homotopy between
the chain maps {S,}>% _; and {1,,}°° _,, which entails demonstrating that

]171 - Sn - an—&—l o Tn + Tn—l o 871 (7)

for n > —1. The base case is easy to secure since Ty = 0 and T_5 = 0 (by definition), and
S_1 =1_;. For arbitrary n suppose that

1,—S5,=0u410T,+T,_100,
holds. Then, for ¢ € L(A™1)Y),
(On+2 0 Tny1)(£) = Onga(Prsa (€ — Tn(0n41(0))))

= (Ont2 0 Pr+1) (€ = T (0n41(0)))
= (Tn41 = Pn © Ong1) (0 = T0(On i1 (0)))
= (L1 (€ = T0(9n41(0))) = (P © Ong1) (€ = T (On41 (1))
= (Lnt1 = 150 Ont1 — Pn © Ong1 + Pp © (Ont1 0 Ti) © Op1)(0)
= (Lnt1 = 15,0 01 = Pn © Opg1 +Pr © (Ln — Sp — Ty—1 0 ) © Ongr ) (£)
= (Lnt1 — 10 © Ont1 — Pn © Opg1 + P © Ot — P © S © On1) (£)
= (L1 — T 0 Ont1 — Sny1)(0),

where again we make use of 0, 0 0,,1 = 0, and therefore

Tpi1 — Spi1 = Opio o Ty + 15 0 Onys-

Since Ty = 0 on L_4(Y) = Z, we can replace L_1(Y) with 0 and obtain a truncated
diagram in which {7,,}5°, is a chain homotopy between {S,}>, and {1,}>,.

Now begins the third part of the proof. Fix n > 0. For each generator o : A" — X of
Cy(X) there are induced homomorphisms o} : Cx(A™) — Ci(X) given by o (f) = oo f for
each integer k and map f : A¥ — A" Also there are the maps SP : Ly(A") — Li(A") that
operate in the manner discussed above and define a chain map L(A™) — L(A™). Finally there
are the identity maps lar = |uo,...,ux] : A¥ — AF. Using all these maps, we define a new
homomorphism S, : C,(X) — C,(X) by S,(c) = 37(S*(1an)). To show the maps S, define
a chain map C(X) — C(X), we verify the commutativity property S, 09, = 9, o S, for
each n. In doing so, we use the symbol J7~! to denote the canonical linear homeomorphism
A" — [ug, ..Uy .., uy]. Thus,

(0n 0 8n)(0) = On( (S} (Lan))) = (On © 37,) (S (Tan))
= (F5-100) (S (Lan)) = (051 0 (9n © 57))(Lan)

= (0p_10 (5,1 00,))(Lan) = (07,1 0 S, 1)(Onllan)
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N
S~—

=0
= _nfl (Z(_1> J|[u0 ..... Qg yeeestin] © 5Zn 1)
1=0
- 771—1(8710- = (gn—l o an)<0->a

where it must be admitted that there is a “leap” in going from the fourth to the fifth row that
would require some work to justify.
Next, define T,, : C,,(X) — Cpy1(X) by

To(o) = 5Z+1 (T3 (Lan)),

where for each & the map T}’ : Ly(A") — Ly11(A") operates as described above. To be shown
is that {7,,}°°, is a chain homotopy between the chain maps {S,}22, and {1, : C,,(X) —
Cr(X) o2, (the identity maps on C'(X)). Thus it must be shown that

]ln - Sn = an+1 o Tn + Tnfl o 8n (8)

for all n > 0, which will be done inductively.
Let n = 0. Since S) : Lo(A%) — Lo(A%) is the identity map, we have for any generator
o: A" = X of Cy(X),

So(d) = 5‘8(38(]1A0)) = 5‘8(]1A0) =00l =0,

so that Sy = 1y : Co(X) — Cy(X) and we obtain 1y — Sy = 0. Since T*, = 0 for any k, we
have T_; = 0 and so

where p(|ug]) = |ug, uo] since the barycenter of A is ug and Lao(ug) = ug, and the last
equality follows from the observation that o o |ug,ug] : A = A® — X is a constant function.
It has now been established that

]10—50:810T0+T_1080.
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For the inductive step, let n > 0 be arbitrary and suppose that equation (8) holds. Take
14, to be the identity map on Cpiq(A™!) so that 15, (Lan+1) = Lanr1. Referring to the
diagram

A A
a1’1,-‘—2 8n+1

S Cn+2(An+1> Cn+1(An+1) Cn(An‘H) — ...

—n+1 —n+1 —n+1
J/O—TH»Q J/o—n+l J/o—n

. %an(X)&CnH(X) LCR(X)%

we obtain, for any basis element o : A" — X of C,,1(X),

(Ont2 0 Tnp1)(0) = Onp2 (003 (T (Lan+1))) = (Opya 0 Gpty) (T (Lan+1))

= (0011 © Onya) (T3 (ane)) = (G711 © (Onya © Trif)) (Laws)

= (Ont1 o (L — Ty 0 0y — Spf))(Lann), by (7)

_ (=n+1 A —n+1 n+1 A —n+1 n+1
_ (Un-‘,-l © Hn—l—l —O0p41 © Tn © an—l—l —O0p41 © Sn+1)(]1A"+1)

=0 olamn — (Opf1 0 Ty 0 93,,) (Lan1) — Sny1(0)
=1n41(0) — (Tn 0 Opy1)(0) — §n+1(0)
= (]ln—l—l - Tn o an—l—l - §n+1)(0)7

where 0 0 Ian+1 = 0 = 1,,41(0), and the remaining justifications for the eighth equality are left
to the reader.

Now the fourth and last stage of the lemma’s proof commences. For m > 0 let
Sem : C(X) — Cn(X) be the mth iterate of S,,, with the understanding that S2° = 1,,. (The
notation S°™ is used here instead of S™ simply because superscripts are already being used
liberally for indexing purposes in the proof.) Define a homomorphism D} : C,,(X) — Cpy1(X)
by

m—1
Do) =Y (T o 87)(0)
i=0
for 0 : A" — X and m > 0 (with D?(c) = 0), resulting in the diagram

s O (X)) =2 O (X)) — 2 O (X)) — -

- pp " ol DR
Sott | Lnt1 S 1, Sa [ 1n—1

s Copr (X) 2 G (X) =22 Oy (X) — -

For fixed m it will be shown that the maps D] provide a chain homotopy between {1,}7%,
and {S2"}5° ; that is,
1, - S =0, ,0D"+ D™ 00, 9)
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for all n > 0. Since the maps S;' = S, have been verified to define a chain map C(X) — C(X),
it easily follows that 9, 0 SS" = 52 | 0 9, holds for all i. Now, for any o : A" — X and m > 1,
(Oni1 0 Dt + Dyt y 0 0n)(0) = Onia (D (0)) + Dyt 1 (0n(0))

-1

= i1 (Z_(TnoS,‘;i)(J)> + > (Th10571)(0n(0))

1=0

3

I
=)

i

—_

3

(G410 T0)(S7(0)) + (Tu1 © S3Ly © 90 (0)]

1

3
L

[(Ons1 0 T0)(S7(0) + (Ta1 © 9a)(S7(0))]

m—

(Opr 0 T + Ty 0 0,) (S5 (0 )(5% (o))

2:0

1

=
,_.

Il
1M

3

(S5 = S (0) = (570 = Si™)(o) = (1, = S™) (o)

@
Il
=)

which verifies (9).

Recall that for any |yo,...,yn] : A" = Y in L,(Y") with image the n-simplex [yo, ..., Y],
Sn(|Yo0, - -, Yn]) is a chain of singular n-simplices with images that are elements of B[yq, . . . , Yn],
and so S"(1ax) is a chain of maps with images that are elements of BA™. Thus, S,(o) is a
chain of maps of the form

oo, A" s Wi € BA" -2 o(W;,) C X.

onto onto

For any of the maps o o o;, we find that S,(c 0 a;,) in turn yields a chain of maps of the form

Qg Qg
oo o, A" —> Wi, € BA™ —) W;, € BA™ Lt) o(W;,) C X.
on onto

In general S;™(0) is a linear combination of maps of the form 0 o, 0 -+ 0 vy, :

T A (LAY =P SN (1)

where W;. € BA™ and «;; : A" — W;, for each j.
For any n-simplex V| define B'V = BV, B>V = J{BW; : W, € B!V}, and in general

BV = J{BW, : W,_, € BV}

for n > 1. Recalling (5), it’s seen that if Wy € B*V, then W, € BW; for some W, € BV, and
SO

2
diam(1Ws) < n 1) diam(V)).

n +

n - diam(11) < (

n—+
More generally for W,,, € BV,

n
n—+1

diam(W,,) < ( )m diam(V). (11)



32

Now, for any ¢ = |yo,...,yn] : A" = [Yo, ..., Yn], if W € BA™ then (W) € Blyo, - .., Ynl.
This is easily seen by noticing that if b is a barycenter for some k-dimensional face of A", where
0 < k < n, then £(b) will be the barycenter of the corresponding face of [y, ..., y,]. Referring
to (10), it follows that «;,,_, maps W; € BA™ to some

w! e BW,, , CBA"

tm—1

a; , maps W/ € B?2A" to some
m—2 Tm—1

w! c BQW@

tm—2

C B2A™,

m—2

and so on until we arrive at oy, : A" — W;,, which maps W/ € B 'A™ to some
W/ e B™'W;, c BMA™

It is seen, then, that S2™(o) is a linear combination of maps & of the form o o a, where
each a maps from A" onto some W, € B™A". Thus each ¢ is effectively a restriction of o to
some W,, € B"A", where

diam(W,,) < ( n 1)m diam(A™)

n+
by (11).

Since X = J, Uy and o : A™ — X is continuous, the collection {o~(Uy)} forms an open
cover for A™. Since A" is compact there exists some €, > 0 (a Lebesgue number for the cover)
such that, for any set W C A" with diam(W) < ¢,, there exists some k for which W C o='(U}).
Let m be sufficiently large so that

n \" . .
<n+1> diam(A") < ¢,.

Then S°™ (o) is a chain of maps &, each having image 6(W) in X for some set W C A" with
diam(W) < ¢,, so that W C o~ (Uy) for some k. Hence, each singular n-simplex ¢ in the chain
Sem (o) maps into some Uy C X, and therefore S°™ (o) € CY(X).

For each singular n-simplex o let

me, =min{m € Z : S (o) € C¥(X)},
and define D,, : C,,(X) — C,41(X) by
Dy(0) = Dy (o).
From (9) we have
o = S;"7(0) = (Opsr 0 D7) (0) + (D71 0 0,)(0)
(Onr10 D) (0) + Dnoi(0n0) = 0 =[S (0) + (D71 0 0p)(0) = D1 (940)]

(Ony10 Dn)(a) + (Dn—l 0 0,)(0) = 1u(0) — pnl0),
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where ¢, (o) is defined to be the expression in the brackets, and so
anJrl o Dn + anl o an =1, - Pn- (12)

It will be shown that ¢, : C,(X) — C¥(X). Clearly Sg™ (o) € C¥(X), so attention turns to
(D310 00)(0) = Dn1(9n0). Let 03 = 0lfug,...iiun] © 6 and

My; = min{m € Z : S°™ (0;) € C¥(X)},

and observe that m,; < m, for each 0 <7 <n. Now,

(D72 00,)(0) ~ Dua(Ba) = Y (-1 D3 (0) — D (-1 Dy ()
=3y ( > Tro8i)e) ~ Y Tso S*:f_l)(oz-))
-3 S s 13

Since

S (04) € CHLL(X)
for 7 > mg; and
Toa: CiLL(X) = CH(X),
it’s readily seen from (13) that
(D321 ©00)(0) = Dy1(9n0r) € CY(X),

and therefore ¢, (o) € CY(X).
To show that the maps ¢,, constitute a chain map C(X) — CY(X) as illustrated in the

diagram

- G (X) = Gu(X) =2 Coa(X) — -+

J/@n-&-l J/(Pn ijn -1

0,

D CU (X)) O cU(x) O U (X)) —

n+1
we show that ¢, 1 0 9, = 9, 0 p,,. Using (12), we obtain
Onow,=0,01, —0,00,410D, —0,0D, 100, =0, —0,0D,_100,
and
Opn100, =1, 100, —0,0D,_ 100, —Dp,_900,_100, =0, —0,0Dy_100,,

which verifies commutativity.
Now, the inclusion maps ¢, constitute a chain map C%(X) — C(X), and since (12) implies

an—i—l o Dn + Dn—l o an - ﬂn — ln O Pn (14)
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for all n, it follows that {¢, o ¢, } is chain homotopic to {1,}.
Next, we show that ¢, o1, = 1%, where 1¥ : CY(X) — CY(X) is the identity map. Let

o : A" — U, for some k, so that o is a basis element for C¥(X). Since o; : A" ! — Uy for
each i, we have m,; = 0 as well as m, = 0. Hence,

(¢notn)(0) = pu(o) = (L, = Opy10 Dy — Dpyo0 ) ()

=0 — Ons1(D))(0)) — : (=1)'Dp_y(0v)

=0 — an-&-l(o) - (_1)Z<O) =0,
=0
which completes the argument and so 1% — ¢, 0 1, = 0. Defining 0¥ : C¥(X) — C¥% ,(X) to
be the trivial homomorphism, what we have shown is

Opi1 004 +04 100, =0=1% — ¢, 01,

and therefore {¢,, o ¢, } is chain homotopic to {14}.

At last we see that {¢,} is a chain-homotopy equivalence, and so by Proposition 2.5 each
bnw © HY(X) — H,(X) is an isomorphism. [

Proof of the Excision Theorem. Let U = {A, B}, where A and B are subspaces of X such
that A°U B° = X. Define CY(X, A) = CY(X)/CU(A).

The maps ¢,, : C4(X) — C,(X) induce homomorphisms on quotient groups z,, : C¥(X, A) —
Cn(X, A) given by

In(a+ CH(A)) = 1,(a) + Ch(A) = a+ C,(A)

for each a € CY(X). It’s easy to verify that the maps 7, form a chain map CY(X, A) —
C(X,A),

D O (X, A) O cU(x, A) O ot (X A) —

ln+1 ln ln—1

S Cn-l—l(Xv A) % Cn(Xa A) L Cn—l(Xa A) >

with the maps 0, in the diagram being defined as in section 2.4, and the maps 0% being the
obvious restrictions. Thus each z,, in turn induces a homomorphism on homology groups

Ins : Ker 0% /Im 0%, | == HY(X, A) — Ker 0,/ Im 0,11 := H, (X, A)

defined according to the general algebraic formula given in section 2.1.
Next, the maps @, : C,(X, A) — CY(X, A) defined by

Pnla + Cu(X)) = pula) + C1(A)

for each a € C,(X) give rise to a chain map C(X,A) — CU(X, A); and so, defining maps
D,, and 1, on C,(X,A) in the canonical fashion from the maps D,, and 1,, in the proof of
Lemma 2.22; the diagram
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s Ot (X)) =2 0 (X)) =2 O (X)) — -

Dn anl
ln4+1 O Pnti ]]-n+1 ln O Pn ]]-n ]]-nfl ln—1 9 Pn—-1

- Gt (X) =25 Cy(X) — G (X) — -+

induces a diagram on quotient groups,

- — Cn+1(X, A) n+1 C (X A) % Cn 1(X A)

_ _ = 5n _ _ = 571,—1 = _ _
ln+1 O Pn+1 ]ln+l ln O QYn 1, 1p—1|tn—10 Pn—1

- — On+1(X A) A Cn(X, A) — Cn_1<X, A) —

S5

Again referring to the proof of Lemma 2.22, from ¢, 0 ¢, = 1% and (14) we readily obtain
B O by, = ]LZ:{ and
5n+105n+5n—105n: ﬂn_zno@n

for all n, where ]_121 = lou(x,4) and 1, = L¢,(x,4). Thus {@, o i,} is chain-homotopic to
{lcu(x.a)}, and {2, 0 @} is chain-homotopic to {1¢, (x,4)}, which implies that {z,} is a chain-
homotopy equivalence and therefore the maps ,,, : H#(X, A) — H,(X, A) are isomorphisms.

Now, define x,, : C,(B) — CY(X) to be inclusion maps, which induce homomorphisms
Fn: Co(B,ANB) — CY(X, A) given by

Fn(B + Ca(ANB)) = kn(B) + C1(A) = B+ C/(A)

for each 8 € C,(B), noting that C,,(B) = CY(B) C CY(X). Since the maps &, form a chain
map, the maps k,, constitute a chain map at the quotient group level,

O, ap

Co(B,ANB) —=— C,_(B,AN B) —»

J/E/n J/Rn 1
u

CU(X, A) — 2 CU (X, A) —> -

- — C,H_l(B,Aﬂ B)

J/RTH»I

- L (X, 4)

N Zi
8'n,+1

and so induce homomorphisms
Fns : Ker 0F /Im 02, := H,(B, AN B) — Ker 0¥ /Im 0%, :== HY(X, A).

Fix n, and suppose that &, (3+ C,(ANB)) = CY(A), the zero element of C¥(X, A). Then
B € CY(A), but since 3 € CY(B) also, it follows that 3 € CY(AN B) and so

f+C,(ANB)=C,(ANB).

Thus &,, is one-to-one.
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Next, let v+ CY(A) € CY(X, A), so that v € CY(X). We can assume that v is a generator
for CY(X) so that v : A" — U for some U € U. If U = A, then

Fn(Cn(AN B)) = CwZ{{(A) =7+ CrzﬂA);
and if U = B, then v + C,(AN B) € C,(B, AN B) with
Fn(v + Cu(AN B)) = ka(7) + G (A) = v + C/(A).

Thus &, is onto, and Proposition 2.2 implies that &, is an isomorphism.
Now we have isomorphisms

Tnx © Fpw - Hy(B, AN B) — HY(X, A) — H,(X, A)

for all n. Since 4 0 Fpe = (& © Rp)« by Proposition 2.4, it is a routine matter to show that
Unx © Rpx = Jns by showing i, o K, = J,, so the proof is done. [ |

One result that follows fairly easily from the Excision Theorem is the following proposition,
which makes a nice connection between relative and absolute homology.

Proposition 2.23. If (X, A) is a good pair, then the quotient map
q: (X, 4) = (X/A, A/A)
induces 1somorphisms
Gne * Ho(X, A) = H,(X/A, AJA) = H,(X/A)
for alln > 0.

Proof. Let V be a neighborhood in X that deformation retracts to A. Define homomorphisms
Ly : Co(X, A) = C, (X, V) as follows: for each basis element o : A™ — X of C,,(X), let

ln(c +Ch(A) =0+ Cr(V);
similarly, define k,, : C,(V, A) — C,,(X, A) by

kn(o + Ch(A)) =0+ C,(A)
for each o : A™ — V. Note that

0 — Co(V, A) —ns 0 (X, A) =2 Cu(X, V) — 0

is a short exact sequence, and thus we can construct a short exact sequence of chain complexes
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0 0 0
1 5 5 3
— Co1(V,A) —5 C (VA ——= C  (V,A) — -+
k‘n+1 kn kn—l

C > Co (X, A) 2 G (X, A) —2 Oy (X, A) — -

ln+1 ln lnfl
s O (X, V) 25 0 (X V) -2 O (X, V) —
1 l l
0 0 0

with maps 0,, defined in the usual way (verification of commutativity is omitted here). From
this we obtain a long exact sequence for the triple (X, V, A),

o Hy(V,A) s Ho (X, A) -2 Hy (X, V) -2 Hy (V,A) — -+ (15)

in the manner outlined in section 2.4.

The natural quotient map ¢ : (X, A) — (X/A, A/A) given by ¢(z) = = + A induces
homomorphisms ¢, : C,(X) — C,(X/A) given by ¢g,(c) = g o ¢, which in turn induce maps
Gn : Cr(X,A) — CL(X/A, A/A) given by

Gn(0 + Cn(A)) = qo o + Cu(A/A).

Now we construct the diagram*

Cn(XaA) # Cn(X7 V) Jn Cn<X_A7V_A)

T

Co(X/A, AJA) — s O (X/A, V/A) <2 o (X/A — AJA, V/A — AJA)

where

in(o+ Ch(AJA)) =0+ C,(V/A)

for each singular n-simplex o : A" — X/A, and },, and 7, are defined as in equation (4). Much
like @, we have

@, (0 +Cn(V)) = qoo+ C,(V/A),
and

@(c+Cp(V—A)=qoo+ C,(V/A— AJA).
The diagram is commutative since

in(Gn(0 + Cn(A))) = in(qo 0 + Cu(A/A)) = goo + Cy(V/A)
= Q;L(O- +Cn(V)) = @, (In(0 + Cu(A)))

4t is a quick matter to verify that X/A — A/A = (X — A)/A and so on.
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and

U (n(0 + Cu(V = A))) = ,(0 + Cu(V)) = go o + Co(V/A)
= Ju(go o+ Cu(V/A = A/A)) = J,(@,(0 + Cu(V — A))),
and therefore the diagram

H,(X,A) — ! H,(X,V) Jn: Hy(X — AV — A)

lqm lq;* l;{ .

Ho(X/A, AJA) — s H (X/A,V/A) <2 H (XA — AJA, VA — AJA)

is also commutative.
The maps J,. and J,, are isomorphisms by the Excision Theorem. The map ¢ is an
isomorphism since it is induced by the homeomorphism

q: (X —AV—-A) = (X/A-AJA VA - A/A);
indeed, we find that ¢ : X — A — X/A — A/A and the restriction ¢ : V — A — V/A— A/A are

each homeomorphisms, and hence homotopy equivalences, and so we can invoke the result of
Proposition 2.18

Since V' deformation retracts to A, there exists a retraction r : (V;A) — (A, A). Thus,
r:V — Ais a homotopy equivalence, as is the restriction r : A — A (which in fact is simply
the identity map on A and so is a homeomorphism). Using Proposition 2.18 once more we
conclude that r,. : H,(V, A) — H, (A, A) is an isomorphism, and since H,,(A, A) = 0 for all n
it follows that H,(V, A) = 0 for all n. Now, from the exact sequence (15) it can be seen that
[+ is an isomorphism as well. A similar argument will show that 7,, is an isomorphism since
r:(V,A) — (A, A) induces a retraction (V/A, AJ/A) — (A/A, A/A).

The commutativity of the diagram above leads to the conclusion that

q_n* - (Z.”*)_l o j/n* o (7;; © (j'ﬂ*)_l © ln*7

and therefore ¢, is an isomorphism. |

In section 2.4 we obtained the long exact sequence
s Ho(A) s (X)) 22 H (X, A) 22 H(A) — - — Ho(X, A) — 0,

and since H,(X,A) = H,(X,A) for all n > 0 if A # @, it follows from Proposition 2.23 that

there is an isomorphism ¢, : H,(X, A) — H(X/A), and so we arrive at an exact sequence
o Ho(A) 22 Ho (X))~ H,(X/A) —2s H, 1 (A) — -+ — Hy(X/A) — 0
With ¢nx = ©ns O jns and O = Oy © ¢ L. Thus Theorem 2.17 is proven once it is verified that

the maps ¢,. here are indeed the maps induced by ¢ : X — X/A.
Enough machinery has now been developed to entertain a few interesting examples.
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Example 2.24. Here we will find explicit relative cycles representing generators of the infinite
cyclic groups H, (D", 0D").
Starting with (D", 9D™), pass to the equivalent pair (A", dA™). It will be shown by induc-
tion that the identity map i, : A — A" is a cycle generating
H, (A", OA™) = Ker[0,, : C,,(A™, 0A™) — C,,_1 (A", 0A™)]
Im[an+1 : Cn+1(An, 8A") — Cn<An, aA")]

for n > 0. Note an element of H,(A", dA™) has the form

(¢ + Cu(OA™)) + Ony1(Cria (A", 0A™))

for ¢ € C,(A™) such that ¢ + C,,(0A™) € Ker 0, so in fact it’s better to say it will be shown
that H, (A", 0A™) = ([z,,]), where

[tn] = (in + Cr(OA")) + Ony1 (Crya (A", 0A™))

is the generator.
Now,

s AP — OA™ since [ug, ..., Ug, - .. U] C OA™ is the
kth “face” of A™ and so 0,(i,) € C,_1(0A™) and we see that i, is a relative cycle.
Let n = 0. We have ig : A — AY and we must show that i, represents a generator for

Ho(AO, 8A0) = Ho(AO, @) = Ho(AO) = Ho({uO}) = 7.

Fix [p] € Ho(A% AA®). Then

(2] = @ + 01(C1 (A%, 0A))
with @ = ¢ + Co(0A®) € Ker 9 for some ¢ € Cy(A°). Clearly Cy(A%) = (i), where i is the
map ug — ug, and so ¢ = kiy for some k € Z. Hence

(7] = Fio + 01 (C1 (A%, 00,
where
kig = kig + Co(0A") = k(ip + Co(0A")) = kig

so that

(2] = [Kio | = [kao] = k 1]

Therefore Hy(A% OA°) = ([3]) and the base case is done.

For the induction step, let n > 1, and suppose i, is a cycle generating H,,_; (A""1, dA™1).
Let A be the union of all but one of the (n — 1)-dimensional faces of A™. The first claim is that
there exists isomorphisms

H, (A" OA") —— H,_(OA", A) «—— H,_ (A", 0A™ ).
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For each k£ > 1, since A™ and A are contractible, we obtain from the long exact sequence for
the pair (A", A)

oo — Hip(A™) — Hp(A",A) — Hp_1(A) — Hp_1(A") — -+,
0 0 0

and so Hi(A",A) = 0. Now for the triple (A™, 0A™ A) (note A C 9A™ C A™) we have a long

exact sequence which gives, for n > 2,

C— Ho(A",A) — Ho (A", 0A") —2s H, (DA™, A) — H, 1(A",A) — -+~ ,
0 0

whence H,(A",0A") = H,_;(0A",A). When n = 2, since (A% A) is a good pair and A?/A
is contractible, it follows that Hi(A* A) = H{(A%/A) = 0 and therefore Hy(A? 0A?%) =
Hi(0A?,A). The n =1 case requires a more direct approach: we have

Hy(A',0A") = Hy(A'JOAY) = H\(S") ~ 7Z,
and N
Hy(OA', A) = Hy(OA'/N) = Z,
where the last isomorphism obtains from the observation that

8A1/A: {U0+A, U1+A},

a two-point set. Hence Hy (A, 0A') = Hy(OA', A), and it’s seen that H,, (A", 0A™) = H,,_;(0A™, A)
for all n > 0 as desired.

The map 0, : H,(A", 0A™) — H,_1(0A", A) has now been established to be an isomor-
phism for all n > 1, and it remains to determine explicitly how 0, actually works. In general,
consider the long exact sequence for the triple (X, A, B), where of course B C A C X:

s Hu(A, B) — Ho(X, B) —s Ho(X, A) —2 H, (A, B) — Hy 1(X,B) —> ---

Let [¢] € H, (X, A). Define 9 to be the usual boundary map C,(X) — C,_1(X). Then since
Ker[0, : Cp(X, A) = C,_1(X, A)]
H,(X,A) =
n(X,4) Im[0,41: Cri1(X, A) = Co (X, A)]
we find that @ = ¢ + C,,(A) (where ¢ € C,,(X)) is such that

O+ Cu(A)) = 050+ Cpi(A) = Cpi(A),

and hence 9Xp € C,,_1(A); that is, o is a “relative cycle”. The homomorphism d,, will map
the class [@] represented by the relative cycle ¢ to the class in H,_1(A, B) represented by the
relative cycle 9X ¢, denoted here by [0X¢]. Recalling
Ker[@n,l : Cnfl(A, B) — Cn,Q(A, B)]

Im[0, : C,,(A,B) = C,1(A,B)]

we see that [0Xp] = (0X¢p + C,,_1(B)) + 0,(C,(A, B)). Hence,

On[@] = On((p + Cn(A)) + On11(Crya (X, A)))

H, (A B) =
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= (03¢ + Caea(B)) + 0u(Cu(A, B)).

Now, the map 0, : H, (A", 0A™) — H,_1(0A", A) above operates in an analogous fashion.
For [1,] € H,(A™ 0A™) we obtain

On [Zn] = 871((% + Cn(aAn)) + 8n+1(0n+1(An7 aAn)))

= (02"1, + Cr_1(A)) + 0,(C(OA™ A)).

..........

A" (i.e. the face obtained when the kth vertex of A" is deleted). All but one of the maps
in|[u0 _____ ip,oun] therefore maps to A. So if A is, say, the union of all but the Oth face of A™ (i.e.
all but [dg, u1, . .., uy)), then it follows that i |ju, . ay,..un : A" 1 — A for all & # 0, and thus

..........

(=1)%%n | wo,....a0,...un] € Cr1(A) for all k # 0 and we have

-----

k=0

- (Z.n|[120,u1 ,,,,, Un] + On—l(A)) + an(on(aAna A))

= [in‘[ﬁo,u1 ,,,,, Un) ] . (16)

Thus the class
|:in|[ﬂ0,ul ..... un}] S Hn_l(aAn, A)

corresponds via an isomorphism to the class [z, € H, (A", 0A™).
The next matter to verify is that there exists an isomorphism

b1 Hy (A", 0A™Y) — H,_(0A", A).

The map v will be shown to be equal to a composition of five isomorphisms p, oS, 0l, 0, 0q,,
where

Ho (A" 0A™ Y =2y H (A" /OA"E gAY J9A™ ) —2y H,_ (A" /oA"Y

LN ﬁn,l(aA”/A) LN H, 1(0A" /A, A/A) RN H, 1(0A™ A).
The quotient map
q: (A" OA™ ) — (A™H/OA™M OA™ T /oA

given by
q(x) =z + 0A™

for each z € A" ! induces the homomorphism ¢, defined by

0 (0 4 Co1 (OA™ ) + 8, (Cr (A", 0A™ 1))
(g0t Gt (DA™ JOA™)) + 8,(Co (A" /OA™ 1, DA™ [OA™)),
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where for ¢ = Y, myoy, we take go o = >, my(q o oy). By Proposition 2.23 ¢, is in fact an
isomorphism.
The isomorphism «, is quite natural. Given that

Ker[_1 : Co_1 (A1 JOAT 1) = o (A1 /OA )]

7 n—1 n—1\ _
anl(A /8A ) - Im[an . Cn(An—l/aAn—1> - Cn_l(An—l/aAn—l)] !

we have

(i + Cot (DA™ JOA™)) 4 0,(Co (A" JOA™, DA™ /A1)
= o+ On(Cr (A1 A ).
The proof that «, is an isomorphism should be straightforward and will be omitted here.

Next we develop the isomorphism ¢,. We start with ¢ : A"™1 — QA" defined to be the
“inclusion map” of A"~! onto the face of A" not included in A. The map ¢ induces

0:A"HOAMT — QAT /A,

given by
x4+ 0A™ ) = u(x) + A

for all z € A""!. Clearly ¢ is bijective and continuous, and since A"~! /OA™™! is compact (it’s
homeomorphic to S*~1) it follows that £ is a homeomorphism. Now, ¢ induces a homomorphism
l,: recalling
ﬁ[nfl(aAn/A) _ Ker[@n_l : Cn_1<aA /A) — On_g(aA /A)],
Im[d, : C,(0A"/A) — C,,_1(0A™/N)]

we find that
(@ + On(Co(A™ 1 JOA™ 1)) = Lo @ + 0,(Cr (DA™ /),

and since /, is induced by a homotopy equivalence it must be an isomorphism.
The homomorphism S,, like a4, is a quite natural map. For

0 € Ker[0,_1 : Cp_1(OA"/A) = Cpp_a(OA™/A)]
we obtain
Bl + 0n(Cn(0A" /) = (0 + Cra(A/A)) + 0, (Cr (A" /A, AJA)).
The map p; ! is the inverse of the isomorphism
Pyt Hy (DA™, A) — H,,_1(OA" /A, A/A)
induced by the quotient map
p: (OA™ A) — (DA™ /A, AJA)

given by p(z) = x + A. Specifically p, is given by

Pl((p + Crnaa(A)) + O (Cr(0A", A))) = (p o + Crr (A/A)) + 05 (Cr (A" /A, A/A)).

By the inductive hypothesis [z, 1] is a generator for H,, (A" dA™ ). Now,

U([Tn-1]) = 7 (Be(u(@(u((in—1 + Cuma (OA™)) + 0, (Co (A", 0A™H)))))))
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= p (Bullulan((q 0 iny + Comr (DA™ JOA™T))
+ 0, (Co(A™ L /OA™ T DA™ JOAT1Y)))))
=P (Bulle(g 0 in—1 + Fn(Co (A" /OA™)))))
=p (Bl ogoin 1+ 0,(Cr(DA"/N))))
= (€0 qoin_1 + Cor(AJA)) + B, (Ch(BA" /A, A/A))). (17)

For the sake of definiteness let us again assume that A is the union of all but the Oth face
of A™. Given this assumption, recall from (16) the class

[ inlfiosm ] | € Hoo1(9A",A).
We find that
2o ([Wlomn el |) = (00 inlizgun, ) + Cocr (AA)) + Bu(Co(DA" /A, A/A)),
where p 0 iy |jag,ur,.un] * A" — QA" /A such that, for z € A" we have
Plinlfagun,...un] () = p(x € Oth face of A™) = (2 € Oth face of A™) + A.

On the other hand there is also the map £oqoi, 1 : A" ' — JA™ /A which, for any x € A"~
yields

0(q(in_1(2))) = €(q(x)) = €(x + OA™ 1) = 1(x) + A = (z € Oth face of A™) + A.

Hence p o in\[ﬁo,ul un] = £ 0 qoi,_y, which shows that

,,,,,

P ([ilitnaon | ) = (€0 g0 iy + s (A/A)) + 0, (Cu(DA™ /A, A/N)).
and therefore since p, is an isomorphism
P (00 g0 in 1 + Cot(A/A)) + 0u(Cal0A" A, A/A))) = [ sy |-

So, from (17) it’s seen that
¢([in—1]) - |:in|[1lo,u1 ..... un]i| ;
which together with (16) yields

Ouli] = [l | = (l-1]):

Thus we find that [z,] € H,, (A", DA™) corresponds via the isomorphism ¢ ~! 0 d to the class
[tn_1] € Hy 1 (A" 1 OA™ 1) and since [, ;] is a generator for H, {(A"', A" ) it follows
that [z,,] is a generator for H, (A", OA™).

Therefore for all n > 0 the singular n-simplex h o, : A" — D" is a relative cycle that
represents a generator for H, (D", 0D"), where h : (A", 0A™) — (D", 0D") is taken to be any
homeomorphism. [ |
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Example 2.25. We can build on the result of the previous example by finding an explicit cycle
representing a generator of the infinite cyclic group H,(S") for each n > 1.

To start, define two singular n-simplices 7, : A" — S and 7, : A" — S”, where 71 maps
to one hemisphere A of S”, and 75 maps to the opposite hemisphere B such that 7, = pom
with p:S" — S" being reflection about the plane containing A N B. In the n = 1 case 7
can be thought of as mapping A' = [ug,u1] to S' C R? in linear fashion from p = (1,0) to
g = (—1,0) through H? (the “upper” semicircle), while 75 maps [ug, u1] from p to ¢ through
H? (the “lower” semicircle). Now,

I(m — 7o) = 011 — Oy
= (Tl‘[ﬁo,ul] - Tl’[uo,ﬁl]) - (TQ‘[ﬁOﬂLl] - TQ’[uo,ﬁl])
=(q—p)—(¢g—p) =0,

so we see that 7y — 7 € C1(S?) is a cycle, and in general 7, — 75 € C,,(S") is a cycle for each
n > 1. The claim will be that [, — 73] € H,(S™) is a generator for the group. To establish this,
we will examine the isomorphisms in the diagram

H,(S™) 2 H,(S", 75(A")) <= H, (DA™, A) <2 H, (A", 9A™) (18)

for n > 1. Note that 75(A"), being a closed hemisphere of S* C R"*!, is homeomorphic to D",
which in turn is homeomorphic to A" itself.

The first isomorphism in (18) is precisely the map jn. : H,(S") — H,(S", 72(A")) in the
long exact sequence for the pair (S™, 75(A™)), which by definition is induced by the quotient
map

J:Cn(S™) = Cu(S™, 12 (A™))
given by j(¢) = ¢+ C,(12(A™)), and therefore for any singular n-chain ¢ € Ker[0,, : C,,(S") —
Cr—1(S™)] we have
(@ + 041 (Crga(S"))) = 5(9) + Ons1(Crsa (8", 2 (A")))
= (¢ + Cn(12(A"))) + On 1 (Crpa (8", 72(A"))).
In particular,
Jre([11 = 72]) = Jne (11 = 72) + On 1 (Cria (87)))
= (1 = 72) + Cu(12(A"))) + Ong1 (Cria (8", 72(A")))
= (1 + Cu(12(A"))) + 011 (Cra (ST, 72(A"))),

where the last equality holds since of course 7 € C,(m2(A")).
The third isomorphism is the map 1) of previous acquaintance, only with the integer n — 1
replaced with n. It’s known from Example 2.24 that [z,] € H,(A"™, 0A") is a generator for the
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group, and if we assume that A is the union of all but the Oth face of A"*! (which is opposite
the vertex ug), then

¢([in]) = (in+1|[ﬂo7m ----- Un41] + Cn(A)) + an-H (Cn-i—l(aAn—H’ A))

Noting that JA™! is homeomorphic to S™ and A is homeomorphic to T5(A"), the second
isomorphism above is induced by a homeomorphism

ho: (DA™ A) — (S, 7o (A™))

that can be constructed using the Pasting Lemma. Let A denote the Oth face of A" so
OA™ = AUN. Let T : A — A™ be the canonical linear homeomorphism and define h|y = 70T,
so h|x maps the Oth face of DA™ homeomorphically onto the hemisphere 7, (A™) of S". Next,
let L : A — A™ be a homeomorphism such that L|yny = T'|anx (observe that OA = ANX = IN),
and define h|p = 70 L. Then h|y, maps A homeomorphically onto the hemisphere 75(A™), and
since 71 |pan = T1|aan it follows that hly(z) = h|s(z) for all z € AN X and thus h : QA" — S”
is a homeomorphism. It induces isomorphisms

B © Ho (DA™, A) — H,(S", 75(A™)).
given by
B (i1 g s iy a] + Cn(A)) + Oy 1 (Crr (DA™, A)))
= (h o ins1lour,una] T Cnl(2(A"))) + O(Cria (8", 72(A™)))
= (hoins1|r + Cu(12(A"))) + O(Crsa (S, 72(A"))).

Here h o i,1|y is as usual implicitly precomposed with a canonical linear homeomorphism
A" — X which is in fact 77!, Now, for z € A", we have

(hoingilx o T7)(x) = h(inu AT (2)))

= h(T '(x)) (since T~ '(x) € \)
= h\(T"}(z))

= (r o T)(T ! (x)) (by definition of hly)
=N (iL‘),

and 80 h o, 1|y o T~ = 7. Suppressing T~! as is customary, it’s seen that
P (1 (0,01t ga) F Cro()) + Ot (Crg1 (DA™, A)))
= (11 4 Cn(712(A"))) 4 Ons1(Crpa (8", 72(A"))).

Hence

hos (V([20])) = (11 + Cu(72(A"))) + Ony1 (Crya (8™, 2(A"))) = Juu([11 — T2]),
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or simply
[r1 = 7o) = () ™" © s 0 ) ([2]).

So [ — ] € H,(S") corresponds via isomorphism to the generator [z,,] € H, (A", dA™), which
shows that [ — 7] is a generator for H,(S"). [ ]

Example 2.26. We are now in a position to find explicit generators for H;(T?), which will
prove useful later on when we turn our attention toward calculating homology groups using
Mayer-Vietoris sequences.

This will be done by finding the generators for H;(S! x S') (where we view S' x S! as
a subspace of R?) and invoking the usual homeomorphism S' x S! + T2. Considering two
copies of the 1-sphere, S and S}, we define 7,7 : A — S{ as in Example 2.25, and we define
01,09 : A' — S} the same way. Then [r; — 7] is an explicit generator for H(S}) and [0 — 0]
is an explicit generator for H;(S}), and it follows that {([r; — 72],0), (0, [0 — 03])} is a basis for
the free abelian group H:(S}) @ H,(S}).

Define ¢y : S — S x S} and 15 : S3 — S{ x S} by

vi(z1, 1) = (w1, 91), (1,0)) and (w2, y2) = ((1,0), (72, y2))

(viewing each copy of the 1-sphere as a subspace of R?). Also define 7; = ¢;07; and 6; = ;0 7,
all being maps A' — Si x Si. Finally, define [€] := & + 05(C2(S] x S})) for any cycle £. The
claim here is that [7; — 73] and [0, — G2] are generators for H,(S} x S}) = Z @ Z. To verify
this claim, define a homomorphism

w: H\(S) @ H,(S}) — H (S x S})

w(mlm — 1], nfoy — 03]) :=mw([r — 7],0) + nw(0, [o1 — 03])
= m[[f'l — 7A'2]] + n[[&l — (3'2]]
= [[m(ﬁ — 7A'2) + n(&l — 5'2)]]

It remains to show that w is an isomorphism.
Suppose w (m|m — 7], n[oy — g3]) = [0], so

m(ﬁ — 722) —+ n(&l — (3'2) (S 82(02(8% X S%))
and there exists some

14
o = Zklal € CQ(S% X S;)
=1

such that dy(a) = m(7; — 72) + n(6) — G2) (here a; : A" — Sj x S} for each i). That is,

14

Z k; (Oéi’[ul,ug] — Qi ug,uz] T ai’[uo,uﬂ) = m(71 — 7o) +n(61 — G2).
i=1
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Assume to start that n = 0, so dy(a) = m(71 — 72). Letting x € A?, then for each i, ay(x) =
(fi(x); fH(x)) for f] : A* = S]. Defining &; : A* — S} by &;(z) = f!(z), we readily find for

i
l

o= E kic;
=1

that 02(&) = m(m; —72) and hence m(7; —73) € 92(C5(S})). Now, since 71 — 73 is a generator for
H,(S}) we cannot have m(7; — 7)) € 95(Co(S1)) unless m = 0, otherwise we obtain H;(S}) & Z
for some 1 < k < |m|. Thus if n = 0, then m = 0 also. Similarly m = 0 must imply that n = 0.

We must rule out the possibility that m,n # 0. To do this, for each i we redefine «;
such that any restriction of a; to a face of A? that equals 61 or &5 is replaced with 7 or 7,
respectively—along with a corresponding change in the definition of o in the interior of A? to
maintain continuity. In this way we obtain a new map ¢;, and by extension a new chain & such
that

82<66) == m(f‘l - 7:2) + n(f’l — 7A'2) = (m + n)(f’l — 722)
Then m 4+ n = 0 must hold, or n = —m, and we’re led to conclude that
82((){) = m(f’l - %2) — m(&l — 5’2)

From here, manipulating «;’s to replace the cycle 6; — 9 with 65, — 61 will give 2m = 0 and
hence m,n = 0.

So w(m|m — m],n[or — 03]) = [0] implies that (m[r — ], njo; —os]) = (0,0), which
shows that Kerw is trivial and hence w is injective.

Now let [€] € Hy(S! x S}) be arbitrary. Then the 1-chain &€ = Y0_ k& is a cycle, so
& Al — S} x S} such that

¢
Z ki(&i(u1) — &i(uo)) = 0.
i=1
Such a cycle will be homotopic to the cycle
m(f‘l — %2) + n(&l — &2)

for some m,n € Z, which is a loop based at ((1,0), (1,0)); thus, since homotopic cycles are
homologous, we find that

w(m[ﬁ — TQ],n[Ul — 0'2]) = [[m(ﬁ — 7A'2) + n(&l — (3'2)]] = II&-]]

for (m[m — 7], n[o1 — 09]) € Hi(S}) ® Hy(S)). Tt follows that w is surjective.

It’s now established that w is an isomorphism, and since [7; — 75] and [6; — d2] correspond
via this isomorphism to the generators ([7; — 72],0) and (0, [o; — 09]) for Hi(S}) & Hy(S}), it
follows that

[#1 — 72]l, [61 — 2] € Hi(S] x S)

are explicit generators for H;(S! x S}). Now, if & : S} x S} — T? is any homeomorphism, then
[ho# —hoty] and [ho &y — h o dy] are generators for Hy(T?). |
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Example 2.27. In keeping with the philosophy that being explicit oftentimes trumps being

“elegant” at least when it comes to being pedagogically useful, what follows is a simple example

of how a path in S} x S} can be homotoped to a path of the form m(7; — 72) + n(éy — G2).
Let v : [0,1] — S! x S} be given by

(t) = (1, 4nt), (1, 27t)),

so v is a path in S x S} that runs twice around St whilst simultaneously running once around
Si. (In T? this map can be characterized as a path that wends twice around the girth of the
torus while going once around its central hole.) Set 7o = v and define v, : [0,1] — S{ x S} by

(1) = ((1,87t),(1,0)), ifo<t<1/2
(1, 4n), (1,47t — 27)), if1/2<t<1
Note that 7; is a path that first runs twice around S} (staying stationary in S}), then runs once

around S} (staying stationary in S1). Thus 7, is in fact (homotopic to) the singular 1-chain
2(71 — 72) 4 (61 — 02). Now, let {7s}sejo,1) be the family of functions given by

o J (Ldn(t+st)), (1, 2n(t = st))), if0<t<1/2
(t) = (1,47 (t — st + s)), (1,2n(t + st — 5))), if1/2<t<1

It is straightforward to verify that {7s}scp,1] is a homotopy, and therefore v is homotopic to
2(%1-%2)4‘((5’1—6'2) [ |



49

2.9 — MAYER-VIETORIS SEQUENCES

Let X be a topological space, and let A, B C X such that X = A°U B°. Define C,,(A+ B)
to be the subgroup of C,(X) consisting of chains that are reducible to the form o + 7,> where
o € C,(A) and 7 € C,(B). The boundary map 9% : C,,(X) — C,_1(X) has restriction 9,F :
Co(A+B) = C,_1(A+ B), and also 8/ : C,(ANB) = C, 1(ANB), 82 : C,(A) = C,_1(A),
and 92 : C,(B) — C,_1(B). All boundary maps 0 defined here give rise to chain complexes
since 00 = 0 always holds, and so in particular there are the homology groups

~ Ker[o,f: C,(A+ B) = C_1(A+ B)]

HA+B X) = )
) = BT G (At B) > Co(A 1 B)]

Lemma 2.28. Define ¢, : C,(A+ B) — C,(A) & C,(B) by vn(0) = (0,—0), and define
U : Cr(A)® C(B) = Co(A+ B) by ¥,(0,7) =0+ 7. Then
0 — Co(ANB) =25 C,(A) & Cu(B) —2 Co(A+ B) — 0 (19)

1s a short exact sequence.

Proof. Let 0 € Ker g, so ¢,(0) = (0,—0) = (0,0). This implies that 0 = 0 € C,(A), and
since a subgroup must have the same identity element as the group that contains it, it follows
that 0 = 0 € C,,(AN B). Thus Ker ¢,, = {0}.

For any o € C,,(A N B) we have

Un(pn(0)) = ¢n(0, —0) = 0 + (=0) =0,

so Im ¢,, C Ker,.

Next, suppose that (o,7) € Kert,. Then ¢,(0,7) = 0 +7 = 0, implying that ¢ = —7
and so 0 € C,(AN B) (since 0 € C,(A), and 7 € C,(B) implies —7 € C,(B)). Now,
on(0) = (0,—0) = (0,7) shows that (o,7) € Imp,,. So Kert,, C Img,,.

Finally, fix £ € C,(A + B). Then £ = ¢ + 7 for some o € C,,(A) and 7 € C,(B). Now,
(0,7) € Co(A) @ C(B), and ¢,(0,7) = 0 + 7 = & shows { € Imq),. Therefore Imq), =
C.(A+ B). u

The Mayer-Vietoris sequence is the long exact sequence of homology groups

. — Ho(AN B) -2 H,(A) & H,(B) —= H,(X) -2 H, (AN B) — - --
<o — Ho(X) — 0 (20)

associated with the short exact sequence of chain complexes in Figure 6 formed by the sequences
(19), where we define 92 = 92 @ 9Z. Tt must be verified that the diagram is commutative, and
the definitions of the homomorphisms ®,,, ¥,, and 0, in (20) should be made explicit. Once
this is done, it will be confirmed that (20) is indeed exact.

For z € C,(AN B) we have p,_1(9))z) = (9)'z, —0)'z) while

On(pn(2)) = (0, @ 07)(2,—2) = (02,0, (=2)) = (072, —0n2),

C, (A + B) is also denoted by CY(X) for U = {A, B}.
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0 0 0
1 o ! o !
e O (ANB) — 2 S 0 (ANB) — 5 O (ANB) —— -
Pn+1 Pn Pn—-1
951 °
s Cit (A) @ Cr (B) —25 O (A) @ Cu(B) —22 €1 (A) @ Cpy(B) —> -+ -
wnJrl wn ’l/)n—l
+
e Cpa(A+B) — 2 oA+ B) — % (A4 B)— .-
l \l \l
0 0 0
FIGURE 6

since 9|, (anp) = Of) and 0|, (anp) = Of. Hence ¢,_100) = 05 o ¢y,.
Next, for (o,7) € C,,(A4) ® C,(B),

Un_1(05 (0, 7)) = wn,l(@‘?a, 857) = 3;:‘0 + 357,
while
O (n(o, 7)) =0 (0 +7) =004+ 01 =00 +0Pr,

where the last equality holds since 9, : C,,(A+B) — C,,_1(A+B) has restrictions 9, | ¢, (1) = 02
and 9,7 |c, 5y = OF. Hence ¢,,_1 0 9 = 9, 0 1,. So the diagram is commutative.
Define the map

®, : Hy(AN B) — Hy(A) @ H,(B)
by ®,,([z]n) = ([z]a, [—2]B). Given that

~ Ker[0f': Ch,(ANB) = Cp_1(AN B)]
Ha A B) = e = Co (AN B) = Ca(AN B)]'

we could write more explicitly
Doz + 001 (Cont(AN B)) = (2 + 041 (Con (A)), —2 + 05,4 (Coa(B))).

We take VU, : H,(A) ® H,(B) — H,(X) as being given by ¥,, = ¢, o 1),, where the map
V. Hy(A) ® H,(B) — HAB(X) is the homomorphism induced by ),

Yellola, [718) = [Wn(o, Ty = o + 7)1 = (0 + 7) + 0,51 (Casa (A + B)),

for any o € Ker 92 and 7 € Ker 9. By Lemma 2.22 the inclusion map ¢ : C,,(A+ B) < C,,(X)
induces an isomorphism ¢, : HA*8(X) — H,(X) given by t.([z]4) = [2], or more explicitly

L*(Z + arj_-s—l(cn-i-l(A + B))) =z+ af—;—l(cn—s-l(X))'

Thus
U (lo]a, [7]8) = w(lo + 7]4) = [0+ 7],
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where 97'c = 0 and 97 = 0 imply that
OX(o+7)=0 0+ T1=0%+0°1=0

as required.

Let [z] € H,(X), so x € KerdX C C,(X). Since ¢, is an isomorphism there exists some
€]y € HAB(X) such that t.([¢]4) = [z], or [¢] = [x]. Hence z is homologous to ¢ € Ker 0¥,
and since & € Ker 0, C C,,(A + B) there exist o € C,(A) and 7 € C,,(B) such that { = o + 7,
and thus [z] = [0 + 7]. But 8¢ = 0 implies that X (0 + 7) = 0, so 9X0 = —0X7; and since
0X0 € C,_1(A) and X7 € C,_1(B), it follows that 9Xo € C,,_1(A) N C,_1(B) and therefore
0Xo € C,_1(AN B). Now to define 9, : H,(X) — H,_1(AN B). We have [z] = [0 + 7] for
o+71€Cy(A+ B), and ¥,(0,7) =0+ 7 for (o,7) € C,(A) & C,,(B). Since

Un_1(05 (0, 7)) = z/zn,l(ﬁ;?a, 6’57) = z/zn,l(ﬁffa, 82(7') = (9550 + 0,)1(7' = 85(0 +7)=0

shows that 9°(o, 1) € Ker,,_; and Ker,, 1 = Im ¢,,_1, there must be some z € C,,_1(AN B)
for which ¢, _1(z) = 02(0,7) = (0X0,0X7). However since

pu-1(0y 0) = (O 0, =0y 0) = (0, 0,0, 7)
and ¢, is injective, it must be that z = 9Xo! We define 9,([z]) = [0X0]n. This manner
of defining 0,, mirrors that of the previous section and thus is assured of being a well-defined

homomorphism.
It remains to demonstrate that the sequence (20) is exact.

Proof.
eIm®, C KerV¥,,. Let [z]n € H,(AN B). Now,

U (@n([2ln) = Wa(lz]a, [=2]8) = [z + (=2)] = [0],
and so ®,,([z]n) € Ker U,,.

eIm VU, C Kerd,. Let [2] € ImW¥,,. Then there is some ([z]4, [y]5) € Hn(A) ® H,(B) such that
U, ([2]4, [y]lB) = [2], whence [z] = [z + 3] with € Kerd? € C,(A) and y € 92 c C,(B). By
the definition of 9,,

Onlz] = Oulz +y] = [07 2]n = [872]n = [0]n,

where the third equality holds since 97! = 9%

. (4)- Hence [z] € Ker 0,,.

eImg, C Ker®, ;. Let [z]n € Im 0, so there exists some [z] € H,(X) with 0,[z] = [z]n. As
before, we can find some o € C,,(A) and 7 € C,,(B) such that [z] = [0 + 7], and then
Oplz] = Oplo + 7] = [0, 0]
Thus [z]n = [0 0], and
Cp-1([2]n) = ua(107 o)) = (10,014, =0, 0]5) = (07014, (0, 7]p),
where the last equality holds since

(o +7)=0 = r=-0%0c = 0Pr=-0%.
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Now,
07014 = 0,00 + 9,1 (Cu(A)) = 0,/(Cu(A)) = [0]a

and similarly [087]5 = [0]g. Thus we have ®,,_;([z]n) = ([0]4, [0]5), giving [2]n € Ker ®,,_;.

eKer W, C Im®,. Let ([o]a,[r]p) € Ker ¥, so o € Kerd?! C C,(A), 7 € Ker 02 c C,(B),
and

W(o)a, 7)) = ta(¥-(ola, [rls)) = 0

implies that [0 4+ 7]+ = . ([0]a, [T]B) = [0]+ since ¢, is injective. Hence
(0 +7) + 0,51 (Coa(A+ B)) = 3,51 (Coa (A + B)),

so that there exists some ¢’ € Cpy1(A + B) such that 9, ¢ = 0 + 7 = ¢, (0, 7). Since ¢, 41 is
surjective there exists some (¢/,7") € C,,11(A) & Cyy1(B) such that ¢,1(0’', 7)) =0 + 7' =¢.
Now, (0,7) — 05.1(0',7') € Ca(A) ® Co(B), and

Un((o,7) — 82-1-1 (U/a Tl)) = (0, 7) — ¢n(a§+1<0/a T/))
= Yu(0,7) = 01 (Y1 (o', 7))
=(c+7)=05 ' =(+717)—(c+7)=0

shows that
(0,7) = Opy1 (0, 7') € Kerhy, = Im oy,

so there’s some a € C,(A N B) such that p,(a) = (0,7) — 05,4 (0’,7'). Since
(aa _a) = QDTL(CZ) = (07 T) - (871?—&-1 & 85+1)(U/> T/) = (U - 8;14+10I7 T = a?zB-i-lT,)

we have a =0 — 92, 0’ and —a =7 — 98 ;7.
Forging on,

pn-1(0,'(a)) = 0;(¢n(a)) = 0, (0, 7) — 0,0, 4 (0", ')
= 05(0,7) = (9,0, 0,7) = (0,0),
and since ¢,_; is injective we get 97(a) = 0, so that a € Kerd? and [a], € H,(ANB). Finally,
@, ([aln) = (lala, [~als) = ([0 = 074101, [T = 071 7]8) = ([o]a [7]8),
where the last equality holds since
[0 = 9510"a = (0 = 074,0") + 0741 (Crsa (A))
= (0 + 9;41(=0")) + 9341 (Crra (A))
=0+ 91 (Crz1(A)) = [0]a,

and similarly for [7]g. So ([0]a, [T]5) € Im ®,,.
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eKerd, C ImV,. Recalling that ¥,, = 1, o 1),, it will first be shown that Ker d,, o ¢, C Im1,.
Let
[+ € Kerd, o1, C HMP(X),

so ¢ € Kerd,f C C,(A+ B) and there exists 0 € C,(A), 7 € C,(B) such that ¢ = o + 7. Set
b= (0,7), 80 ¥,(b) =0+ 7 =c. Now

Pn-1(070) = 0, (¥u(D)) = 0, c=0
implies 07b € Ker 1,1 = Im¢,,_1, so there exists an a € C,,_;(A N B) such that
(&7 —Cl) = Spn—l(a') = a?ib = (87?0_7 87?7—)

We see that 0Xo0 = 040 = a € C,,_1(AN B), and from 9 ja = 97 ,0X0 = 0 it’s clear that
[a]n = [0X0]n € Hy 1 (AN B).
By the definition of 0,,

(0 0 t2)([c]+) = On[]) = On([o + 7]) = (07 o] = [aln.
Recalling [c]4 € Ker d o ¢, we must have
la]n = a + 0, /(Ca(AN B)) = 0, (Cu(AN B)),

and thus there’s some o’ € C,(AN B) with 9/'a’ = a. The chain b — p,(a') € C,(A) & C,(B)
is a cycle:

Op(b = pn(a’)) = 0pb = 05 (en(a')) = Opb — n1(9;'a’)
= 0,b— pp_1(a) = 05b— 0;b = (0,0);
but also we have
05 (b= pu(a’)) = (9,0,0,7) — 9 (a', —d)

= (070,0,r) — (07, ~0,d')

= (07 (0 —d),07(7 +d')),
which shows that ([0 — d']a, [T+ d|s) € H,(A) ® H,(B). Then

bullo —dlas [T+ dls) = (o —d\ 7+ )y =[(0+d) + (T +d)y = [0+ 7] =[ds

shows that [c]4 € Im ).
Suppose that y € Kerd,, so x € H,(X) such that 9,y = 0. Since ¢, is an isomorphism
there exists ¢ € HAB(X) such that ([ 1(y) = £ Also

(On 0 12)(§) = (On 0 1) (12 (X)) = Fux =0,

so & € Kerd,, o 1, C Im1, and it follows that there exists some w € H,(A) & H,(B) such that
Y (w) =&. Then

Up(w) = t(iha(w)) = () = X
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shows that xy € Im ¥,,.

eKer®, ; C Imd,. Let [a]n € Ker®, 1, so 97 ;a = 0, which implies that 92 ;a = 92 ;a =0
and thus ([a]a, [—a]p) € H,—1(A) & H,_1(B). Now, by hypothesis,

®y-1(la)n) = ([ala, [~als) = (9;(Cu(A)), 0, (Ca(B))),

implying a € 92(C,,(A)) and —a € 95(C,,(B)), and hence there exists (o,7) € C,(A) ® C,,(B)
such that

On(o,7) = (9;0,0,7) = (a,—a) = pu_1(a).
Observe that ¢,(0,7) € C(A + B) is a cycle:
O (Vu(0,7)) = ¥u1(07(0,7)) = Yu-1(n-1(a)) =0
since Im g, = Kert,_y, so [1h,(0, 7)]s € HATB(X). Now,
(O 0t )([Wnl(o, 7)) = Ou([o +7]) = [0 0]n = [9/0)n = lan,

and therefore [a]~ € Im 0,. |

The examples that will be examined below will serve to illustrate the uses of another Mayer-
Vietoris sequence that arises from A, B C X, where X = AU B with A, B being deformation
retracts of open sets U,V C X such that AN B is a deformation retract of U N'V. Thus for
retractions 74 : U — A and 78 : V — B we find that r4|yny = rZ|yny. To establish this
sequence we start with the following commutative diagram:

Hy(UNV) =22 H (U@ H, (V) 2 HUHY (X) 2% [ (UNV) 225 H, (U@ Hyy (V)

Hy (ANB) 2 H, (A)@ Hy (B) —s HAYB(X) 222 1 (ANB)—=5 H,_1(A)@® H,_1(B)

Here i, is induced by i : ANB < UNV, and j, = j2@;2 with j# induced by j* : A < U and
4B induced by jZ : B < V. Since i, j4 and j® are homotopy equivalences, all i, and j, maps
are isomorphisms, and so in particular j, has inverse r, = rA@r? (r# and 2 being the inverses
of 72 and jP); that is, j;! = r.. The homomorphism k, arises from k : C,,(A+B) < C,(U+V)
given by k(o +7) = jAoo+jPor for o € C,(A) and 7 € C,(B) (if, say, o = nio1 + nyo, with
01,09 : A" — A we take jAoa = ny(jooy) +na(j4 0 0y)), so that k.([o +7]4) = [k(o+7)]4.
Also we define 1/, in the same way as v,, ®, by & = j~lo®,oi,, and 0, : H,(X) — H,_1(ANB)
by 0! = i;' 0 0,. Finally, /. : HA*P(X) — H,(X) is induced by ¢/ : C,(A + B) — C,(X)
so that ¢ ([¢]4) = [/(€)] = [£]. With these definitions it is straightforward to verify that the
diagram is commutative. Also the exactness of the upper row follows easily from the exactness
of sequence (20). What is not wholly trivial is demonstrating that the lower row is exact, but
once it is confirmed to be so, the Five-Lemma implies that k, is an isomorphism. Then the
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commutative diagram
HHV(X) —— Ha(X)

| -

H*P(X) —— Ha(X)
makes clear that ¢/ is an isomorphism. Knowing this is all that is required in order to construct
a Mayer-Vietoris sequence for the decomposition X = AU B with A C U and B C V as
described above.
For the benefit of the obsessive-compulsive among us, the proof of the exactness of the rows
of the diagram above follows.

Proof.
eIm®, C Kerty. Let 2 € Im®,, = KerV,, so V,(x) = (1. 0 ¢,)(z) = 0. Since ¢, is an
isomorphism we obtain 1, (z) = 0 and thus = € Ker ..

eKery, C Im®,,. Let x € Kert,, so ¢.(x) = 0 implies ¥, (z) = t.(¢(x)) = 0, which shows
that = € Ker ¥,, = Im ®,,.

eIm ), C Ker(d,ot,). Let £ € Im),, so there exists x € H,(U) ® H,(V') such that ¥, (z) =&,
and thus ¢, (¢ (z)) = t.(§) implies that

t:(€) € Im(1, 0 9p,) = Im ¥, = Ker 9,,.

This leads to 0,(t.(§)) = 0 and therefore £ € Ker(9, o t,).

o Ker(0, o t,) C Imu),. Let £ € Ker(0, o t.), so t.(§) € Kerd,, = ImV,, and ¥, () = 1,(&) for
some x. That is, t.(1.(x)) = 1.(§), and since ¢, is injective, 1, (z) = £ and therefore £ € Tm 1),.

eIm(0,0t,) C Ker®, ;. Let z € Im(0,, 04), 80 On(1+(§)) = z for some &, from which it’s clear
that z € Im0,, = Ker ®,,_;.

eKer®, ; C Im(9, 0t,). Let z € Ker®, ; = Im9,. Then 9,(x) = z for some =z € H,(X).
Since ¢, is surjective 3¢ € HATB(X) s.t. 1,.(€) = x, and thus 9,,(.(€)) = 0,(x) = z shows that
z € Im(0,, o t.). This completes the verification that the top row is exact.

eIm® C Kervl. Let ([o]a,[7]s) € Im P/, so J[¢]~ € H, (AN B) s.t. @ ([¢]n) = ([0]a, [T]B),

whence

(lola, [T]B) = (1 0 @n 0 i) ([E]n) = ru([€]v [=€]V)
= ([r* o &la, [=r" o &ls) = ([€]a, [€] ).

The last equality holds since ¢ € C,,(AN B), and 74, 7P behave as the identity when restricted
to AN B sothat rd o0& =&, rPo¢ = ¢ Now

Ui(lola, [T]s) = ¥i((§la, [€]B) = [€ = €]+ =0



as desired.

eKery)) C Im®!. Let ([o]a,[r]5) € Kere,. Then
(i[04, [T])) = ku(¢.([0]4, [7]5)) = k. (0) = O

by commutativity, so
J«([o]a,[T]B) € Ker ¢, = Im @,

and

for some [¢]n € H,(UNV). Now
7 (@a([€ln)) = ([0]a, [7]B) = @, ([€]n))

shows that ([o]a4,[7]5) € ImP/,.

eIm ), C Ker(d, o). Let [¢]; € Imy, so I([o]a, [T|5) € Hn(A) ® H,(B) such that

Villo]a; [7]s) = [o + 7]+ =[]+
Now,
Vi[04, [T]B)) = [0 + 7]+ € Im ¢, = Ker (9, 0 1.)
implies that
On(t+([o+7]4)) = On(lo +7]) = 0.
Thus
Op o, ([8l+) = 9, 0 (lo+ 7)) = Op([lo +7]) =0

and we get [¢], € Ker(0., 0 1.).
e Ker(d),01') C Im. Let [¢], € Ker(d, 01), so
On 0t 0 ky([§]4) =ik 00, 01 ([€]+) =0
vields k.([¢],) € Ker @, o t, = Im1),, and thus there is some
([Wo, [Vlv) € Ho(U) @ Hu(V)

such that [u +v], = [¢], € HVTY(X). What remains to show is that

VLG (o, Wv) = l(rt o pla, rP o vlp) = [t o pt 1P o vy = [€]4

in HA*B(X), or equivalently 3w € C,,41(A + B) such that
O w=rtou+rPorv—¢
But notice 74 ~ 1y and r? ~ 1y, imply that r4 = 1, and 72 = 1y, so

(lelo, Wlv) = ([ o plu, [P o v]v)

26
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and we obtain [r4 oy + 18 ov], = [¢]; in HY*V(X). Hence 3w’ € C,,11(U + V) such that
O =rtou+rfov—¢
and we can write w’ = o + 7 for some o € Cy,11(U), 7 € Cpi1(V). Now, if we define
wi=roo+rPoreCpi(A+ B),

then 0, ,w =140+ rP ov — ¢ as desired. Therefore [{]} € Im ).
oIm(&, o01)) C Ker® . Let [2]n € Im(), 04.), so F[¢], € HAFB(X) such that

9, o v ([€]+) = [Z]n
That is,
[2]n = 0, ([€]) = (i 0 9n)([€))-

(On 0 1) (k+([€]4)) = (On 0 1)([E]4) = Onl€],

so Oy[¢] € Im(0, o 1) = Ker ®,,_1 and we obtain ®,_1(9,[¢]) = 0. From ®,,_; oi, = j. o P/
comes

(Pn-10i:)([2]n) = (Pa-1 00) (i © 0n)([€])) = Pu-1(0a[€]) = 0 = (i 0 P;,_y)([2]r),

so @ _([z]n) = 0 since j, is an isomorphism. Hence [z]n € Ker @/ ;.

Now,

eKerd! |, CIm(d, o). Let [z]n € Ker®/,_,, so
©;,_1([2]n) = ([z]a, [-2]B) = (0,0)
and 3z € C,(A),y € Cy(B) s.t. 922 = 2,08y = —z. Now, z +y € C,(A + B) with
O (x+y) =00+ 0%y=2—2=0,
so [z +y]l, € HA*B(X). Then, letting " denote the retraction of U NV onto AN B so that
0= (), = (i) =i
(0, 0 e )([z +yl4) = i Oulz +9) = 1 ([07 7)) = (187 2]n) = r([]n) = [ 0 2]n.
However, z is a chain in C,,_1(A N B) and | 4np = Lanp, so in fact ™ o 2 = z and we obtain

(0, 0l )([x + y]y+) = [z]n. Therefore [z]n € Tm(,, o ¢.) and the bottom row of the diagram is
exact. ]

Example 2.29. The surface M, of genus g, embedded in R? in the standard way, bounds a
compact region R. Two copies of R, glued together by the identity map between their boundary
surfaces My, form a closed 3-manifold X. Here we will compute the homology groups of X,
H,(X); also we will find the relative homology groups H,(R, M,).°

First assume that g = 1, so M, = T? C R? (the embedding of S* x S' C R* in R?). Let T
be the region in R?® that T? bounds, so 7 is a solid “donut” in space which is homeomorphic
to D? x S' ¢ R*, and 0T = T?. Let T4 and Tz be two copies of T, and let ¢ : 9Ty — OTp be

6This appears as problem 2.29 in Hatcher.
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the identity map. Then the space X in this case is given as X = T4 U, Tg, and indeed T4 LI, Tp
constitutes a natural decomposition of X for which there can be found neighborhoods U and V'
in X that deformation retract to 74 and 75 while U NV deformation retracts to 74N 7Tz = T2.
It has been found earlier that

Z, ifn=20,2
H,(TH2Z&7Z, ifn=1
0, if n > 3,

and so, noting that 74, 7Tz ~ S', we obtain the Mayer-Vietoris sequence

o Ho(Ta N Tp) —2 Hy(Ta) @ Ho(Tp) —2 Ho(X) =2 H\(Ta N Ts)
—_—— ~ -~ 2 N

Hy(T2)=7, 0 Hy(T?) 2L
2 (T @ Hy(Ts) —2 H(X) —2 Hy(TaNTg) — -+ (21)
(. ~~ > —;—f
7oL Ho(T2)=0

Of course Hy(X) = Z since X is path-connected. From Im ¥, = Ker9; = H;(X) we see
that W, is surjective, so

The workings of ®; must be determined.

Recall the cycles 7 := 71 — 7 and ¢ := 67 — 75 from a few pages back. It has been shown
that [7] and [6] are generators for H;(S' x S?) (it seems safe at this point to drop the subscripts
that formerly distinguished the two copies of S'). A homeomorphism 5 : S' x S — T? can be
found that maps 7 and & to cycles 7 and &, respectively, on the surface T? as shown in Figure 7.
Specifically we have 7 = ho 7y — h o 7o, with h o 71 going halfway around the girth of the torus
and —h o 75 completing the loop; and we have ¢ = h o 6; — h o 65, making a loop around the
center hole of the torus. Now [7],[5] € H;(T?) are explicit generators for H;(T?) since they
correspond via the isomorphism A, to the generators [7] and [6], and since H,(T?) X Z & Z
we can naturally identify [7] with (1,0) and [5] with (0,1).

By definition ®; = 2 @ (—i8), where 2 : H\(T4x N Tp) — H;(T4) is the homomorphism
induced by i : TANTg < Ta, and iZ : H (TANTg) — H,(Tg) is induced by i® : TANTp < Tp.
Letting 7; := h o 7; for i = 1,2, we have

i2([7]) = [i* o 71 — it o Fy) = [0]

since the cycle i o 7] — i? o 7, is a nulhomotopic loop in T4. Bearing in mind that H,(7) =
H,(SY) = Z, we can write i2(1,0) = 0. Similarly iZ([7]) = [0], or iZ(1,0) = 0. Let’s examine
the cycle & in 74 N T = T? more closely. Letting &; := h o 6;, we have & = &; — &5 such
that &, goes halfway around the center hole of the torus, and &5 completes the circuit. The
space T4 deformation retracts to S!, and so the resultant retraction r : 74 — S! is a homotopy
equivalence and therefore induces an isomorphism r, : Hy(74) — H;(S"). Tt is straightforward
to engineer the function r so that it maps the paths i* o &; in T4 onto o; in S'; that is,
roitog;: Al — Stis equal to o; : A — S!. Thus for [ 0 51 — i 0 5] € H,(Tx) we have

r([iY oGy — it ody)) = [roitod, —roitody] = [0y — 09] € Hy(SY).
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Since [0} — 09] is known to be a generator for H;(S!) is readily follows that [i o &1 — i o &y

is a generator for Hy(7T4). Now we note that
[i* 061 —i" 0&y) = i ([0 — 7o) = i2([6]),

and so we can naturally write i2(0,1) = 1. In similar fashion iZ maps [5] € H (T4 N 7Tg) to the
corresponding generator for Hi(7g), so that 5(0,1) = 1 also.
We have, then,

O, ([7]) == ®1(1,0) = (0,0) and @, ([5]) := ®1(0,1) = (1, —1).

If we let Hi(Ta) = (a) and H{(Tp) = (b), then ®; is given by ®,(1,0) = 0a + 0b = 0 and
®,(0,1) =1la — 1b = a — b, and in general

Oy (m,n) = &1((m,0) + (0,n)) = m®P(1,0) + n®1(0,1) =m -0+ n(a —b) = n(a —b).
Hence Im ®; = (@ — b), and we find that
(a) ® (b)  Ab(a,b) _ Ab{a—b,b)
(a—b)y — {(a—0b)  (a—0)

Next, Ker 0y = Im Wy = 0 implies that 0y is injective, which in turn implies that Hy(X)
Im 0y = Ker ;. Now,

124

Hi(X) = (b) = 7.

[a=s

Ker®, = {(m,n) €e ZSZ : &;(m,n) = (0,0)}
= {(m,n) : (n,—n) = (0,0)}
={(m,0) - meZ} =17,

so it is concluded that Ho(X) = Z.
We extend our long exact sequence (21) a little to the left,

o+ Hy(Ta N Tp) = Ha(Ta) @ Hy(Tp) — > Ha(X) —2 Hy(Tx 1 Tp)

0

FIGURE 7. The cycles 7 and & in T2
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S/

— Hy(Ta) @ Hy(Tp) — -+, (22)

0
and find immediately that Hz(X) = Hy(T4 N Tp) = Ho(T?) = Z. Therefore

H, (X) = Z, ifn<3
" 1o, ifn>3.

We now turn to the task of finding the relative homology groups H,(7,T?) (i.e. H,(R,M,)
for g = 1). There is the long exact sequence for this pair

i3 - 2 ~

c s H(T2) —2 Hy(T) —2 Hy(T,T2) —2s Hy(T?) —s Hy(T) —2s Hy(T,T2)

— — v —
2 ~ Z‘l ~ -1 ~ 1 ~ io ~
o Hy(T2) =2 Hy(T2) —2 By (T, T2) =2 Hy(T2) —= Hy(T) —> -+, (23)
—— N—— N—— SN——
787 z 0 0
which straightaway gives H3(T, T?) & Hy(T?) = Z.

Next,
Imj?2=0 = Kerd?=0 = ?isl-1 = Hy(T,T? = Imo? = Keri..

The map
i (TH2ZeZ — H(T)2Z
works the same way as
it Hy(TaNT) — Hi(Ta),

so i1(1,0) = 0 and i}(0,1) =1, and
Keril = {(m,n) €Z®7Z:i:(m,n) =0} ={(m,n) :n=0} 27

implies that Hy(T,T?) = Z.
Moving on, H;(T,T?) = Ker 9! = Im j} implies that j! is surjective, whence we get

H\(T,T?) = Hy(T)/ Ker j; = H\(T)/Imi,.

But 4! is surjective also: for any n € Z = H,(T) we have (0,n) € Z & Z = H,(T?) such that
i1(0,n) = nil(0,1) = n. Hence
H\(T,T?) = H\(T)/H\(T) = 0.
Finally, noting that (7,T?) is a good pair, Proposition 2.23 implies that Hy(7,T?) =
Ho(T/T?) = 0 (since the quotient space 7/ T? is clearly path connected). Therefore
0, ifn=0,1lorn>4
H,(T, T?) =4 7 -
(7.1 {Z,iﬁ1:23.

Now let g > 2, and let M be the region in R? that M, bounds. Let M4 and Mp be two
copies of M, and let ¢ : OM, — OMp be the identity map. Then the space X in this case is
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given as X = My L, Mg, and indeed M4 LU, Mp constitutes a natural decomposition of X
for which there can be found neighborhoods U and V in X that deformation retract to M4
and Mp while U NV deformation retracts to M4 N Mp = M,. We know

z, if n=0,2
Hy (M) =2 P97, iftn=1
0, if n >3,

and so, noting that M4, Mp ~ \/7_, S, we obtain the Mayer-Vietoris sequence

o+ — Hy(MaNMp) == Hy(Ma) ® Hy(Mp) —— Hy(X) % H(Mun Mp)

Ha ()42 0 1 (M) 2@, 2
NN ﬁl(MA) 57 ﬁl(MB)j SLIEN ﬁl(X) 8—1> ﬁO(MA M MB)J — e (24)
E( 1 Z)@( 71 Z) Ho(Mg)=0

Ho(X) = Z since X is path-connected. From ImW¥; = Kerd, = H;(X) we find ¥y is
surjective, so

H1<X) = H1<MA) D Hl(MB)/Ker\Ill = H1<MA) (&) Hl(MB)/IIn(I)l

The group Hy(M,) is generated by the homology classes 7] and [5%] for 1 < k < g, where the
cycles 7, and &, are shown in Figure 8 (i.e. 7 loops through the kth hole of M, and &} loops
around it). For each k£ we can define

[7x] = ((0,0),..., (1,0),...,(0,0)) and [5x] = ((0,0),..., (0,1),...,(0,0)).
kth pair kth pair

B

By definition ®; = i2 @ (—i?), or alternatively (i, —iZ), where i2 and iZ are homomor-

phisms induced by inclusions i* : M4 N Mp < My and i® : My N Mp < Mp as before.
Now, each 7, becomes nulhomotopic when embedded in M4 or Mg, so for each k

kth pair

&.([R]) = (2, —i2)((0,0), ... (1,0) ..., (0,0)

= (i4((0,0),....(1,0),...,(0,0)), —iZ((0,0),...,(1,0),...,(0,0)))

FIGURE 8. The cycles 7 and 5, in M,.
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In a similar vein, a close examination of @1 in (24) as well as the g = 1 case should make
it clear that for each &

@ ([5%]) = (i2((0,0),...,(0,1),...,(0,0)), —iZ((0,0),...,(0,1),...,(0,0)))

kth entry kth entry
~ =~ =~
= ((0,..71,...,0),(0,....)=1',...,0)).
g—t\urple g—;urple

Letting Hi(M4) = Ab(as,...,a,) and Hi(Mp) = Ab(by,...,b,), it’s seen that Im®; =
Ab(ay —by,...,a, — b,), and then

HmngMWMNMﬂM@)gAmew%ﬁM“J?gééz
=1

Im<I>1 Ab<a1—bl,...,ag—bg
As before,
Kerdy =ImVUy =0 = 0Oyis1-1 = Hy(X) = Imd, = Ker &y;

thus since it ought to be clear that Ker &, = BJ_, Z, it follows immediately that
g
Hy(X) = Pz
i=1

Next, we extend the sequence (24) to the left to get

o+ Hy(My 0 Mp) =2 Hy(Ma) © Hy(Mp) — Hy(X) —2 Hy(Ma N Mp)

0
2y ﬁQ(MA) ® HQ(MB)J —
0
which informs us that Hs(X) = Hy(Ma N Mp) = Hy(M,) = Z. Therefore
A ifn=03
Ho(X) =@, Z, ifn=1,2
0, if n > 4.

At last we compute the relative homology groups H, (M, M,). The relevant long exact
sequence is

i3 i2

s Hy(M,) 5 Hy(M) 25 Hy(M, M) T Hy(M,) 5 Hy(M) 25 Hy(M, M,)

#Z it it N N
— Hi(M,) — Hi(M) = H{(M, My) — Ho(My) — Ho(M) — - -,
—— —— —— ——
6912112 i-1Z 0 0
which straightaway implies that Hs(M, M,) = Hy(M,) = Z.

Next,
Imji?=0 = Kerd?=0 = 0?is1-1 = Hy(M,M,) = Imd? = Keri!.
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The map
29 g
il Hy(M,) =Pz — H(M) =Pz
=1 i=1

works the same way as i above, so

and

ii((0,0),...,((),1),...,(0,0)):£O,..., 1,...,0),

and we find that Keri! = @7, Z, whence

g
Hy(M, M,) = P Z.
=1

Moving on, H;(M, M,) = Ker 9} = Im j! implies that j! is surjective, whence we get

However i! is surjective as well: for any

g
(n1,...,ng) € @Z ~ Hi(M)
i=1

we have )
g
((0,m1) ..., (0,ny)) € D Z = Hy(M,)
i=1
such that

iL((0,m1) ..., (0,my)) = i (n1((0,1),...,(0,0)) 4 - - - +71,4((0,0),...,(0,1)))
=nyi3((0,1),...,(0,0)) + - - - 4+ 1,31 ((0,0) , ..., (0,1))
=n1(1,0,...,0) +---+ny4(0,...,0,1)
= (n1,...,ny),

and therefore

Hy(M, M,) = Hy(M)/Hy (M) =0,

Finally, noting that (M, M,) is a good pair, we have Ho(M, M) = Hy(M/ M,) = 0 since
the quotient space M/ M, is path-connected. Therefore

0, ifn=0,1orn>4
H,(M, M,) = 7.7, ifn=2
Z, ifn=3



