CHAPTER 3 — COHOMOLOGY

3.0 — COHOMOLOGY INTRODUCTION

Let X be a 1-dimensional A-complex, so X is an oriented graph (or pseudo-graph if edges that
begin and end at the same vertex are allowed). If vy and v; are two vertices in X and e is an
oriented edge from vy to vy, then notationally we’ll denote e by [vg, v1]. Recall that, formally,
a “vertex” is a map o, : A’ = X, and an “edge” is a map 75 : A' — X that, when restricted
to each endpoint (or “face”) of Al, becomes one of the maps o, when pre-composed with the
appropriate canonical linear homeomorphism A° — (face of A'). So our edge e is in fact a
map o, : A! — X such that, if we denote A! by [ug, u1] (a line segment), then o.(uy) = vo
and o.(uy) = vy; thus, if indeed vy # vy, it follows that o.(A!)—truly our edge e in X in
the graphical sense—is homeomorphic to the standard 1-simplex A!, and so it makes sense to
represent e using the simplex notation [vg, v1] (especially since it conveys information about the
orientation of e). If vy = vy it still makes sense to represent e by [vg, v1] = [vo, Vo] to maintain
consistent notation even though the corresponding edge is not homeomorphic to any kind of
simplex.

Let G be an abelian group (not necessarily free), V' the set of vertices of X, and E the set
of edges of X. Define

AX;G)={¢:V = G | ¢is a function}
and
A(X;G)={¢: E— G | ¢ is a function}
Note A%(X; @) forms an abelian group: if ¢1, ps € A°(X; G), then ) + o given by

(1 + p2)(v) = p1(v) + pa(v)

shows that ¢; + ¢y € AY(X; G) since 1 (v) € G and py(v) € G implies that ¢1(v) + p2(v) € G.
In similar fashion A'(X; Q) is also an abelian group.

Now define a homomorphism d; : A%(X; G) — AYX;G) as follows: for ¢ € AY(X;G) let
d1p € AY(X;G) be such that, for [vg,vi] € E, d1p([vg, v1]) = ©(v1) — ¢(vg). Set up a chain
complex

e 02 ALY ) R AN XGG) 20—

By definition the homology groups associated with this chain complex are the simplicial
cohomology groups H}(X;G) of X. In particular we have

Ker[d; : AY(X; Q) — AYX;G)]
Im[dp : 0 — AY(X; G)]

HQ(X;G) = = Ker 0y (1)

since Im g = 0, and
Ker[dy : AY(X;G) — 0] AYX; Q)

HaX6) = o MY G) = A Q)] e AKG) - A a)] P

1Recall that the map o is also called a 1-simplex.
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So HQ(X;G) 2 {p € A°%X;G) : d1p = 0}, where 0(e) := 0 € G for every e € E. Thus
¢ € HX(X; G) implies that

o1p([v1, vo]) = p(v1) — p(vo) = 0,

or p(v1) = p(vy) for every vertex vy and v; that is connected by an edge in X. This in turn
implies that ¢ must be constant on each component of X. Let {X, }aer be the components of
X, and let V, be the set of vertices for the subgraph X,. Then

Kerd, = {9 € A°X;G) : Ya €l ¢ is constant on V,}

={pe AYX;G) : Vael 3g, €G st. ¢ =g, on V,}.

It follows that each element of the group Ker d; corresponds to some {ga }aer € [[,e; G .2 where
it is necessary to consider the direct product of copies of G as opposed to the direct sum
since it may well be that g, # 0 for an infinite number of index values a. The one-to-one
correspondence Kerd; — [],.; G can easily be shown to be an isomorphism, so therefore from
(1) we obtain

ael

HQ(X:G) = Ker §; = HG

acl

Next, from (2) is can be seen that HA(X; G) = 0 iff §; is surjective, which is to say that for
each ¢ € AY(X; @) there exists some ¢ € A’(X; @) such that d;¢p = 1. This will be the case
whenever the components { X, },er of X are trees since the path between any two vertices in a
tree is unique: for a given a € I, [vg, v1] = e € E, (the set of edges in X,) and ¢ € AY(X;G),
we need only define ¢ € A%(X; G) such that ¢(v;) — ¢(vg) = 1(e), with the choice of definition
being unique up to a constant; then the values of  at all other vertices in X, are set as dictated
by the values of ¥ on the edges of the unique paths leading to those vertices. The process is
repeated for the other components of X to get d,¢p = 1.

If a particular component X, of X is not a tree, then we designate a maximal tree that is
a subgraph of X, which includes all of its vertices but not all edges. It is a fact that, for any
choice of maximal tree for a graph, the cardinality of the set of edges omitted from the tree
will be the same. For the sake of argument suppose that X is a connected graph that is not a
tree, let Y C X be a maximal tree, let E’ be the set of edges not in Y, and let E” be the set
of edges in Y. The claim will be that

H\(X;G) =[] G

ecE’

For the construction of the appropriate isomorphism, note that for any ¢ € A'(X;G) there
can be found some ¢ € A°(X;G) (unique up to a constant) such that d;p|gr = ¥|gr. Now
define F : HA(X;G) = [].cp G by

F(p +Imdy) = {(¢ — d1p)(€) }eer for some ¢ such that §¢|pr = V|pr (3)

2Recall that formally {ga Yacs is a function g : I — G given by g(a) = g, for each o € 1.



3

The choice for ¢ is irrelevant since the difference must be a constant: if » = ¢ + g for some
fixed g € G (more precisely g : E — {g}), then

61¢([vo, v1]) = (¢ + g)(v1) — (¢ + g)(vo)
= (p(v1) + g(v1)) = (p(vo) + g(vo))

= p(v1) + g — p(vo) — g = d1¢([vo, v1]),

and so ¥ — 010 = ¥ — d1¢.

It should first be verified that F' is well-defined. We start with a simple case when X is
a graph with three vertices and three edges as shown in the figure, so £ = {eg,e1,ea}. To
construct a maximal tree Y we need only omit ey, so that E' = {ep} and E” = {ej,eq}.
Suppose ¥1 + Imd; = 1y + Im ;. There exist ¢y, 2 € AY(X; Q) such that 6,¢1|pr = ¥1|pn
and 51902|E” = ¢2|E”' To show

means to show that
(Y1 — d1p1)(e0) = (2 — d1¢p2)(e0),
or

(%1 — ¥2)(e0) = [(1(v1) — @1 (v0)] = [(2(v1) — 2(wo)]. (4)

Now, 97 + Imd; = 1o + Imd; implies that ¥ — ¥y € Imd;, and so there exists some
¢ : V — G such that

(d1)(es) = (Y1 — ¥2)(es)

for all e; € E. Hence

Y1(eo) — 2(e0) = @(v1) — ¢ (vo) (5)
Ui(er) — Pa(er) = @(v2) — ¢(vo) (6)
Ui(e2) — a(e2) = p(v2) — p(v1), (7)
while from 811 |gr = 1| and 61s| g = | g we obtain
vier) = @1(v2) — @1(vo) and  Pa(er) = @2(v2) — @2(vo) (8)
Ui(e2) = @1(v2) — @1(v1) and  Pa(ea) = @2(v2) — @2(v1). (9)

Combining (6) and (8) gives
p(v2) = @(vo) = [(01(v2) — 1 (vo)] = [(£2(v2) — a(vo)] (10)

and combining (7) and (9) gives
)

o(v1) = [(e1(v2) — p1(v1)] = [(@2(v2) — @a(v1)]. (11)

p(va
Now, if we subtract (11) from (10) we obtain
i

) —
v1) — ¢(vo) = [(p1(v1) = @1(vo)] = [(p2(v1) — @2(vo)]. (12)



We now put (12) into (5) and get precisely (4), as desired.

A simpler analysis can be employed to show that F' is well-defined in the case when a
maximal tree is formed by deleting one edge and retaining one edge, which becomes the “base
case” for an inductive argument that will establish that F' is well-defined when one edge is
deleted and n edges are retained, n € N arbitrary. This result, once obtained, in turn becomes
the base case for another inductive argument that establishes the well-definedness of F' in the
general case when m edges are deleted and n edges are retained in the forming of a maximal tree,
m,n € N both arbitrary. All of this can be done under the assumption that X is connected (i.e.
has just one component), after which it is easy to extend to an arbitrary number of components.

To show that F'is a homomorphism of groups, along with addition and integer multiplication
of cosets in a quotient group we assume the usual (componentwise) definitions for addition and
integer multiplication of elements in a direct product of groups. In what follows X is not
assumed to be connected, so E” is taken to be the set of edges included in the maximal tree
for some component of X, and E' = E — E”. Let m,n € Z and 1,9 € AY(X;G). Then there
exist p, ¢ € A°(X;G) such that 6, = ¢ and 6, = . Now, for e € E” it’s easy to see that

S (mp + @) g = (M) + nid)|
since 0y is a homomorphism, and so by (3) we obtain
F(m(¢ +Imdy) +n(y + Iméy)) = F((me + nep) + Im &)
= {((my + 1) = 81(mg + ng))(€)}eerr
= {(m + n)(e) = (mé1p + n61p)(€) e
= {my(e) + mdip(e) + ni(e) — ndip(e) }eem
= {m(v = dip)(e) + n(d — 51)(e)}eer
= m{(¢ — 19)(€)Yeerr + n{(th — 1)(€) becrr
= mF(¢) +Imé;) + nF (¢ +Imdy).

Hence F'is a homomorphism.

Let {ge}ecr € [[ocp G- Define ¢ : E — G by 1)(e) = g, for all e € E' and 1)(e) = 0 for all
e € E". Let ¢ :V — G be any constant function, so there is some go € G such that ¢(v) = go
for all v € V. Then ¥|gr = §1p|gr = 0 and in fact §; = 0 everywhere, and by (3)

F(ip+1moy) = {(¢ = 01p)(€)feerr = {¢(€) = drp(e)}ecr = {(€) = O}eerr = {Ge}eer,

which shows that F'is surjective.
Finally, it remains to show that Ker F' = {Im d;}. We have

F(Im (51) = F(O + Im (51) = {(0 - 5190)(6>}66E’
for any constant function ¢ (so that d;¢|gr = 0|g» as required), and so

F(Im 61) = {O(e)}eeE’ = {O}eeE’



and we obtain {Imd,} C Ker F'. Now, supposing that ¢ + Im d; € Ker F', we have

F(¢ + Im 61) = {(w - 5190)<€)}66E’ = {O}eEE’

for some ¢ such that d,¢|g = ¥|gr; but then it is clear that §;p|p = ¥|p as well, and so
d01p = 1 on all E and we find that ¢» € Imé;. Therefore ¢» + Imd; = Imd; and we have
Ker F' C {Imd;}. Since the kernel of F is trivial, F' is injective.

It has been established at last that F' is an isomorphism, and therefore

HA(X;:G) =[] G
eck’
Now, suppose that X is a two-dimensional A-complex. Let S5 be the set of 2-simplices of
X, so
SQ = {Ua : AQ — X}aeA»
and let A*(X;G) = {w : Sy — G}. Adhering to the notational conventions above, we define
the homomorphism 4, : A'(X;G) — A?(X;G) by
021([vo, v1, v2]) = P([vo, v1]) = ¥ ([vo, v2]) + ¥ ([v1, va]) (13)

for each ¢ € A(X; G), where [vg, v1,v5] := 0 € Sy is a map that maps the vertices of A? to vy,
vy, and vy. It’s worthwhile to be more precise here: if we let A? = [ug, uy, us] then o(u;) = v;
for each ¢, and moreover each [v;,v;] denotes o restricted to the face [u;, u;] and precomposed
by the canonical linear homeomorphism A! — [u;, u;]. So more explicitly (13) can be written

52¢(‘7) = ¢<U|[uo,u1}) - w(a|[u0,u2]> + 1/}(0-|[u1,u2]) (14)

At last we arrive at the general case of an n-dimensional A-complex X. For 0 <i < n let
S; be the set of i-simplices A’ — X of X, and let AY(X;G) be the set of functions S; — G.
We define the map §; : A X; G) — AY(X;G) by generalizing (14): for each ) € AT} X; G)
the function d;1 is such that, for each o : A* — X in S;,

5iw(0): (—1)%(0\[1@ ~~~~~ Ujynns ui])7 (15)

where in general A” = [uy, ..., u;]. In this way we obtain a chain complex
SN @) S AKX G) e AT G) (16)

There’s a natural way to identify the abelian group Af(X’; G) with the group Hom(A;(X), G)
of homomorphisms A;(X) + G. In particular each ¢ € AY(X;G) can be made to correspond
via a fixed isomorphism to ¢y € Hom(A;(X), G) given by

@(Z Nala) = Z na(0a).

Identifying ¢ with ¢, then, we find from (15) that &;0(c) = 1(d;(0')) and therefore §;1p = 19;.?
By definition this means that ¢; is the dual map, called the coboundary map, of 9;. Going

3If we want to be fussy we can write d;1) = 1) o 9; to stress that ;2 is not a composition of functions.
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a step further we designate A’(X; G) (identified with Hom(A;(X), G)) to be the dual cochain
group of A;(X) so that (16) is the dual cochain complex of the chain complex

0i—1

N (X)) 2 A 2 A () 2 (17)

The operation of passing from (17) to (16) can be characterized as the action of a con-
travariant functor A;(X) — Hom(A;(X),G), or more generally C' — Hom(C, G) for any chain
C', which sometimes is denoted by Hom(—,G). The categories involved here are the cate-
gory C of objects A;(X) and morphisms 0; (which will be the zero homomorphism for chain
groups A;(X) and Ay(X) with |7 — k| > 1), and the category D of objects Hom(A;(X), G) and
morphisms d;.

3.1 — COHOMOLOGY OF CHAIN COMPLEXES

Starting with a chain complex C' not associated with any topological space,

On42 On+1 On On—1
oy O 2 ey o B

where each C), is a free abelian group, we dualize by applying Hom(—, G) for some abelian
group GG to obtain the cochain

2 Hom(Cyy, G) 22 Hom(Cl, G) 22— Hom(Cy_y, G) <221

In general 0,9 := 0,(¢) := ¢ 0 0,. For each homology group H,(C) = Kerd,,/Im 0, there is
a corresponding cohomology group
Kerd,,41

Imy,
An element of H"(C;G) is ¢ + Imé,,, where ¢ € Kerd,; implies that ¢ o 9,41 is the trivial
homomorphism: for all z € Cy41, (¢ 0 0py1)(x) =0 in G.

Fix ¢ € Kerd, 1. Now, since ¢ : C;, — G and Kerd, C C,, we can define ¢y = ¢|kera,

which in turn induces a map ¢g : H,(C') — G given by

H"(C;G) =

Po(z +1Im 1) = o(2).
Finally, define h : H"(C; G) — Hom(H,(C), G) by

It needs to be shown that h is well-defined.

Suppose that ¢ +Imd, = ¢’ +Imd,. Then (¢ —¢') +1Imd,, = Im§, implies p — ¢’ € Im d,,,
and so there exists some ¢ € Hom(C,,_1, G) such that 6,,(¢)) = ¢ — ¢, whence ¥ 0 0, = p — ¢/
and we obtain ¢’ = ¢ — 1 0 9,,. Now, for any z € Ker 0,, we have

wo(2) = ¢'(2) = (p =¥ 00n)(2) = p(2) — (Y0 9,)(2) = p(2) — ¥(0) = ¢(2) = wo(2),
and so for any z + Imd,4, € H,(C)

Go(z +Im0pi1) = wo(2) = py(2) = @z + Im Oy y1).



Therefore
h(e +1md,) = @o = @y = h(¢' +Iméy)
and h is well-defined. Moreover it is clear that h is a homomorphism.
Next it will be shown that h is surjective. Let f € Hom(H,(C),G). We must find some

e+1Imé, € H*(C; G) such that h(¢o+Imd,) = o = f, which is to say that for each z € Ker 9,
we have

f(Z + Im an+1) = @0(2 + Im an+1).

Start by defining g : Ker 9, — G by

20(2) = f(z+ ImBya).

The task is to extend ¢y to a map ¢ : C),, — G such that ¢ € Kerd, 1.
Defining i : Ker 0,, — C, to be the inclusion map, observe that the sequence

0

0 — Kerd, —2— C, —251Imd, — 0 (18)

is exact. Since Im d,, is a free group the sequence splits, and so by the Splitting Lemma there
exists a homomorphism p : C,, — Ker 0,, such that

poi, =1:Kerd, — Kerd,.
Define ¢ = pgop: C, — G, which clearly is a homomorphism. Now, for any 2z € Ker 9,
©(2) = @o(p(2)) = @o(p(in(2))) = o((p 0 in)(2)) = ¢o(1(2)) = @o(z) = f(z + Im Ip41)

shows that ¢ is an extension of ¢ to C,,.
Fix z € C, 1. Then

(¢ 0 Oni1)(x) = @o(p(Ont17)) = Lo(P(in(Ons17))) = @o(1(Ont17))

= <p0((9n+11:) = f((?nﬂx + Im &LH) = f(IHl 8,1“) =0¢e G,

where the second equality holds since 0,11(x) € Kerd, and the last holds since Im 0,1 is the
zero element of H,(C'). Hence 6,+1(¢) = p00,+1 = 0, implying that ¢ € Kerd,,.; and therefore
¢+ Imé, € H*(C;G).

By definition

h(@ +Im 671) = §0|Ker8n7
where for any z + Im d,,11 € H,(C) we obtain
#lkera, (2 +Imdni1) = (@0 © p)lkera, (2) = @o(p(2)) = wo(2) = f(z +ImOpra),

using the fact that z € Ker 9, implies p(z) = p(in(z)) = 1(2) = z. Therefore h(¢ +Imé,) = f
and h is surjective.
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To determine the conditions in which A may be injective we analyze Ker h. Start with the
commutative diagram of short exact sequences

in On
0 — Kerdhyr — Copy — Imdpsy — 0

ol 8n+1l ol (19)

0 —— Kerad, LN C, LN Imo, —— 0

where the map Ker 0,11 — Ker 9,, 1S Opy1|Ker and Im 0,11 — Im 9, is Oy |mm o We dualize

(19) by applying Hom(—, G) to obtain

On+1> n+1°

sk
7’n+1

o,
0 +—— Hom(Kerd,,1,G) +—— Hom(Cpy1,G) <~ Hom(Im 3, 1,G) +—— 0

]o a:ﬁj o] (20)

0 «—— Hom(Kerd,, G) P Hom(C,, G) P Hom(Imd,,G) +—— 0

remembering that 0* = 0. It will be shown that the rows of (20) are split short exact sequences.

Proposition 3.1. The dual of a split short exact sequence is a split short exact sequence.

Proof. Suppose that

0—A—5B-—L5C—0 (21)
is a split short exact sequence. It must be shown that the sequence
0 — Hom(C, G) SEAEN Hom(B, G) AN Hom(A,G) — 0 (22)

is exact and splits.
For ¢ € Hom(C, G) suppose that j*(¢) =0, so ¢ o j = 0. Fix ¢ € C. Since j is surjective
there exists some b € B such that j(b) = ¢, and thus

p(c) = ¢(j (b)) = (¢ o7)(b) = 0.

This shows that for any ¢ € Ker j* we have ¢ = 0, so Ker j* = {0}.
Let ¢ € Im j*, so there exists some ¢ € Hom(C, G) such that j*(¢) = ¢, or equivalently
Yo j = . Now, for any a € A we obtain

(poi)(a) = (Yojoi)(a) =¢(i(i(a))) = ¥(0) =0,

where Im ¢ = Ker j implies that i(a) € Kerj. Thus i*(p) = ¢ o = 0, implying ¢ € Keri* and
so Im j* C Kers*.

Let ¢ € Ker?*, so ¢ : B — G such that i*¢ = 0, or equivalently ¢ o7 = 0 which informs
us that ¢ vanishes on Imi. By the Splitting Lemma there exists some s : C' — B such that
jos=1:C—C. Let y =¢pos. Fixbe B. Then (soj)(b) —b € B with

J((s04)(b) = b) = (josoj)(b) = j(b) = (Loj)(b) —(b) = j(b) —(b) = 0,
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so that (so7)(b) —b € Kerj = Imi and there is some a € A such that i(a) = (s o j)(b) — b.
Since ¢ vanishes on Imi it follows that (¢ oi)(a) = 0, whence p((s o j)(b) — b) = 0 leads to

p((s07)(b)) = ¢(b). Now,
(Y0 ))(b) = (posoj)b) =¢((s0)) = pb)

shows that j*(¢)) =1 o0 j = ¢, so ¢ € Im j* and we obtain Keri* C Im j*.
Finally, fix ¢ € Hom(A,G). The Splitting Lemma implies there is a homomorphism
p: B — Asuchthat poi=1:A — A. Forany a € A,

(popoi)(a) =p((poi)a) = ¢(l(a) = ¢la),

and so ¢ = popoi. But ¢ op € Hom(B, G) such that i*(pop) = popoi,so p € Imi* and it
follows that Imi* = Hom(A, G).
Moving on, since (21) splits there is an isomorphism ® such that the diagram

0—sA—" BT o0

el A

Ao C

is commutative. The dualization of this diagram is

0 <— Hom(A, G) Hom(B, G) Hom(C,G) =—
\ N]CI’* /
I g
Hom(A & C,G)

where ®* is an isomorphism since the dual of any isomorphism is again an isomorphism. It’s
easily verified that g o ® = j implies ®* o g* = j* and ® oi = f implies i* o ®* = f* (in
general (¢ 01))* = 1* o p*), so the dualized diagram is commutative. Finally, there’s a natural
isomorphism

Q:Hom(A & C,G) — Hom(A, G) ® Hom(C, G)
defined by
Q(p(+, ) = (e(+,0), (0, -)),

so if we define f* = f*o Q7! g* = Qog*, and ®* = ®* 0 Q~!, then we obtain the commutative
diagram

0 <— Hom(A4, G) Hom(B, Hom(C,G) <—0

\ - /

Hom(A, G) @ Hom(C, G)

*9‘ |

which shows that the sequence (22) splits. |

Let
B,=Imd,.; and Z, = Kerad,,
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and let
Cr =Hom(C,,G), Z;=Hom(Z,,G), B, =Hom(B,,G).

Finally, let 6,, : C’_, — C} be the dual of 0, : C}, = C,,_1 as before, and let o, : B _; — C;:
be the dual of 9, : C,, — B,,_;. The diagram (20) can be extended to a short exact sequence
of chain complexes

0 0 0
e Zr Lz ez (Z*)
in+1 i i
G DL o DU oL PR (C") (23)
On+1 On On—1
«— B «X B LB, (B¥)
0 0 0

Associated with this diagram is a long exact sequence of cohomology groups

il

e HMY(ZY) 2 {TY(O4G) 2 HY(BY) < B Z27) < HY(C;G)
on Hn(B*) dn—1 Hn—l(Z*) — e (24)
where each ¢ and g} is a homomorphism induced by %) and p,, and each d,, is a connecting

homomorphism which will be examined shortly. By definition

Ker[0: B:_, — B}] Ker[0: Z) — Z 4]
B =0 B, 5B, ™ ) =10z Sz

so H*(B*) = B |, and H"(Z*) = Z*, and (24) can be written as

e T L /(O3 6) L B e 7 BNC6)

*
y On B* /dn—l
n—1"

Z:L—]. 0 (25)

with appropriate adjustments to the definitions of i* and g; in particular, let i**(c +1Imd,) =
i* (o) and o%(p) = on(p) + Imd,, (it’s easily verified that g,(¢) = ¢ 0 9, € Ker d,41).

We define d,, in reference to (24). Let v € Z* be a cycle, so it represents a cohomology
class [y] € H"(Z*) (note that in fact every element of Z* is a cycle). Since i} is surjective,

there exists some € C such that i (8) = 7. Exploiting commutativity in (23) gives
ins1(0n41(8)) = 0(i,(8)) = 0,
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50 0p11(B) € Keriy, ; = Im 9,41 and there must exist some o € B, such that g,11(a) = 0,41(5).
Since a € Ker[0 : B; — B,,], o represents a cohomology class [o] € H"*'(B*). Define
d.([7]) = [a]. Since H""'(B*) = B and H"(Z*) = Z*, in reference to (25) we can simply
define d,,(y) = a.

It turns out that = 7|p,. From g,41(a) = §,,41(8) comes oo 0,11 = [ 0 Opy1, Which
shows that o = f3|p, (recall that « : B, — G). But we also have o4, =~ for i, : Z,, < C,,
so v = f|z,. Since B, C Z, it follows that v|p, = f|p, = «. Hence d,,(vy) = 7|p,, and so if
ln : By, — Z, is the inclusion map then it’s seen that d,, is nothing more than ¢} : 2 — B},
the dual of ¢,,.

The process of verifying that (25) is exact is the same as for any long exact sequence in the
previous chapter. From this sequence we can pass to a new sequence

0« Ker Ly I H"(C; Q) ¢ Coker tpg 0 (26)
where
. B
Cokeriy, | = ————
Ime; 4

*
n—1

and ¢ works in the expected fashion: for any ¢ € B
(o +1me;, ) = 0,(¢) = on(p) +Imd,.
It’s worth verifying that ( is well-defined, so suppose
o1 +1Ime;  =@o+Ime;, .
Then p; — @9 € Im !, = Ker ¢, using the exactness of (25). Now,

Cler +Imey, 1) = C(p2 +Imey, ) = (0n(p1) +Imdy,) — (0n(p2) +Imé,)
= (0n(p1) — 0n(p2)) + Imd,
= 0n(p1 — p2) +Imd,

= 0,(1 — 2) = Imdy,
since 1 — g € Ker ). That is,

(Qn(%ol) - Qn(@?)) + Im 611 =Im 5m
which implies
or

C(p1 +Im sz—l) = ((p2 +1Im L;—l)-

It’s clear that ¢ is a homomorphism.

The sequence (26) is a short exact sequence. Suppose ((p+Im¢;_ ;) = Imd,. Then g,(p) €
Im §,,, and so there exists some ¢ € C*_, such that 6,,(¢)) = 0,(¢), whence ¢ 009, = ¥ 009, and
thus ¢|p, , = ¢. Now |z, _, € Z* |, and

n—1»

L;71(¢|Zn71) - wlznfl © Ln_l - réb|anl - SO
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*

shows that ¢ € Im¢;_; and hence p+Im¢) | =Im¢; ;. Therefore Ker ¢ = 0 and ( is injective.
Fix 0 € Keru;

¥ so o : Z, — G such that o|p, = 0. Since (18) is exact, by the Splitting
Lemma there is some p : C,, = Z,, such that poi, =1:2, - Z,. Let 6 =0co0p,sod € C}.
For any x € C,, 1,

(0 0p0dn1)(x) = (0 0p)(Ont12) = (9 0P)(in(Oni12)) = (00 1) (O 112) = 0(ptax) =0
(since 0412 € By,), which shows that
Ont1(6) =600, 11 =00p0dyy1 =0

on Cypy1. Hence 6 € Ker 6,41 so that 6 + Imd,, € H"(C; G), and since

iv*(6 +1Imé,)=1i.(6)=60i,=0copoi,=col =0
we find Ker:f C Ime*. As for the reverse containment, note that ¢ € Kerd,,; implies
¢lg, =0, so

(G (9 +1mn)) = (0 0dn) = poin ot =¢lp, =0

shows that i** maps into Ker:}. Hence Ker¢* = Imd** and i** in (26) is surjective.

It remains to confirm that Im({ = Keri**. Since (25) is exact we have Keri!* = Im g}.
Let ¢ +Imé, € Imyg}, so there exists some ¢ € B _; such that ¢ (¢¥) = ¢ + Imd,, or
¢+ Imd, =100, +Imd,; but then ¢ + Im ¢} _, € Coker:s} , with

C(p+Ime_ ) = 0,(¢) +Imé, = o0d, +Imd, = p+Imd,,
which gives Im o C Im (. On the other hand, if p4+Im J,, € Im ( then there’s some p+Im >, €
Coker vy, with
C(¥+1Imey,_ ) = ¢+ Iméy,,
or equivalently ¢ o 0, + Imd,, = ¢ + Imd,; but ¢ € B}_; such that

0: (V) = on(¢) +Im 6, = ¥ 09, +Im 6, = ¢ +Imd,,

which makes clear that Im ¢ C Im g}, and so Im ¢ = Keri,*.

Therefore (26) is exact as claimed.

Now, for each o € Ker ¢ there is a corresponding map ¢ : H,(C') — G given by 6(z+B,,) =
o(z). Note that if 2y + B, = 2o + B,, then 2y — 25 € B,,, and since ¢ € Ker:} implies that
o|p, = 0 we obtain

(z1+ By) — (20 + By) =0(z1) —0(22) =0(21 —22) =0,

so ¢ is well-defined and clearly must be in Hom(H,,(C'), G). Define © : Ker ¢} — Hom(H,(C),G)
by ©(c) = 7. Certainly O is well-defined. For 01,09 € Ker* we have ©(0y + 09) = 01 + 09,
where

o1+ 02(z+ By) = (01 + 02)(2) = 01(2) + 02(2) = 71(2 + By) + 72(2 + By)

= (614 72)(2 + By),

SO
01+ 09 =01+ 09 = @(0'1) + @(0’2)
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and © is a homomorphism.
Fix ¢ € Hom(H,(C),G). Define ¢ € Z! by ¢(z) = (2 + B,). For z € B,,, p(2) =0, and
so ¢ € Ker. Now, O(¢) = @, where

o(z+ B,) = p(z) =ad(z+ B,)

for all z € Z,, and hence O(¢) = 7. So O is surjective.
Suppose o € Ker .} such that ©(c) = 0, where 0(z + B,,) := 0 for all z € Z,,. Then &
so for any z € Z,, we have

0,

o(z)=d(z+B,)=0(z+B,) =0

and therefore 0 = 0. So O is injective and we conclude that Ker: = Hom(H,(C),G). As a
result we may pass from (26) to a new short exact sequence

0« Hom(H,(C),G) +— H"(C;G) +— Coker.’_, «— 0, (27)
where it’s easily verified that the map h from above is given by h = © o i**:
h(p +1Imd,) = ¢lz, = poin = O(poin) = O(iy(p)) = (O 0 i) (¢ + Imdy).

For each ¢ € Hom(H,(C),G) there is a map g : Z, — G such that ¢(z + B,) = ¢o(2),
and so in particular ¢g|p, = 0. Define s; : Hom(H,(C),G) — Kerd, 1 by

S1 (@) = $o°p,
where p : C,, — Z, is as defined on page 7. Note that for any x € C, 1,
(0 0 p 0 Ont1)(x) = (0 © P)(Ont17) = 0(Ont1z) = 0,

where the second equality holds since 0,,.1x € Z, and p|z, =1 : Z, — Z,, and 80 0,,11(poop) =
0 as required.

Next, define s9 : Kerd, 1 — H"(C;G) by s2(¢)) = ¥ + B, _1, and let s = s, 0 s1. For any
¢ € Hom(H,(C), G) with associated ¢y : Z, — G,

(hos)(®)=h(poop+ Bn1)=wooDplz,,
where for each z + B, € H,(C)
©0©plz, (2 + Bn) = o 0 p|z,(2) = po(p(2)) = ¢o(z) = ¢(z + Bn).

Thus (hos)(¢) = wooplz, =@, so hos =1:Hom(H,(C),G) — Hom(H,(C),G) and the
sequence (27) splits.

A potentially useful result that may as well be established here as anywhere else is the
following.

Proposition 3.2. If A *» B Lo 0s exact, then the dual sequence

Hom(A, G) < Hom(B, G) <~ Hom(C,G) +— 0

1s also exact.
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Proof. Let ¢ € Im 5%, so there exists ¢ € Hom(C, G) such that 8*(¢) = ¢ o = ¢. Now,

a’(p) =poa=(pofloa=1o(foa)=1yo0=0,

where the fourth equality holds since Im o = Ker 3, and therefore ¢ € Ker o*
Let ¢ € Kera*, so a*(p) = poa =0 1mphes that ¢|ima = 0, or equlvalently ¢|kers = 0.

Since Im 8 = C' (i.e. (3 is surjective), the map B B/ Ker g — C given by ﬁ(b + Ker ) = 5( )
is an isomorphism. Let ¢ : B/ Ker f — G be given by ¢(b+ Ker ) = ¢(b), and note that ¢ is
well-defined:

bi+Kerf=by+Kerf < by—byeKerg < @by —by)=0
& @b) — (b)) =0 & @(br) = p(b2)

= @(bl + Ker ﬁ) = @(bg + Ker ﬁ)

Clearly ¢ is a homomorphism, so ¢ := ¢ o 37!

member of Hom(C, G). Now, for any b € B,
(0 B)(b) = 2(B(B(b)) = (b + Ker B) = o(b),

and thus 5*(¢) = ¢ o f = ¢ implies that ¢ € Im S*.

Finally, suppose that g*(p) = 0, so that ¢ o § = 0 implies that ¢ € Hom(C,G) with
¢|mp = 0. But then Im f = C makes clear that ¢ =0 on C.

Therefore, since Im 5* = Ker a* and Ker * = 0, the dual sequence is exact. |

is likewise a homomorphism and therefore a

The balance of this section will be devoted to the proof of the Universal Coefficient Theorem
for cohomology and a couple of its corollaries, followed by a few examples. As a prelude to this
there is a definition and a lemma.

Definition 3.3. A free resolution F' of an abelian group H is an exact sequence

f2 fi fo

- — Fy H—0

Fy

Fy

in which each F), is a free abelian group.

For the dual chain complex of F that results from applying the functor Hom(—, G),

f3 I fo

ce— F* oy H* «+— 0,

*
Fi <

Fy
define H"(F;G) = Ker fr,,/Im f.

Lemma 3.4. (a) Let F' and F' be free resolutions of abelian groups H and H', respectively. If
¢ : H— H'is a homomorphism, then ¢ can be extended to a chain map F — F' :

jo8 f2 y Ry f1 £y fo H . 0
@21 ml ml “"l
B Py S T 0
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(b) If i : F; — F! and ¢; : F; — F! are two chain maps F — F' extending ¢ : H — H', then
they are chain homotopic.

(c) For any two free resolutions F' and F' of H there are canonical isomorphisms H"(F; G) =

H™(F';G) for all n.

Proof. Induction will be employed to prove (a). Let = be a basis element of Fy. Then ¢(fy(z))
is in H', and since f} is surjective there exists some 2’ € F{ such that f{(z") = ¢(fo(z)). Define
wo 1 Fo — Fj by @o(z) = 2/, so we have g o fo = f] o pp.

Now let n > 0 be arbitrary, and suppose that ¢, 10 f, = f! o p,. (If n =0 we take @, 4
to be ¢.) Let © € F,, ;1 be a basis element. Now,

Fol@n(frir(2))) = en1(fa(faia (7)) = pn-1(0) = 0

since Im f, 11 = Ker f,,, and thus we have ¢, (fn+1(z)) € Ker f;,. Since Ker f;, = Im f] ,; there’s
some 2’ € F) , such that f (2') = ¢,(fu+1(2)), and we can define ¢,11 : Fip1 — F) 4 by

Ynt1(x) = 2’. Hence @, o foi1 = f), 11 0 ¢ny1 and the induction argument is complete.

To prove (b), recall the definition of chain homotopy: if ¢; : F; — F/ and ¢; : F; — F]
are two chain maps, then they are chain homotopic if there can be found homomorphisms
Ai + By — F{ | such that

©i—@i=fiaoN+Aiiof;

for all # > 0. Thus, suppose that ¢; : F; — F/ and ¢; : F; — F] are two chain maps F' — F”
extending ¢ : H — H’. Another induction argument will be used. For the base case let
A1 =0, so we need only find some \q : Fy — F] such that pg — @9 = f] 0 A\g. Let x € Fj be
a basis element. We'll want to define \g(x) so that f](Ao(z)) = (@0 — ¢o)(x), which requires
confirming that (pg — ¢o)(z) € Im f{. From

féOSOOZSOOfo:f(I)O%

we obtain f{ o (o — ¢9) =0, whence f]((¢o — ¢o)(x)) = 0 shows that (¢ — ¢o)(z) € Ker f] =
Im f]. Therefore there exists 2’ € F] such that f](2') = (po — $o)(x), so let A\o(z) = 2.
For the inductive step, let n > 0 be arbitrary and suppose

®n — @n = f;erl o )\n + )\nfl o fn

We want to show that there is some map A1 : Fl,y1 — F)_, such that

i1 — P = fri20 Ang1 + A 0 frpa.

So, let = be a basis element of F,,;;. It’s necessary to define A,;1(z) such that

frll+2()\n+1($)) = (Pn+1 = Pnt1) (@) — An(frra(2)),

which requires having

Z = ((anrl - ¢n+1)(x) - )‘n(fnJrl(x)) € Im fr/L+2'

Since Im f;  , = Ker f; ., this is a matter of direct manipulation,

f;L+1(Z> = frlL+1((90n+1 — @ni1)(T)) — (falwl 0 M) (frt1(7))
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f1,1+1((90n+1 — On1)(@)) = ((Pn — Pn) — (An—10 fu)) (frrr(2))
f1,1+1((90n+1 - @n—&-l)(x)) - (Qpn - @n)(fn-l—l(x)) + )‘N—l(fn(fn—l-l(x)))
f1,1+1(90n+1(x)) - f7/z+1(927n+1<x>> - <»On(fn-l—l(x)) + @n(fn—i-l(x)) = 07

since fr 1 0 @ny1 = ©n © fagr and fr . 0 Ppy1 = Py 0 frir. Hence there exists some y € F),
such that f)_ ,(y) = 2, so we let A\,1(2) = y.

We turn now to the proof of (c). Let F' and F’ be free resolutions of H, and let ¢ : H — H
be a homomorphism. By part (a) ¢ can be extended to a chain map ¢, : F,, — F!, and
dualizing gives a chain map ¢ : F/* —

f3 It

fo

E5 Fr o< Fy < H* < 0
wET WfT wST W*T
é* {* 6*
- ¢ Fi* F* < F(’)* ¢ H* 0,

which in turn induces homomorphisms * : H"(F'; G) — H"(F;G).* Now, if the maps
on: Fy — F)

are another extension of ¢ to a chain map F' — F’, then by part (b) ¢, and ¢, are chain
homotopic, meaning once again ¢, — @, = f,.; 0 Ay + Ap_1 0 f,, for maps A\, : F,, — F) .
Dualizing gives

P = B = X0 fu” + [T0 Xy
which shows that ¢ and ¢} are chain-homotopic chain maps and therefore ¢;* = @7 for all n
by Proposition 2.1.

Let a : H — H be an isomorphism, with 3 = o™ : H — H. By part (a), « can be
extended to a chain map «, : F,, — F], and f can be extended to a chain map 3, : F, — F,,.
It’s straightforward to verify that 3, o o, : F;, — F}, is an extension of foa =15 : H — H to
a chain map, since a,_1 0 f,, = f/ ooy, and B,_1 o f! = f,, o B, imply that

Bn—l O Qp—10 fn = fn Oﬂn O Oy

But the identities 15, : F,, — F}, likewise constitute an extension of 1 to a chain map, and so
(Bn 0 )™ = 13 for all n. Now,

(Bnoan)™ = (a0 8,)" =a o8
and
Ig, = 1 = Lanro),
SO

w0 B = Lunra).-

4Recall that in the present section a superscript * is used to indicate an induced homomorphism of cohomology
groups, and f** is defined to be (f*)*.
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A similar argument shows that
/8;;* © Oé:;* = ﬂ-H”(F’;G)?

and therefore o* : H"(F'; G) — H™(F; G) is an isomorphism for all n. Thus so-called canonical
isomorphisms H"(F;G) = H"(F';G) result if we specify a to be the isomorphism 1y and
extend to a chain map F — F". [ |

Part (c) of the lemma shows, in particular, that the first homology group deriving from a
free resolution F of a group H, H'(F;G), depends only on H and G, and not at all on the
choice for F'. For this reason H'(F;G) is often denoted by Ext(H,G), where Ext(H,G) is
taken to be a fixed group determined by H and G such that H'(F;G) = Ext(H, G) for all F.
The other homology groups H"(F'; G) for n > 1 turn out to be trivial since, as will be verified
later, any abelian group H can be put into a free resolution of the form

f2 fi fo

oo —0 > F > F » H— 0. (28)
Moreover, since the truncated sequence
J LI R (RN - N

is exact, by Proposition 3.2 the dual is likewise exact and thus H°(F;G) = Ker f;/Im f§ = 0
as well.

Theorem 3.5 (Universal Coefficient Theorem for Cohomology). If a chain complex C
of free abelian groups has homology groups H, (C), then the cohomology groups H™(C; G) of the
cochain complex obtained by applying Hom(—, G) are determined by split exact sequences

0 — Bxt(H,_1(C),G) —— H"(C;G) —— Hom(H,(C),G) — 0

Proof. For the abelian group H,,_1(C') there is the free resolution F' given by
i —0— By % Z,y — 5 H, 1(C) — 0,

where ¢, is inclusion and ¢ : Z,1 — Z,_1/B,_1 is the quotient map ¢(z) = z + B,_1.
Dualizing yields

04— B e 7t " Hom(H, 1 (C),G) «+— 0,

So it’s seen that
Cokert* , =B’ /Im. |, = H'(F;Q)

and therefore Coker .*_; depends only on H and G. Setting Ext(H,,_1(C), G) equal to H'(F; G),
then, the split exact sequence (27) becomes

0 — Ext(H,_,(C),G) —— H"(C;G) —— Hom(H,(C),G) — 0

as desired. ]
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As was mentioned, every abelian group H has a free resolution of the form (28). Start by
selecting a set S of generators for H, let F{ be the free abelian group with basis S, and define
a homomorphism fy : Fy — H such that f(s) = s for each s € S (note that fy is surjective).
Next let I} = Ker fy and define f; : [} < Fj to be inclusion. Finally, set F; = 0 for all ¢ > 2.

Proposition 3.6. (a) Ext(H @ H',G) = Ext(H,G) ® Ext(H', G).
(b) Ext(H,G) =0 if H is a free abelian group.
(c) Ext(Z,,G) = G/nG.

Proof. For the proof of (a), let (28) be a free resolution F' for H, and let
f3 fl 1o

e — 0 > F] > F, H — 0.

be a free resolution I’ for H'. Then it’s easy to check that

000 2 p e P p e P e 0o,

where we define
(fn D f;)(x, l’/) = (fn($)7 f;(x’)),
is a free resolution for H @ H’, which we’ll denote by F' & F’. Applying Hom(—,G) to F & F”
yields
« O (f269f2)* (Fl 69_le/)* (fl@fl)* (F() @ FOI)* (fOEDfO)* (H@Hl)* — O,

and thus
_Ker(fo® f5)*  (F1®F))”

(i f)r Im(fi@ /)7
Noting that H*(F;G) = F}f/Im f{ and H'(F'; G) = F}*/Im f]*, define

Q:H (FeF;G)— H(F,G)® H'(F';G)

H (F® F;G)

by
Qe +Im(fi @ f1)7) = (o(+,0) +Im f7, (0, ) + Im fi7).
Suppose
[p] = +Im(fi & f))" = ¢+ Im(fi ® f1)" == [¢],

so o — ¢ € Im(fi & f])* and there exists ¢ € (Fy @ F))* such that (f1 & f])*(¢) = ¢ — ¢; that
is, o (f1 @ f]) = ¢ — &, so for any (z,2') € F1 @ I,

(o (fr & fi))(z,2) = v(fi(x), fi(x) = (¢ — ¢)(x,2").
Define o € F§ by a = 9(-,0). Now, f(a) = a o fi, where for each z € F; we have
(e fi)(z) = a(fi(x)) = P(fi(x),0) = (f1(2), f1(0)) = (¢ — ¢)(z,0)
and therefore f;(a) = (¢ —¢)(-,0). Hence ¢(-,0) — @(+,0) € Im f], implying that

@('70)+Imf1* = @(70) +Imff
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A similar argument gives

whence Q([¢]) = Q([¢]) obtains and 2 is well-defined. That € is a homomorphism is obvious,
but is it an isomorphism?
Suppose that

Qe +1Im(fi @ f1)7) = (0,0),
so ¢ € (F1 @ F{)*. Then ¢(-,0) € Im f; and ¢(0, -) € Im f1*, so
¢ e Fy st fi() = o fi = ¢(-,0),
and
Ix € Fy" st fi700 = x e fi" = ¢(0, ).
Define v € (Fy @ F{)* by v(x,2") = ¢(x) + x(2'). Now,
(fi® fi) (V) =vo(fr ® fi),
where for (z,2') € F} & F| we have
(vo (fr® f))(x, ") = v(fi(z), fi(z') = ¥(fi(x)) + x(fi(z"))
= @(,0) + ¢(0,2") = p(x, '),

which shows that (f1 & f1)*(7) = ¢. Since ¢ + Im(f1 & f)* = 0 it follows that Ker Q = {0}
and € is injective.
Next, let

(o +TIm f, ¢ +Tm f1*) € H'(F;G) @ H'(F'; G),
so that ¢ : F; — G and 9 : F] — G are homomorphisms. Define w : F; & F| — G by
w(z, ') = (x) + ¥ (a’), which is easily verified to be a homomorphism so that w € (F; @ F})*.
Now, since w(z,0) = ¢(x) and w(0,2') = 1 (2’) for all z € Fy, 2’ € FY, it’s clear that w(-,0) = ¢
and w(0, -) = ¢ and so
Qw+Im(fr @ f1)7) = (w(-,0) + Im f7, w(0, -) + Im f{*) = (¢ + Im f7, ¢ + Im f77).
Thus € is surjective, and we obtain
H' (FeF;G) = H(F,G)® H (F';G)
since (2 is an isomorphism. Therefore
Ext(H @ H',G) 2 Ext(H,G) ® Ext(H', G).
Moving on to the proof of (b), suppose that H is a free abelian group. Then the sequence

00— H -5 H-—50

is a free resolution F' of H. Clearly H!(F';G) = 0, which implies Ext(H, G) = 0.
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Finally we turn to the proof of (¢). Fix n € N. Recalling Z,, := Z/nZ, define 7 : Z — Z,
by 7(k) = k + nZ, and note that Ker m = nZ. Letting i : nZ — Z to be inclusion, we construct
a free I resolution for Z,:

™

e 0—nZ — 7

Ly, — 0.

Applying Hom(—, G) we get

e 04— L T T T 0,

where of course H!(F'; G) = nZ*/Im i*.
Define T : nZ*/Imi* — G/nG by

T(p+Imi*) = p(n) + nG

for each homomorphism ¢ : nZ — G. Suppose ¢ + Imi* = gy + Im¢*. Then p; — o € Im¢*
implies that i*(¢)) = p1 — ¢y for some ¢ € Z*, which is to say ¢1 — ps = ¢ 0i : nZ — G and
thus

(b1 = @2)(n) = ¥(i(n)) = p(n) = np(1).
Therefore ¢1(n) — ¢2(n) € nG, whence

T(p1 +Imi*) = p1(n) + nG = pa(n) + nG = T(ps + Im i)

and T is well-defined. Obviously T is a homomorphism.
Suppose T (p+Imi*) = 0, so p(n) € nG and there exists some gy € G such that p(n) = ngo.
Define 1 € Z* by (k) = kgo for each k € Z. Now, for each kn € nZ we have

(Y oi)(kn) = (i(kn)) = ¢(kn) = (kn)go = ¢ (kn),

so i*(¢) =1 oi = . Hence ¢ + Imi* =0, so Ker T = {0} and T is injective.
Next, let g + nG € G/nG. Define ¢ : nZ — G to be a homomorphism such that ¢(n) = g
(so @(kn) = ke(n) = kg for all k € Z). Then

T(p+Im*) = p(n) +nG = g + nG.

Therefore T is surjective.
Since T is an isomorphism it follows that

G/nG = nZ*/Imi* = HY(F; G) = Ext(Z,,G),
as desired. |

If H is finitely generated it is a fact from algebra that H has a (unique) direct sum decom-
position H = Hy,,. ® B, where H,,, is the torsion subgroup of H and B is a free abelian group.
Thus by the preceding proposition

Ext(H,Z) = Ext(Hyor ® B, Z) = Ext(Hor, Z) ® Ext(B, Z) = Ext(Hyop, Z.).
0



21

Since H;,, C H and H is finitely generated, H,, must be a finitely generated torsion group
and therefore of finite order. Thus H,,, = Z, for some positive integer k, and it follows from
part (c) of Proposition 3.6 that

Ext(Hyop, 7) = Ext(Zy,, Z) = Z/kZ7 = 7.

Therefore, in general, Ext(H,Z) = Hy,,.
Two additional facts from algebra are: (i) Hom(H,Z) is isomorphic to the free part of H if

H is a finitely generated abelian group; and (ii) if Ay, ..., A, are abelian groups with subgroups
B; C A;, then

(A X -+ x Ap)/(By X+ X Bp) 2 A1 /By X -+ X A,/ By.

We use these facts to prove the following.

Proposition 3.7. If the homology groups H,(C) and H, _1(C) of a chain complex C of free
abelian groups are finitely generated, with torsion subgroups T,, C H,(C) and T,,_y C H,_1(C),
then H"(C;Z) = (H,(C)/T,) & T,,—1.

Proof. First, H,(C) has a direct sum decomposition H,(C) = T, & B, where B is the free
part of H,(C). Also we have Ext(H,_1(C),Z) = T,,—;. By (i) above, Hom(H,(C),Z) = B;
and by (ii),

H,(C)/T, = (T, ® B)/(T, ® {0}) = T, /T, ® B/{0} = {0} & B =~ B.

(Technically the first isomorphism would need to be verified.) Hence Hom(H,(C),Z) =
H,(C)/T,, and by Theorem 3.5 we have the split short exact sequence
0 — Ext(H,-1(C),Z) — H"(C;Z) — Hom(H,(C),Z) — 0.
e H,(C)/T
Therefore, by the Splitting Lemma, H"(C;Z) = T,,—1 & (H,(C)/T,). |

It’s high time to consider some examples.

Example 3.8. Show that the map H - H given by x — nx for each z € H induces multi-
plication by n in Ext(H, ), and so too does G —— G.

Solution. Given an abelian group H, let (28) be a free resolution F' of H. Definemn : H — H
by m(xz) = nz. Then n can be extended to a chain map n; : F; — F; where n;(z) = na for each
1>0and x € F;:

N LN AR LN R (RN &4 0
ST ] |
N LR AR I SN R RN & 0

(It’s straightforward to verify that the diagram is commutative.) Dualizing yields
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Fp el o B g g
I 1
e m el T R g

For each i, mf(a) = a o m;, where
(@vomy)(z) = a(nz) = na(z) = (na)(z)
so that mf(a) = na. In particular the map n} induces
(). : H'(F;G) — H'(F;G)
given by
(m7)s(e +Im f}) = mi(a) +Im f{ = na +Im f7 = n(e + Im f})

for each o € Ker f3. Thus (n}), is multiplication by n in H'(F;G), and since Ext(H,G) =
H'(F;G) it’s immediate that m}, which ultimately was “induced” by m, in turn induces multi-
plication by n in Ext(H, G).?
Now let m : G — G be multiplication by n in G. This map induces homomorphisms
m; : F' — F7 given by
n;(a) =moa.

For each = € F;,
(moa)(z) = n(a(z) = na(r) = (na)(z),

so I; () = na. The map @; in particular induces
n: HY(F;G) — H'(F;G)

given by B
ny(a+Im f}) =1 (a) + Im f] = na + Im f],

so m; is multiplication by n on H'(F;G), and by extension Ext(H,G) as well. |

5The mystical shape-shifting abilities of the term “induce” is common coin amongst the high priesthood of
algebra, and unfortunately we just have to accept it as a symptom of human laziness.



