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1
Eigenvalues and Eigenvectors

1.1 – The Eigenvalues of a Matrix

For A ∈ Cn×n, if λ ∈ C and x ∈ Cn \ {0} are such that Ax = λx, then λ is an eigenvalue
of A, x is an eigenvector of A associated with λ, and (λ, x) is an eigenpair for A. The
spectrum of A, denoted by σ(A), is the set of all eigenvalues of A.

Proposition 1.1. For any A ∈ Cn×n,

σ(Ā) = σ(A).

Proof. Suppose λ ∈ σ(Ā), so Āx = λx for some x 6= 0. Then

Ax̄ = Āx = λx = λ̄x̄,

and so λ̄ ∈ σ(A). Since σ(A) = {µ̄ : µ ∈ σ(A)}, it follows that λ = ¯̄λ ∈ σ(A) and hence

σ(Ā) ⊆ σ(A).

Next suppose that λ ∈ σ(A), so λ = µ̄ for some µ ∈ σ(A). Thus there exists x 6= 0 such that

Ax = µx = λ̄x, so that Āx̄ = λx̄ and then λ ∈ σ(Ā). Hence σ(A) ⊆ σ(Ā). �

If A ∈ Rn×n, then Ā = A and we have σ(A) = σ(A) by Proposition 1.1. Thus λ ∈ σ(A)

implies λ ∈ σ(A), so that λ = µ̄ for some µ ∈ σ(A), and therefore λ̄ ∈ σ(A).

Theorem 1.2. Let p(t) be a polynomial of degree k and A ∈ Cn×n.

1. If (λ, x) is an eigenpair for A, then (p(λ), x) is an eigenpair for p(A).
2. If k ≥ 1 and µ ∈ σ(p(A)), then there exists some λ ∈ σ(A) such that µ = p(λ).

Proposition 1.3. For any A ∈ Cn×n and λ, µ ∈ C, λ ∈ σ(A) if and only if λ+ µ ∈ σ(A+ µI).

Proof. Suppose λ ∈ σ(A), so Ax = λx for some x 6= 0. Then

(A+ µI)x = Ax+ µIx = λx+ µx = (λ+ µ)x

shows that λ+ µ ∈ σ(A+ µI).
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Next suppose that λ+µ ∈ σ(A+µI), so there exists some x 6= 0 such that (A+µI)x = (λ+µ)x.
This gives Ax+ µx = λx+ µx, and finally Ax = λx. That is, λ ∈ σ(A). �

Problem 1.4. Suppose A ∈ Cn×n is nonsingular. Show that if (λ, x) is an eigenpair for A, then
(λ−1, x) is an eigenpair for A−1.

Solution. Suppose (λ, x) is an eigenpair for A. Then Ax = λx, with λ 6= 0 since A is nonsingular,
and x 6= 0 since x is an eigenvector. Now,

Ax = λx ⇒ A−1(Ax) = A−1(λx) ⇒ x = λ(A−1x)λ−1x = A−1x,

and so (λ−1, x) is an eigenpair for A−1. �

Problem 1.5. Let A ∈ Cn×n and e = [1, . . . , 1]> ∈ Cn.

(a) Show that the sum of the entries in each row of A is 1 if and only if (1, e) is an eigenpair
for A.

(b) Suppose that the sum of the entries in each row of A is 1. If A is nonsingular, show that
the sum of the entries in each row of A−1 is also 1.

(c) Suppose that the sum of the entries in each row of A is 1. For any polynomial p(t) show
that the sums of the entries in each row of p(A) are equal.

Solution.
(a) Suppose the sum of the entries in each row of A is 1, so

∑n
j=1[A]ij = 1 for each 1 ≤ i ≤ n.

Then

[Ae]i1 =
n∑
j=1

[A]ij[e]j1 =
n∑
j=1

[A]ij = 1

for each i, which is to say Ae = e and thus (1, e) is an eigenpair for A.
Next suppose that (1, e) is an eigenpair for A, so Ae = e. Then for each 1 ≤ i ≤ n,

n∑
j=1

[A]ij[e]j1 = [Ae]i1 = [e]i1 = 1,

and therefore the sum of the entries in each row of A is 1.

(b) Suppose A is nonsingular. By part (a), (1, e) is an eigenpair of A, and so (1, e) is an
eigenpair for A−1 by Problem 1.4. It then follows by part (a) that the sum of the entries in
each row of A−1 is 1.

(c) By part (a), (1, e) is an eigenpair for A, and thus (p(1), e) is an eigenpair for p(A) by
Theorem 1.2, so that p(A)e = p(1)e. For each 1 ≤ i ≤ n,

p(1) = [p(1)e]i1 = [p(A)e]i1 =
n∑
j=1

[p(A)]ij[e]j1 =
n∑
j=1

[p(A)]ij,

and so the ith-row entries of p(A) add to p(1) for each i. �
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Problem 1.6. Consider the block diagonal matrix

A =

[
A11 0
0 A22

]
, Aii ∈ Cni .

Show that σ(A) = σ(A11) ∪ σ(A22).

Solution. Suppose that λ ∈ σ(A), so there exists nonzero x ∈ Cn1+n2 such that Ax = λx. In
particular x = [x1 x2]

> for some x1 ∈ Cn1 and x2 ∈ Cn2 . Now,[
A11x1
A22x2

]
=

[
A11 0
0 A22

][
x1
x2

]
= Ax = λx = λ

[
x1
x2

]
=

[
λx1
λx2

]
,

so A11x1 = λx1 and A22x2 = λx2. Since x 6= 0, either x1 6= 0 or x2 6= 0, and thus either
λ ∈ σ(A11) or λ ∈ σ(A22). Therefore λ ∈ σ(A11) ∪ σ(A22), showing σ(A) ⊆ σ(A11) ∪ σ(A22).

Now suppose that λ ∈ σ(A11) ∪ σ(A22), so either λ ∈ σ(A11) or λ ∈ σ(A22). Assume
λ ∈ σ(A11). Then there exists nonzero y ∈ Cn1 such that A11y = λy. Let ŷ = [y 0]> ∈ Cn1+n2

(so 0 ∈ Cn2). Then ŷ 6= 0 with

Aŷ =

[
A11 0
0 A22

][
y
0

]
=

[
A11y

0

]
=

[
λy
0

]
= λ

[
y
0

]
= λŷ,

implying that λ ∈ σ(A).
Next assume λ ∈ σ(A22). Then there exists nonzero z ∈ Cn2 such that A22z = λz. Let

ẑ = [0 z]> ∈ Cn1+n2 (so 0 ∈ Cn1). Then ẑ 6= 0 with

Aẑ =

[
A11 0
0 A22

][
0
z

]
=

[
0

A22z

]
=

[
0
λz

]
= λ

[
0
z

]
= λẑ,

again implying λ ∈ σ(A). We conclude that σ(A11) ∪ σ(A22) ⊆ σ(A). �

Problem 1.7. Let A ∈ Cn×n be idempotent. Show that σ(A) ⊆ {0, 1}. If A is nonsingular,
show that A = I.

A matrix A ∈ Cn×n is idempotent (or a projection) if A2 = A.

Solution. Suppose (λ, x) is an eigenpair for A, so x 6= 0 is such that Ax = λx. Now, since
A2 = A,

Ax = λx ⇒ A2x = λAx ⇒ Ax = λ(λx) ⇒ λx = λ2x,

and so (λ2 − λ)x = 0. Since x 6= 0, it follows that λ2 − λ = 0, and so λ is either 0 or 1.
Next suppose that A is nonsingular, so A−1 exists. Then

A2 = A ⇒ A−1A2 = A−1A ⇒ A = I,

and so I is the only nonsingular idempotent matrix. �

A matrix A ∈ Cn×n is nilpotent if there exists some k ∈ N such that Ak = 0. If A is
nilpotent the Well-Ordering Principle implies there exists some m ∈ N such that Am = 0 and
Ak 6= 0 for all 1 ≤ k < m; that is, there is some minimal positive exponent m for which Am = 0.

Problem 1.8. Show that all eigenvalues of a nilpotent matrix are 0. Give an example of a
nonzero nilpotent matrix. Show that 0 is the only nilpotent idempotent matrix.
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Solution. Suppose A ∈ Cn×n be nilpotent, and let k ∈ N be such that Ak = 0. Let (λ, x) be
an eigenpair for A, so x 6= 0 and Ax = λx. If k = 1 then A = 0, in which case σ(A) = {0} is
clear. Assume k ≥ 2. Now,

λAk−1x = Ak−1λx = Ak−1Ax = Akx = 0x = 0,

but with induction we also find that

λAk−1x = λλk−1x = λkx.

Hence λkx = 0, so λk = 0 since x 6= 0, and finally λ = 0.
An example of a nonzero nilpotent matrix would be[

0 1
0 0

]
or

0 0 2
0 0 1
0 0 0

.
Suppose that B is a nilpotent idempotent matrix. Let m = min{k ∈ N : Ak = 0}.

Suppose m ≥ 2, so Am−2 exists (with Am−2 = I if m = 2). Since A2 = A, it follows that
Am−2A2 = Am−2A, and hence Am−1 = Am = 0 for m− 1 ≥ 1. This contradicts the minimality
of m, and so m = 1 must be the case. Therefore A = 0, and we conclude that 0 is the only
nilpotent idempotent matrix. �

A matrix A ∈ Cn×n is Hermitian if A∗ = A, where A∗ denotes the conjugate transpose
of A. If x ∈ Cn, then we define the Euclidean norm of x to be

‖x‖2 = x∗x.

If x 6= 0 then ‖x‖2 > 0.

Problem 1.9. Show that if A ∈ Cn×n is Hermitian, then all the eigenvalues of A are real.

Solution. Suppose A ∈ Cn×n is Hermitian, and let (λ, x) be an eigenpair for A so that Ax = λx
for x 6= 0. Now,

Ax = λx ⇒ (Ax)∗ = (λx)∗ ⇒ x∗A∗ = λ̄x∗ ⇒ x∗Ax = λ̄x∗x,

and since x∗x > 0, it follows that

λ̄ =
x∗Ax

x∗x
=
x∗λx

x∗x
= λ.

Therefore λ ∈ R. �
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1.2 – The Characteristic Polynomial

Given A ∈ Cn×n, the characteristic polynomial of A is

pA(t) = det(tI − A),

and it is known that pA(λ) = 0 if and only if λ ∈ σ(A). Define the algebraic multiplicity of
λ ∈ σ(A), denoted by αA(λ), to be the multiplicity of λ as a zero of the polynomial pA(t). If
λ /∈ σ(A) then we define αA(λ) = 0. In general,∑

λ∈σ(A)

αA(λ) = n.

It is known that
pA(t) = tn − (trA)tn−1 + · · ·+ (−1)n detA. (1.1)

If λ1, . . . , λn are the eigenvalues of A, each distinct value in the list repeated according to its
algebraic multiplicity, then it is also known that

trA =
n∑
k=1

λk and detA =
n∏
k=1

λk. (1.2)

Alternatively we may write

trA =
∑

λ∈σ(A)

αA(λ)λ and detA =
∏

λ∈σ(A)

λαA(λ). (1.3)

For the proof of the first proposition we recall the inductive Laplace expansion definition of
a determinant: if A = [aij] ∈ Cn×n, then

detA =
n∑
k=1

(−1)i+kaik detAik =
n∑
k=1

(−1)k+jakj detAkj, (1.4)

where the symbol Aij generally denotes the matrix in C(n−1)×(n−1) resulting from deleting the
ith row and jth column from matrix A. From (1.4) can be derived the Leibniz formula

detA =
∑
σ∈Sn

(
sgnσ

n∏
i=1

aiσ(i)

)
,

where Sn is the symmetric group of degree n.

Proposition 1.10. If A = [aij] ∈ Cn×n is an upper or lower triangular matrix, then

detA =
n∏
i=1

aii.

Proof. If n = 1 then detA = a11, which confirms the base case. Now fix n ≥ 1 and suppose
detA =

∏n
i=1 aii for all A = [aij] ∈ Cn×n. Let A ∈ C(n+1)×(n+1) be upper triangular, so aij = 0

whenever i > j. With Laplace expansion by minors along row n+ 1,

detA =
n∑
k=1

(−1)n+1+kan+1,k detAn+1,k = an+1,n+1 detAn+1,n+1
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= an+1,n+1

n∏
i=1

aii =
n+1∏
i=1

aii,

where the last equality follows from our inductive hypothesis and the observation that An+1,n+1 ∈
Cn×n is upper triangular.

The argument is much the same for a lower triangular matrix, while precisely the same
analysis as above applies to a diagonal matrix since such matrices are also upper triangular. �

Given an upper triangular matrix A ∈ Cn×n with diagonal elements a11, . . . , ann, we find
tI − A to be also upper triangular with diagonal entries t− a11, . . . , t− ann. Thus

pA(t) = det(tI − A) =
n∏
i=1

(t− aii),

so that pA(λ) = 0 if and only if λ = aii for some 1 ≤ i ≤ n. Thus the set of diagonal entries in
an upper (or lower) triangular matrix equals the set of eigenvalues of the matrix. Moreover, the
algebraic multiplicity of λ ∈ σ(A) will equal the number of times that λ appears as an entry on
the main diagonal of A.

In proving the next proposition, which is a generalization of the previous one, we use the
fact that deleting a row and column from a block triangular matrix results again in a block
triangular matrix. Note in the block matrix A below we use the symbol ♣ to denote that the
entries above the main diagonal are arbitrary, while the 0 in the block matrix indicates that all
entries below the main diagonal are zero.

Proposition 1.11. For any k ≥ 1, given the block upper triangular matrix

A = [aij] =


B11 ♣

B22

. . .
0 Bkk

, ∀1 ≤ i ≤ k
(
Bii ∈ Cni×ni

)
,

we have

detA =
k∏
i=1

detBii. (1.5)

Proof. Fix k ≥ 1. The statement of the proposition is certainly true if A ∈ C1×1. Suppose it
is true whenever A ∈ Cn×n for some fixed n ≥ 1. Let A ∈ C(n+1)×(n+1), so

∑k
i=1 ni = n+ 1. If

n1 = 1, so that B11 = a11, then since ai1 = 0 for i ≥ 2, we have

detA =
n+1∑
i=1

(−1)i+1ai1 detAi1 = a11 detA11 = detB11

n+1∏
j=2

detBjj =
n+1∏
j=1

detBjj,

with the last equality following from our inductive hypothesis and the observation that

A11 =

B22 ♣
. . .

0 Bkk

,
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is an n× n block upper triangular matrix. If n1 = n+ 1, then A is upper triangular and (1.5)
obtains from Proposition 1.10.

Now assume that 1 < n1 < n+ 1, so B11 ∈ Cn1×n1 for n1 ≥ 2. Then, since ai1 = 0 for i > n1,

detA =
n+1∑
i=1

(−1)i+1ai1 detAi1 =

n1∑
i=1

(−1)i+1ai1 detAi1,

and since

Ai1 =


(B11)i1 ♣

B22

. . .
0 Bkk

∈ Cn×n

is block upper triangular, by our hypothesis we obtain

detA =

n1∑
i=1

(
(−1)i+1ai1 det(B11)i1

k∏
j=2

detBjj

)

=

(
n1∑
i=1

(−1)i+1ai1 det(B11)i1

)
k∏
j=2

detBjj

=
k∏
j=1

detBjj,

as desired. �

The conclusion of the proposition above applies also to block lower triangular matrices, since
det(A>) = detA holds for any square matrix A.

Proposition 1.12. For the block upper triangular matrix

A = [aij] =

A11 ♣
. . .

0 Akk

, ∀1 ≤ i ≤ k
(
Bii ∈ Cni×ni

)
,

we have

pA(t) =
k∏
i=1

pAii
(t),

and hence σ(A) =
⋃k
i=1 σ(Aii) with αA(λ) =

∑k
i=1 αAii

(λ).

Proof. By definition,

pA(t) = det(tI − A) =

∣∣∣∣∣∣
tI − A11 −♣

. . .
0 tI − Akk

∣∣∣∣∣∣ ,
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where −♣ denotes entries of opposite value as those represented by ♣ in A, and each tI −Aii is
a square matrix of size ni × ni. By Proposition 1.11 it follows that

pA(t) =
k∏
i=1

(tI − Aii) =
k∏
i=1

pAii
(t).

The observation that pA(λ) = 0 iff pAii
(λ) = 0 for some 1 ≤ i ≤ k iff λ ∈ σ(Aii) for some

1 ≤ i ≤ k readily implies the final statement in the proposition. �

Problem 1.13. For A ∈ Cm×n and B ∈ Cn×m, show that tr(AB) = tr(BA). If A, S ∈ Cn×n

with S nonsingular, show that tr(S−1AS) = trA and det(S−1AS) = detA.

Solution. For A ∈ Cm×n and B ∈ Cn×m we have

tr(BA) =
n∑
k=1

[BA]kk =
n∑
k=1

(
m∑
j=1

[B]kj[A]jk

)
=

m∑
j=1

(
n∑
k=1

[A]jk[B]kj

)
=

m∑
j=1

[AB]jj = tr(AB),

and so for A, S ∈ Cn×n with S nonsingular we find that

tr(S−1AS) = tr
(
S−1(AS)

)
= tr

(
(AS)S−1

)
= tr

(
A(SS−1)

)
= trA,

and also
det(S−1AS) = det(S−1) detA detS = (detS)−1 detA detS = detA.

�

For the next problem we make use of a convenient property of products of diagonal matrices,
namely

diag(a1, . . . , an) diag(b1, . . . , bn) = diag(a1b1, . . . , anbn),

which naturally extends to products of three or more diagonal matrices.

Problem 1.14. Let D ∈ Cn×n be a diagonal matrix. Compute the characteristic polynomial
pD(t) and show that pD(D).

Solution. For D = diag(d1, . . . , dn), by Proposition 1.10,

pD(t) = det(tI −D) = det
(

diag(t− d1, . . . , t− dn)
)

=
n∏
i=1

(t− di).

Now,

pD(D) =
n∏
i=1

(D − diI) =
n∏
i=1

diag(d1 − di, . . . , dn − di)

= diag

(
n∏
i=1

(d1 − di), . . . ,
n∏
i=1

(dn − di)

)
= diag(0, . . . , 0) = 0.

�
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Problem 1.15. Show that the trace of a nilpotent matrix is zero. What is the characteristic
polynomial of a nilpotent matrix?

Solution. Let A ∈ Cn×n be nilpotent, so there exists some k ∈ N such that Ak = 0. Problem
1.8 gives σ(A) = {0}, and since αA(0) = n, by (1.3) we obtain

trA =
∑

λ∈σ(A)

αA(λ)λ = (n)(0) = 0.

Now, pA(t) = 0 iff t ∈ σ(A), so 0 is the only root of pA(t), and by (1.1) we conclude that
pA(t) = tn. �

Problem 1.16. Let A ∈ Cn×n and λ ∈ C, and let λ1, . . . , λn be the eigenvalues of A. Show
that pA+λI(t) = pA(t− λ). What are the eigenvalues of A+ λI?

Solution. Directly we have

pA+λI(t) = det
(
tI − (A+ λI)

)
= det

(
(t− λ)I − A

)
= pA(t− λ).

Now, for any λk ∈ σ(A),

pA+λI(λk + λ) = pA
(
(λk + λ)− λ

)
= pA(λk) = 0,

and so λk + λ ∈ σ(A+ λI) for all 1 ≤ k ≤ n. �

Problem 1.17. Let n ≥ 3, B ∈ C(n−2)×(n−2), and λ, µ ∈ C. Given

A =

λ ♣ ♣
0 µ 0
0 ♣ B

,
show that

pA(t) = (t− λ)(t− µ)pB(t)

Solution. By Proposition 1.11,

pA(t) = det(tI − A) =

∣∣∣∣∣∣
t− λ −♣ −♣

0 t− µ 0
0 −♣ tI −B

∣∣∣∣∣∣
= (t− λ)

∣∣∣∣ t− µ 0
−♣ tI −B

∣∣∣∣ = (t− λ) det(t− µ) det(tI −B)

= (t− λ)(t− µ)pB(t).

Thus σ(A) = σ(B) ∪ {λ, µ}, in particular. �

The next problem requires use of the arithmetic-geometric mean inequality: for
x1, . . . , xn ≥ 0,

1

n

n∑
k=1

xk ≥

(
n∏
k=1

xk

)1/n

, (1.6)

with equality holding if and only if x1 = · · · = xn.



10

Problem 1.18. Suppose A = [aij ] ∈ Cn×n is such that aij ∈ {0, 1} for all 1 ≤ i, j ≤ n, with all
eigenvalues λ1, . . . , λn being positive real numbers. Show that trA = n, detA = 1, akk = 1 for
all 1 ≤ k ≤ n, and σ(A) = {1}.

Solution. For each k we have akk ∈ {0, 1}, so that trA =
∑n

i=1 akk ≤ n. Also, with (1.6) we
obtain

(detA)1/n =

(
n∏
k=1

λk

)1/n

≤ 1

n

n∑
k=1

λk =
trA

n
,

so n(detA)1/n ≤ trA. Now, from (1.4) it’s easily seen that detA much equal an integer, but
since detA =

∏n
k=1 λk with λk > 0 for each k, it is clear that detA ∈ N and in particular

detA ≥ 1. Hence n(detA)1/n ≥ n, and our findings taken together give

n ≤ n(detA)1/n ≤ trA ≤ n.

This implies that trA = n, and also n(detA)1/n = n so that detA = 1. Of course, n =
trA =

∑n
k=1 akk, and since akk ∈ {0, 1} for each k, we conclude that akk = 1 for all k. Finally,∑n

k=1 λk = trA = n and
∏n

k=1 λk = detA = 1, giving

1

n

n∑
k=1

λk = 1 =

(
n∏
k=1

λk

)1/n

.

However, equality holds for (1.6) if and only if x1 = · · · = xn, and so we may set λk = λ for all
k. Then

n =
n∑
k=1

λk =
n∑
k=1

λ = nλ,

giving λ = 1 and therefore σ(A) = {1}. �
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