Matrix Analysis

Joe Erickson

Contents

1 Eigenvalues and Eigenvectors 1
1.1 The Eigenvalues of a Matrix . 1
1.2 The Characteristic Polynomial . 5

1

Eigenvalues and Eigenvectors

1.1 - The Eigenvalues of a Matrix

For $A \in \mathbb{C}^{n \times n}$, if $\lambda \in \mathbb{C}$ and $x \in \mathbb{C}^{n} \backslash\{0\}$ are such that $A x=\lambda x$, then λ is an eigenvalue of A, x is an eigenvector of A associated with λ, and (λ, x) is an eigenpair for A. The spectrum of A, denoted by $\sigma(A)$, is the set of all eigenvalues of A.

Proposition 1.1. For any $A \in \mathbb{C}^{n \times n}$,

$$
\sigma(\bar{A})=\overline{\sigma(A)}
$$

Proof. Suppose $\lambda \in \sigma(\bar{A})$, so $\bar{A} x=\lambda x$ for some $x \neq 0$. Then

$$
A \bar{x}=\overline{\bar{A} x}=\overline{\lambda x}=\bar{\lambda} \bar{x}
$$

and so $\overline{\bar{\lambda} \in \sigma(A)}$. Since $\overline{\sigma(A)}=\{\bar{\mu}: \mu \in \sigma(A)\}$, it follows that $\lambda=\overline{\bar{\lambda}} \in \overline{\sigma(A)}$ and hence $\sigma(\bar{A}) \subseteq \overline{\sigma(A)}$.

Next suppose that $\lambda \in \overline{\sigma(A)}$, so $\lambda=\bar{\mu}$ for some $\mu \in \sigma(A)$. Thus there exists $x \neq 0$ such that $A x=\mu x=\bar{\lambda} x$, so that $\bar{A} \bar{x}=\lambda \bar{x}$ and then $\lambda \in \sigma(\bar{A})$. Hence $\overline{\sigma(A)} \subseteq \sigma(\bar{A})$.

If $A \in \mathbb{R}^{n \times n}$, then $\bar{A}=A$ and we have $\overline{\sigma(A)}=\sigma(A)$ by Proposition 1.1. Thus $\lambda \in \sigma(A)$ implies $\lambda \in \overline{\sigma(A)}$, so that $\lambda=\bar{\mu}$ for some $\mu \in \sigma(A)$, and therefore $\bar{\lambda} \in \sigma(A)$.

Theorem 1.2. Let $p(t)$ be a polynomial of degree k and $A \in \mathbb{C}^{n \times n}$.

1. If (λ, x) is an eigenpair for A, then $(p(\lambda), x)$ is an eigenpair for $p(A)$.
2. If $k \geq 1$ and $\mu \in \sigma(p(A))$, then there exists some $\lambda \in \sigma(A)$ such that $\mu=p(\lambda)$.

Proposition 1.3. For any $A \in \mathbb{C}^{n \times n}$ and $\lambda, \mu \in \mathbb{C}, \lambda \in \sigma(A)$ if and only if $\lambda+\mu \in \sigma(A+\mu I)$.
Proof. Suppose $\lambda \in \sigma(A)$, so $A x=\lambda x$ for some $x \neq 0$. Then

$$
(A+\mu I) x=A x+\mu I x=\lambda x+\mu x=(\lambda+\mu) x
$$

shows that $\lambda+\mu \in \sigma(A+\mu I)$.

Next suppose that $\lambda+\mu \in \sigma(A+\mu I)$, so there exists some $x \neq 0$ such that $(A+\mu I) x=(\lambda+\mu) x$. This gives $A x+\mu x=\lambda x+\mu x$, and finally $A x=\lambda x$. That is, $\lambda \in \sigma(A)$.

Problem 1.4. Suppose $A \in \mathbb{C}^{n \times n}$ is nonsingular. Show that if (λ, x) is an eigenpair for A, then $\left(\lambda^{-1}, x\right)$ is an eigenpair for A^{-1}.

Solution. Suppose (λ, x) is an eigenpair for A. Then $A x=\lambda x$, with $\lambda \neq 0$ since A is nonsingular, and $x \neq 0$ since x is an eigenvector. Now,

$$
A x=\lambda x \Rightarrow A^{-1}(A x)=A^{-1}(\lambda x) \Rightarrow x=\lambda\left(A^{-1} x\right) \lambda^{-1} x=A^{-1} x
$$

and so $\left(\lambda^{-1}, x\right)$ is an eigenpair for A^{-1}.
Problem 1.5. Let $A \in \mathbb{C}^{n \times n}$ and $e=[1, \ldots, 1]^{\top} \in \mathbb{C}^{n}$.
(a) Show that the sum of the entries in each row of A is 1 if and only if $(1, e)$ is an eigenpair for A.
(b) Suppose that the sum of the entries in each row of A is 1 . If A is nonsingular, show that the sum of the entries in each row of A^{-1} is also 1 .
(c) Suppose that the sum of the entries in each row of A is 1 . For any polynomial $p(t)$ show that the sums of the entries in each row of $p(A)$ are equal.

Solution.

(a) Suppose the sum of the entries in each row of A is 1 , so $\sum_{j=1}^{n}[A]_{i j}=1$ for each $1 \leq i \leq n$. Then

$$
[A e]_{i 1}=\sum_{j=1}^{n}[A]_{i j}[e]_{j 1}=\sum_{j=1}^{n}[A]_{i j}=1
$$

for each i, which is to say $A e=e$ and thus $(1, e)$ is an eigenpair for A.
Next suppose that $(1, e)$ is an eigenpair for A, so $A e=e$. Then for each $1 \leq i \leq n$,

$$
\sum_{j=1}^{n}[A]_{i j}[e]_{j 1}=[A e]_{i 1}=[e]_{i 1}=1
$$

and therefore the sum of the entries in each row of A is 1 .
(b) Suppose A is nonsingular. By part (a), $(1, e)$ is an eigenpair of A, and so $(1, e)$ is an eigenpair for A^{-1} by Problem 1.4. It then follows by part (a) that the sum of the entries in each row of A^{-1} is 1 .
(c) By part (a), (1,e) is an eigenpair for A, and thus $(p(1), e)$ is an eigenpair for $p(A)$ by Theorem 1.2, so that $p(A) e=p(1) e$. For each $1 \leq i \leq n$,

$$
p(1)=[p(1) e]_{i 1}=[p(A) e]_{i 1}=\sum_{j=1}^{n}[p(A)]_{i j}[e]_{j 1}=\sum_{j=1}^{n}[p(A)]_{i j},
$$

and so the i th-row entries of $p(A)$ add to $p(1)$ for each i.

Problem 1.6. Consider the block diagonal matrix

$$
A=\left[\begin{array}{cc}
A_{11} & 0 \\
0 & A_{22}
\end{array}\right], \quad A_{i i} \in \mathbb{C}^{n_{i}}
$$

Show that $\sigma(A)=\sigma\left(A_{11}\right) \cup \sigma\left(A_{22}\right)$.
Solution. Suppose that $\lambda \in \sigma(A)$, so there exists nonzero $x \in \mathbb{C}^{n_{1}+n_{2}}$ such that $A x=\lambda x$. In particular $x=\left[\begin{array}{ll}x_{1} & x_{2}\end{array}\right]^{\top}$ for some $x_{1} \in \mathbb{C}^{n_{1}}$ and $x_{2} \in \mathbb{C}^{n_{2}}$. Now,

$$
\left[\begin{array}{l}
A_{11} x_{1} \\
A_{22} x_{2}
\end{array}\right]=\left[\begin{array}{cc}
A_{11} & 0 \\
0 & A_{22}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=A x=\lambda x=\lambda\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
\lambda x_{1} \\
\lambda x_{2}
\end{array}\right],
$$

so $A_{11} x_{1}=\lambda x_{1}$ and $A_{22} x_{2}=\lambda x_{2}$. Since $x \neq 0$, either $x_{1} \neq 0$ or $x_{2} \neq 0$, and thus either $\lambda \in \sigma\left(A_{11}\right)$ or $\lambda \in \sigma\left(A_{22}\right)$. Therefore $\lambda \in \sigma\left(A_{11}\right) \cup \sigma\left(A_{22}\right)$, showing $\sigma(A) \subseteq \sigma\left(A_{11}\right) \cup \sigma\left(A_{22}\right)$.

Now suppose that $\lambda \in \sigma\left(A_{11}\right) \cup \sigma\left(A_{22}\right)$, so either $\lambda \in \sigma\left(A_{11}\right)$ or $\lambda \in \sigma\left(A_{22}\right)$. Assume $\lambda \in \sigma\left(A_{11}\right)$. Then there exists nonzero $y \in \mathbb{C}^{n_{1}}$ such that $A_{11} y=\lambda y$. Let $\hat{y}=\left[\begin{array}{ll}y & 0\end{array}\right]^{\top} \in \mathbb{C}^{n_{1}+n_{2}}$ (so $0 \in \mathbb{C}^{n_{2}}$). Then $\hat{y} \neq 0$ with

$$
A \hat{y}=\left[\begin{array}{cc}
A_{11} & 0 \\
0 & A_{22}
\end{array}\right]\left[\begin{array}{l}
y \\
0
\end{array}\right]=\left[\begin{array}{c}
A_{11} y \\
0
\end{array}\right]=\left[\begin{array}{c}
\lambda y \\
0
\end{array}\right]=\lambda\left[\begin{array}{l}
y \\
0
\end{array}\right]=\lambda \hat{y}
$$

implying that $\lambda \in \sigma(A)$.
Next assume $\lambda \in \sigma\left(A_{22}\right)$. Then there exists nonzero $z \in \mathbb{C}^{n_{2}}$ such that $A_{22} z=\lambda z$. Let $\hat{z}=\left[\begin{array}{ll}0 & z\end{array}\right]^{\top} \in \mathbb{C}^{n_{1}+n_{2}}\left(\right.$ so $\left.0 \in \mathbb{C}^{n_{1}}\right)$. Then $\hat{z} \neq 0$ with

$$
A \hat{z}=\left[\begin{array}{cc}
A_{11} & 0 \\
0 & A_{22}
\end{array}\right]\left[\begin{array}{l}
0 \\
z
\end{array}\right]=\left[\begin{array}{c}
0 \\
A_{22} z
\end{array}\right]=\left[\begin{array}{c}
0 \\
\lambda z
\end{array}\right]=\lambda\left[\begin{array}{l}
0 \\
z
\end{array}\right]=\lambda \hat{z},
$$

again implying $\lambda \in \sigma(A)$. We conclude that $\sigma\left(A_{11}\right) \cup \sigma\left(A_{22}\right) \subseteq \sigma(A)$.
Problem 1.7. Let $A \in \mathbb{C}^{n \times n}$ be idempotent. Show that $\sigma(A) \subseteq\{0,1\}$. If A is nonsingular, show that $A=I$.

A matrix $A \in \mathbb{C}^{n \times n}$ is idempotent (or a projection) if $A^{2}=A$.
Solution. Suppose (λ, x) is an eigenpair for A, so $x \neq 0$ is such that $A x=\lambda x$. Now, since $A^{2}=A$,

$$
A x=\lambda x \Rightarrow A^{2} x=\lambda A x \Rightarrow A x=\lambda(\lambda x) \Rightarrow \lambda x=\lambda^{2} x
$$

and so $\left(\lambda^{2}-\lambda\right) x=0$. Since $x \neq 0$, it follows that $\lambda^{2}-\lambda=0$, and so λ is either 0 or 1 .
Next suppose that A is nonsingular, so A^{-1} exists. Then

$$
A^{2}=A \Rightarrow A^{-1} A^{2}=A^{-1} A \Rightarrow A=I
$$

and so I is the only nonsingular idempotent matrix.
A matrix $A \in \mathbb{C}^{n \times n}$ is nilpotent if there exists some $k \in \mathbb{N}$ such that $A^{k}=0$. If A is nilpotent the Well-Ordering Principle implies there exists some $m \in \mathbb{N}$ such that $A^{m}=0$ and $A^{k} \neq 0$ for all $1 \leq k<m$; that is, there is some minimal positive exponent m for which $A^{m}=0$.

Problem 1.8. Show that all eigenvalues of a nilpotent matrix are 0 . Give an example of a nonzero nilpotent matrix. Show that 0 is the only nilpotent idempotent matrix.

Solution. Suppose $A \in \mathbb{C}^{n \times n}$ be nilpotent, and let $k \in \mathbb{N}$ be such that $A^{k}=0$. Let (λ, x) be an eigenpair for A, so $x \neq 0$ and $A x=\lambda x$. If $k=1$ then $A=0$, in which case $\sigma(A)=\{0\}$ is clear. Assume $k \geq 2$. Now,

$$
\lambda A^{k-1} x=A^{k-1} \lambda x=A^{k-1} A x=A^{k} x=0 x=0
$$

but with induction we also find that

$$
\lambda A^{k-1} x=\lambda \lambda^{k-1} x=\lambda^{k} x
$$

Hence $\lambda^{k} x=0$, so $\lambda^{k}=0$ since $x \neq 0$, and finally $\lambda=0$.
An example of a nonzero nilpotent matrix would be

$$
\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right] \text { or }\left[\begin{array}{lll}
0 & 0 & 2 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]
$$

Suppose that B is a nilpotent idempotent matrix. Let $m=\min \left\{k \in \mathbb{N}: A^{k}=0\right\}$. Suppose $m \geq 2$, so A^{m-2} exists (with $A^{m-2}=I$ if $m=2$). Since $A^{2}=A$, it follows that $A^{m-2} A^{2}=A^{m-2} A$, and hence $A^{m-1}=A^{m}=0$ for $m-1 \geq 1$. This contradicts the minimality of m, and so $m=1$ must be the case. Therefore $A=0$, and we conclude that 0 is the only nilpotent idempotent matrix.

A matrix $A \in \mathbb{C}^{n \times n}$ is Hermitian if $A^{*}=A$, where A^{*} denotes the conjugate transpose of A. If $x \in \mathbb{C}^{n}$, then we define the Euclidean norm of x to be

$$
\|x\|_{2}=x^{*} x
$$

If $x \neq 0$ then $\|x\|_{2}>0$.
Problem 1.9. Show that if $A \in \mathbb{C}^{n \times n}$ is Hermitian, then all the eigenvalues of A are real.
Solution. Suppose $A \in \mathbb{C}^{n \times n}$ is Hermitian, and let (λ, x) be an eigenpair for A so that $A x=\lambda x$ for $x \neq 0$. Now,

$$
A x=\lambda x \Rightarrow(A x)^{*}=(\lambda x)^{*} \Rightarrow x^{*} A^{*}=\bar{\lambda} x^{*} \Rightarrow x^{*} A x=\bar{\lambda} x^{*} x
$$

and since $x^{*} x>0$, it follows that

$$
\bar{\lambda}=\frac{x^{*} A x}{x^{*} x}=\frac{x^{*} \lambda x}{x^{*} x}=\lambda .
$$

Therefore $\lambda \in \mathbb{R}$.

1.2 - The Characteristic Polynomial

Given $A \in \mathbb{C}^{n \times n}$, the characteristic polynomial of A is

$$
p_{A}(t)=\operatorname{det}(t I-A),
$$

and it is known that $p_{A}(\lambda)=0$ if and only if $\lambda \in \sigma(A)$. Define the algebraic multiplicity of $\lambda \in \sigma(A)$, denoted by $\alpha_{A}(\lambda)$, to be the multiplicity of λ as a zero of the polynomial $p_{A}(t)$. If $\lambda \notin \sigma(A)$ then we define $\alpha_{A}(\lambda)=0$. In general,

$$
\sum_{\lambda \in \sigma(A)} \alpha_{A}(\lambda)=n
$$

It is known that

$$
\begin{equation*}
p_{A}(t)=t^{n}-(\operatorname{tr} A) t^{n-1}+\cdots+(-1)^{n} \operatorname{det} A \tag{1.1}
\end{equation*}
$$

If $\lambda_{1}, \ldots, \lambda_{n}$ are the eigenvalues of A, each distinct value in the list repeated according to its algebraic multiplicity, then it is also known that

$$
\begin{equation*}
\operatorname{tr} A=\sum_{k=1}^{n} \lambda_{k} \quad \text { and } \quad \operatorname{det} A=\prod_{k=1}^{n} \lambda_{k} . \tag{1.2}
\end{equation*}
$$

Alternatively we may write

$$
\begin{equation*}
\operatorname{tr} A=\sum_{\lambda \in \sigma(A)} \alpha_{A}(\lambda) \lambda \quad \text { and } \quad \operatorname{det} A=\prod_{\lambda \in \sigma(A)} \lambda^{\alpha_{A}(\lambda)} \tag{1.3}
\end{equation*}
$$

For the proof of the first proposition we recall the inductive Laplace expansion definition of a determinant: if $A=\left[a_{i j}\right] \in \mathbb{C}^{n \times n}$, then

$$
\begin{equation*}
\operatorname{det} A=\sum_{k=1}^{n}(-1)^{i+k} a_{i k} \operatorname{det} A_{i k}=\sum_{k=1}^{n}(-1)^{k+j} a_{k j} \operatorname{det} A_{k j}, \tag{1.4}
\end{equation*}
$$

where the symbol $A_{i j}$ generally denotes the matrix in $\mathbb{C}^{(n-1) \times(n-1)}$ resulting from deleting the i th row and j th column from matrix A. From (1.4) can be derived the Leibniz formula

$$
\operatorname{det} A=\sum_{\sigma \in \mathcal{S}_{n}}\left(\operatorname{sgn} \sigma \prod_{i=1}^{n} a_{i \sigma(i)}\right)
$$

where \mathcal{S}_{n} is the symmetric group of degree n.
Proposition 1.10. If $A=\left[a_{i j}\right] \in \mathbb{C}^{n \times n}$ is an upper or lower triangular matrix, then

$$
\operatorname{det} A=\prod_{i=1}^{n} a_{i i}
$$

Proof. If $n=1$ then $\operatorname{det} A=a_{11}$, which confirms the base case. Now fix $n \geq 1$ and suppose $\operatorname{det} A=\prod_{i=1}^{n} a_{i i}$ for all $A=\left[a_{i j}\right] \in \mathbb{C}^{n \times n}$. Let $A \in \mathbb{C}^{(n+1) \times(n+1)}$ be upper triangular, so $a_{i j}=0$ whenever $i>j$. With Laplace expansion by minors along row $n+1$,

$$
\operatorname{det} A=\sum_{k=1}^{n}(-1)^{n+1+k} a_{n+1, k} \operatorname{det} A_{n+1, k}=a_{n+1, n+1} \operatorname{det} A_{n+1, n+1}
$$

$$
=a_{n+1, n+1} \prod_{i=1}^{n} a_{i i}=\prod_{i=1}^{n+1} a_{i i}
$$

where the last equality follows from our inductive hypothesis and the observation that $A_{n+1, n+1} \in$ $\mathbb{C}^{n \times n}$ is upper triangular.

The argument is much the same for a lower triangular matrix, while precisely the same analysis as above applies to a diagonal matrix since such matrices are also upper triangular.

Given an upper triangular matrix $A \in \mathbb{C}^{n \times n}$ with diagonal elements $a_{11}, \ldots, a_{n n}$, we find $t I-A$ to be also upper triangular with diagonal entries $t-a_{11}, \ldots, t-a_{n n}$. Thus

$$
p_{A}(t)=\operatorname{det}(t I-A)=\prod_{i=1}^{n}\left(t-a_{i i}\right)
$$

so that $p_{A}(\lambda)=0$ if and only if $\lambda=a_{i i}$ for some $1 \leq i \leq n$. Thus the set of diagonal entries in an upper (or lower) triangular matrix equals the set of eigenvalues of the matrix. Moreover, the algebraic multiplicity of $\lambda \in \sigma(A)$ will equal the number of times that λ appears as an entry on the main diagonal of A.

In proving the next proposition, which is a generalization of the previous one, we use the fact that deleting a row and column from a block triangular matrix results again in a block triangular matrix. Note in the block matrix A below we use the symbol $\boldsymbol{\&}$ to denote that the entries above the main diagonal are arbitrary, while the $\mathbf{0}$ in the block matrix indicates that all entries below the main diagonal are zero.

Proposition 1.11. For any $k \geq 1$, given the block upper triangular matrix

$$
A=\left[a_{i j}\right]=\left[\begin{array}{cccc}
B_{11} & & & \boldsymbol{\alpha} \\
& B_{22} & & \\
& & \ddots & \\
\mathbf{0} & & & B_{k k}
\end{array}\right], \quad \forall 1 \leq i \leq k\left(B_{i i} \in \mathbb{C}^{n_{i} \times n_{i}}\right),
$$

we have

$$
\begin{equation*}
\operatorname{det} A=\prod_{i=1}^{k} \operatorname{det} B_{i i} . \tag{1.5}
\end{equation*}
$$

Proof. Fix $k \geq 1$. The statement of the proposition is certainly true if $A \in \mathbb{C}^{1 \times 1}$. Suppose it is true whenever $A \in \mathbb{C}^{n \times n}$ for some fixed $n \geq 1$. Let $A \in \mathbb{C}^{(n+1) \times(n+1)}$, so $\sum_{i=1}^{k} n_{i}=n+1$. If $n_{1}=1$, so that $B_{11}=a_{11}$, then since $a_{i 1}=0$ for $i \geq 2$, we have

$$
\operatorname{det} A=\sum_{i=1}^{n+1}(-1)^{i+1} a_{i 1} \operatorname{det} A_{i 1}=a_{11} \operatorname{det} A_{11}=\operatorname{det} B_{11} \prod_{j=2}^{n+1} \operatorname{det} B_{j j}=\prod_{j=1}^{n+1} \operatorname{det} B_{j j}
$$

with the last equality following from our inductive hypothesis and the observation that

$$
A_{11}=\left[\begin{array}{ccc}
B_{22} & & \boldsymbol{\AA} \\
& \ddots & \\
\mathbf{0} & & B_{k k}
\end{array}\right]
$$

is an $n \times n$ block upper triangular matrix. If $n_{1}=n+1$, then A is upper triangular and (1.5) obtains from Proposition 1.10.

Now assume that $1<n_{1}<n+1$, so $B_{11} \in \mathbb{C}^{n_{1} \times n_{1}}$ for $n_{1} \geq 2$. Then, since $a_{i 1}=0$ for $i>n_{1}$,

$$
\operatorname{det} A=\sum_{i=1}^{n+1}(-1)^{i+1} a_{i 1} \operatorname{det} A_{i 1}=\sum_{i=1}^{n_{1}}(-1)^{i+1} a_{i 1} \operatorname{det} A_{i 1},
$$

and since

$$
A_{i 1}=\left[\begin{array}{cccc}
\left(B_{11}\right)_{i 1} & & & \boldsymbol{\%} \\
& B_{22} & & \\
& & \ddots & \\
\mathbf{0} & & & B_{k k}
\end{array}\right] \in \mathbb{C}^{n \times n}
$$

is block upper triangular, by our hypothesis we obtain

$$
\begin{aligned}
\operatorname{det} A & =\sum_{i=1}^{n_{1}}\left((-1)^{i+1} a_{i 1} \operatorname{det}\left(B_{11}\right)_{i 1} \prod_{j=2}^{k} \operatorname{det} B_{j j}\right) \\
& =\left(\sum_{i=1}^{n_{1}}(-1)^{i+1} a_{i 1} \operatorname{det}\left(B_{11}\right)_{i 1}\right) \prod_{j=2}^{k} \operatorname{det} B_{j j} \\
& =\prod_{j=1}^{k} \operatorname{det} B_{j j},
\end{aligned}
$$

as desired.

The conclusion of the proposition above applies also to block lower triangular matrices, since $\operatorname{det}\left(A^{\top}\right)=\operatorname{det} A$ holds for any square matrix A.

Proposition 1.12. For the block upper triangular matrix

$$
A=\left[a_{i j}\right]=\left[\begin{array}{ccc}
A_{11} & & \boldsymbol{9} \\
& \ddots & \\
\mathbf{0} & & A_{k k}
\end{array}\right], \quad \forall 1 \leq i \leq k\left(B_{i i} \in \mathbb{C}^{n_{i} \times n_{i}}\right),
$$

we have

$$
p_{A}(t)=\prod_{i=1}^{k} p_{A_{i i}}(t)
$$

and hence $\sigma(A)=\bigcup_{i=1}^{k} \sigma\left(A_{i i}\right)$ with $\alpha_{A}(\lambda)=\sum_{i=1}^{k} \alpha_{A_{i i}}(\lambda)$.
Proof. By definition,

$$
p_{A}(t)=\operatorname{det}(t I-A)=\left|\begin{array}{ccc}
t I-A_{11} & & -\boldsymbol{\infty} \\
& \ddots & \\
\mathbf{0} & & t I-A_{k k}
\end{array}\right|
$$

where $-\boldsymbol{\&}$ denotes entries of opposite value as those represented by $\boldsymbol{\&}$ in A, and each $t I-A_{i i}$ is a square matrix of size $n_{i} \times n_{i}$. By Proposition 1.11 it follows that

$$
p_{A}(t)=\prod_{i=1}^{k}\left(t I-A_{i i}\right)=\prod_{i=1}^{k} p_{A_{i i}}(t)
$$

The observation that $p_{A}(\lambda)=0$ iff $p_{A_{i i}}(\lambda)=0$ for some $1 \leq i \leq k$ iff $\lambda \in \sigma\left(A_{i i}\right)$ for some $1 \leq i \leq k$ readily implies the final statement in the proposition.

Problem 1.13. For $A \in \mathbb{C}^{m \times n}$ and $B \in \mathbb{C}^{n \times m}$, show that $\operatorname{tr}(A B)=\operatorname{tr}(B A)$. If $A, S \in \mathbb{C}^{n \times n}$ with S nonsingular, show that $\operatorname{tr}\left(S^{-1} A S\right)=\operatorname{tr} A$ and $\operatorname{det}\left(S^{-1} A S\right)=\operatorname{det} A$.

Solution. For $A \in \mathbb{C}^{m \times n}$ and $B \in \mathbb{C}^{n \times m}$ we have

$$
\operatorname{tr}(B A)=\sum_{k=1}^{n}[B A]_{k k}=\sum_{k=1}^{n}\left(\sum_{j=1}^{m}[B]_{k j}[A]_{j k}\right)=\sum_{j=1}^{m}\left(\sum_{k=1}^{n}[A]_{j k}[B]_{k j}\right)=\sum_{j=1}^{m}[A B]_{j j}=\operatorname{tr}(A B),
$$

and so for $A, S \in \mathbb{C}^{n \times n}$ with S nonsingular we find that

$$
\operatorname{tr}\left(S^{-1} A S\right)=\operatorname{tr}\left(S^{-1}(A S)\right)=\operatorname{tr}\left((A S) S^{-1}\right)=\operatorname{tr}\left(A\left(S S^{-1}\right)\right)=\operatorname{tr} A
$$

and also

$$
\operatorname{det}\left(S^{-1} A S\right)=\operatorname{det}\left(S^{-1}\right) \operatorname{det} A \operatorname{det} S=(\operatorname{det} S)^{-1} \operatorname{det} A \operatorname{det} S=\operatorname{det} A
$$

For the next problem we make use of a convenient property of products of diagonal matrices, namely

$$
\operatorname{diag}\left(a_{1}, \ldots, a_{n}\right) \operatorname{diag}\left(b_{1}, \ldots, b_{n}\right)=\operatorname{diag}\left(a_{1} b_{1}, \ldots, a_{n} b_{n}\right)
$$

which naturally extends to products of three or more diagonal matrices.
Problem 1.14. Let $D \in \mathbb{C}^{n \times n}$ be a diagonal matrix. Compute the characteristic polynomial $p_{D}(t)$ and show that $p_{D}(D)$.

Solution. For $D=\operatorname{diag}\left(d_{1}, \ldots, d_{n}\right)$, by Proposition 1.10,

$$
p_{D}(t)=\operatorname{det}(t I-D)=\operatorname{det}\left(\operatorname{diag}\left(t-d_{1}, \ldots, t-d_{n}\right)\right)=\prod_{i=1}^{n}\left(t-d_{i}\right)
$$

Now,

$$
\begin{aligned}
p_{D}(D) & =\prod_{i=1}^{n}\left(D-d_{i} I\right)=\prod_{i=1}^{n} \operatorname{diag}\left(d_{1}-d_{i}, \ldots, d_{n}-d_{i}\right) \\
& =\operatorname{diag}\left(\prod_{i=1}^{n}\left(d_{1}-d_{i}\right), \ldots, \prod_{i=1}^{n}\left(d_{n}-d_{i}\right)\right) \\
& =\operatorname{diag}(0, \ldots, 0)=0
\end{aligned}
$$

Problem 1.15. Show that the trace of a nilpotent matrix is zero. What is the characteristic polynomial of a nilpotent matrix?

Solution. Let $A \in \mathbb{C}^{n \times n}$ be nilpotent, so there exists some $k \in \mathbb{N}$ such that $A^{k}=0$. Problem 1.8 gives $\sigma(A)=\{0\}$, and since $\alpha_{A}(0)=n$, by (1.3) we obtain

$$
\operatorname{tr} A=\sum_{\lambda \in \sigma(A)} \alpha_{A}(\lambda) \lambda=(n)(0)=0
$$

Now, $p_{A}(t)=0$ iff $t \in \sigma(A)$, so 0 is the only root of $p_{A}(t)$, and by (1.1) we conclude that $p_{A}(t)=t^{n}$.

Problem 1.16. Let $A \in \mathbb{C}^{n \times n}$ and $\lambda \in \mathbb{C}$, and let $\lambda_{1}, \ldots, \lambda_{n}$ be the eigenvalues of A. Show that $p_{A+\lambda I}(t)=p_{A}(t-\lambda)$. What are the eigenvalues of $A+\lambda I$?

Solution. Directly we have

$$
p_{A+\lambda I}(t)=\operatorname{det}(t I-(A+\lambda I))=\operatorname{det}((t-\lambda) I-A)=p_{A}(t-\lambda)
$$

Now, for any $\lambda_{k} \in \sigma(A)$,

$$
p_{A+\lambda I}\left(\lambda_{k}+\lambda\right)=p_{A}\left(\left(\lambda_{k}+\lambda\right)-\lambda\right)=p_{A}\left(\lambda_{k}\right)=0
$$

and so $\lambda_{k}+\lambda \in \sigma(A+\lambda I)$ for all $1 \leq k \leq n$.
Problem 1.17. Let $n \geq 3, B \in \mathbb{C}^{(n-2) \times(n-2)}$, and $\lambda, \mu \in \mathbb{C}$. Given

$$
A=\left[\begin{array}{lll}
\lambda & \boldsymbol{\&} & \boldsymbol{\phi} \\
0 & \mu & 0 \\
0 & \boldsymbol{\&} & B
\end{array}\right]
$$

show that

$$
p_{A}(t)=(t-\lambda)(t-\mu) p_{B}(t)
$$

Solution. By Proposition 1.11,

$$
\begin{aligned}
p_{A}(t) & =\operatorname{det}(t I-A)=\left|\begin{array}{ccc}
t-\lambda & -\mathbf{0} & -\boldsymbol{\&} \\
0 & t-\mu & 0 \\
0 & -\boldsymbol{0} & t I-B
\end{array}\right| \\
& =(t-\lambda)\left|\begin{array}{cc}
t-\mu & 0 \\
-\boldsymbol{\infty} & t I-B
\end{array}\right|=(t-\lambda) \operatorname{det}(t-\mu) \operatorname{det}(t I-B) \\
& =(t-\lambda)(t-\mu) p_{B}(t) .
\end{aligned}
$$

Thus $\sigma(A)=\sigma(B) \cup\{\lambda, \mu\}$, in particular.
The next problem requires use of the arithmetic-geometric mean inequality: for $x_{1}, \ldots, x_{n} \geq 0$,

$$
\begin{equation*}
\frac{1}{n} \sum_{k=1}^{n} x_{k} \geq\left(\prod_{k=1}^{n} x_{k}\right)^{1 / n} \tag{1.6}
\end{equation*}
$$

with equality holding if and only if $x_{1}=\cdots=x_{n}$.

Problem 1.18. Suppose $A=\left[a_{i j}\right] \in \mathbb{C}^{n \times n}$ is such that $a_{i j} \in\{0,1\}$ for all $1 \leq i, j \leq n$, with all eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ being positive real numbers. Show that $\operatorname{tr} A=n$, $\operatorname{det} A=1, a_{k k}=1$ for all $1 \leq k \leq n$, and $\sigma(A)=\{1\}$.

Solution. For each k we have $a_{k k} \in\{0,1\}$, so that $\operatorname{tr} A=\sum_{i=1}^{n} a_{k k} \leq n$. Also, with (1.6) we obtain

$$
(\operatorname{det} A)^{1 / n}=\left(\prod_{k=1}^{n} \lambda_{k}\right)^{1 / n} \leq \frac{1}{n} \sum_{k=1}^{n} \lambda_{k}=\frac{\operatorname{tr} A}{n}
$$

so $n(\operatorname{det} A)^{1 / n} \leq \operatorname{tr} A$. Now, from (1.4) it's easily seen that $\operatorname{det} A$ much equal an integer, but since $\operatorname{det} A=\prod_{k=1}^{n} \lambda_{k}$ with $\lambda_{k}>0$ for each k, it is clear that $\operatorname{det} A \in \mathbb{N}$ and in particular $\operatorname{det} A \geq 1$. Hence $n(\operatorname{det} A)^{1 / n} \geq n$, and our findings taken together give

$$
n \leq n(\operatorname{det} A)^{1 / n} \leq \operatorname{tr} A \leq n
$$

This implies that $\operatorname{tr} A=n$, and also $n(\operatorname{det} A)^{1 / n}=n$ so that $\operatorname{det} A=1$. Of course, $n=$ $\operatorname{tr} A=\sum_{k=1}^{n} a_{k k}$, and since $a_{k k} \in\{0,1\}$ for each k, we conclude that $a_{k k}=1$ for all k. Finally, $\sum_{k=1}^{n} \lambda_{k}=\operatorname{tr} A=n$ and $\prod_{k=1}^{n} \lambda_{k}=\operatorname{det} A=1$, giving

$$
\frac{1}{n} \sum_{k=1}^{n} \lambda_{k}=1=\left(\prod_{k=1}^{n} \lambda_{k}\right)^{1 / n}
$$

However, equality holds for (1.6) if and only if $x_{1}=\cdots=x_{n}$, and so we may set $\lambda_{k}=\lambda$ for all k. Then

$$
n=\sum_{k=1}^{n} \lambda_{k}=\sum_{k=1}^{n} \lambda=n \lambda,
$$

giving $\lambda=1$ and therefore $\sigma(A)=\{1\}$.

