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Abstract

The Zero Attractor of Perturbed Chebyshev Polynomials
and Sums of Taylor Polynomials

Joseph L. Erickson

Defining sn(z) to be the nth degree Taylor polynomial at 0 for the exponential function,

we employ methods from complex analysis to study the limiting behavior of the zero

distribution of polynomials in the sequence Asan(αnz) +Bsbn(βnz) as n→∞. Invariably

the zero distribution approaches one or more fixed piecewise smooth curves in the complex

plane which we call the “zero attractor” of the sequence. Also we determine the zero

attractor of the sequence Tn(z) − z`n for fixed integer ` ≥ 2 and nth degree Chebyshev

polynomial of the first kind Tn(z).
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1. Introduction

Given a sequence of polynomial functions (pn(z))∞n=1, does the distribution of zeros,

or roots, of pn(z) approach any particular set of points A in the complex plane C as n

approaches infinity?

A simple example is the sequence (zn − 1)∞n=1. It is well known that each polynomial

zn − 1 possesses n zeros that are uniformly distributed on the unit circle S with center 0.

In Figure 1 are shown the zeros of pn(z) = z100 − 1, for instance. As n→∞ we observe

that the zeros of zn − 1 appear to “fill in” the unit circle. Indeed, given any ε > 0 and

point ω ∈ S, we can find a sufficiently large integer n0 such that, for all n > n0, there is at

least one zero of zn − 1 in the disc Dε(ω) with center ω and radius ε. Thus, if Z(pn(z))

denotes the set of zeros of pn(z), then S is the set of limit points of
⋃∞
n=1 Z(pn(z)); but

more than that, we find the set Z(pn(z)) “approaches” S in some sense as n → ∞, and

it is in this sense—formally defined in the next section—that we refer to S as the “zero

attractor” A of the sequence zn − 1.

As another somewhat less trivial example we consider the sequence

qn(z) = zn −
(

1− 1√
n

)n
.

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

Figure 1. The roots of z100 = 1.
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1.0

Figure 2. The roots of zn = (1− n−1/2)n for 1 ≤ n ≤ 200 and n = 1000.

The polynomial q1(z) has only root 0, while for n ≥ 2 we find that qn(z) has n zeros uni-

formly distributed on the circle |z| = 1−n−1/2. For instance q4(z) has zeros corresponding

to the roots of z4 = (1/2)4, which are ±1/2, ±i/2 and lie on the circle |z| = 1/2. Of

course 1 − n−1/2 increases monotonically to 1 as n increases, so that the zeros of qn(z)

draw inexorably nearer to the circle S with each successive value of n. Here, truly, we can

see how S appears to be “attracting” the zeros of qn(z) as n→∞, with the result being

that S is indeed the zero attractor of the sequence. In Figure 2 are shown the zeros of

qn(z) for 1 ≤ n ≤ 200, with the zeros of q1000(z) comprising the additional ring of points

on the circle |z| ≈ 0.968. In contrast to the previous example, here none of the elements of⋃∞
n=1 Z(qn(z)) lie on the zero attractor itself.

The two examples entertained thus far might lull one into thinking that the zero

attractor A of a sequence pn(z) is simply the set of limit points of Z =
⋃∞
n=1 Z(pn(z)).

While this is quite often the case, the formal definition given in §2 allows for the inclusion
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1 1

Figure 3. Left: the zero attractor for sn(nz). Right: the classic Szegő
curve |ze1−z| = 1.

of isolated points of Z. For example the zero attractor of the sequence rn(z) = zqn(z),

where qn(z) is defined as above, has as its zero attractor the set S ∪ {0}.

The term “zero attractor” is relatively new, so that in the literature one frequently

encounters other terms such as “limit curve” or “asymptotic zero distribution.” However, as

one might guess, a “limit curve” generally excludes isolated points whereas an “asymptotic

zero distribution” does not.

Over the past century much research has been devoted to ascertaining the zero attractors

(or limit curves) of various sequences of Taylor polynomials, with special attention given

to partial sums of the Maclaurin series for ez. Defining

sn(z) =
n∑
k=0

zk

k!
, (1.1)

in [10] Gábor Szegő investigated the behavior as n → ∞ of the zeros of sn(nz), the

“normalized” partial sums of the series. Whereas the moduli of the zeros of sn(z) grow

without bound as n→∞, Szegő found that the zero distribution of sn(nz) asymptotically

approaches the set

A = {z ∈ C : |z| ≤ 1 and |ze1−z| = 1}, (1.2)

shown at left in Figure 3, which is a portion of the so-called Szegő curve |ze1−z| = 1

shown at right in the figure. That A is in some sense “attracting” the zeros of sn(nz) as
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��������� f[x_] := E^x;
s[n_, x_] := Normal[Series[f[z], {z, 0, n}]] /. z → x;

numpolys = 30;
start = 4;
allzeros = {};
For[k = start, k < numpolys + start, k++,

newzeros = x /. NSolve[s[k, k * x] ⩵ 0, x, 70];
For[j = 1, j ≤ Length[newzeros], j++,

AppendTo[allzeros,
{Re[newzeros[[j]]], Im[newzeros[[j]]]}

];
];

];

Show
Graphics[{Point[allzeros]}],
ContourPlot

Abs x + I y E^ 1 - x + I y ⩵ 1,
x, -1 E, 1 , {y, -1, 1},

ContourStyle → {RGBColor[0, 0, 0.82]},
PlotPoints → 40

, Axes → True

���������
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0.6

��������� f[x_] := E^x;
s[n_, x_] := Normal[Series[f[z], {z, 0, n}]] /. z → x;

numpolys = 1;
start = 220;
allzeros = {};
For[k = start, k < numpolys + start, k++,

newzeros = x /. NSolve[s[k, k * x] ⩵ 0, x, 70];
For[j = 1, j ≤ Length[newzeros], j++,

AppendTo[allzeros,
{Re[newzeros[[j]]], Im[newzeros[[j]]]}

];
];

];

Show
Graphics[{Point[allzeros]}],
ContourPlot

Abs x + I y E^ 1 - x + I y ⩵ 1,
x, -1 E, 1 , {y, -1, 1},

ContourStyle → {RGBColor[0, 0, 0.82]},
PlotPoints → 40

, Axes → True

���������
-0.2 0.2 0.4 0.6 0.8 1.0

-0.4

-0.2

0.2

0.4

1

1

Figure 4. Left: the zeros of sn(nz) for 4 ≤ n ≤ 39. Right: the zeros of
s220(220z).

n→∞ can be seen in Figure 4, where Z(sn(nz)) is plotted for all 4 ≤ n ≤ 39 at left, and

Z(s220(220z)) is plotted at right.

In §3 we will obtain the same result as Szegő using a different technique involving

the notion of a zero attractor, and then in later sections we will apply our technique to

increasingly generalized two-term linear combinations Asan(αnz) +Bsbn(βnz) of partial

sums of the exponential function’s Maclaurin series. Finally, in §13 the same method will

be applied to ascertain at least a portion of the zero attractor for sequences of perturbed

Chebyshev polynomials of the first kind of the form Tn(z) − z`n for fixed integer ` ≥ 2,

with the remaining portion of the zero attractor determined by other means.

In the literature there is no shortage of inquiries into the zero attractors of a wide

variety of sequences of functions. For fixed cj , λj ∈ C, exponential sums of the form

f(z) =

M∑
j=1

cje
λjz

have an associated Taylor series expression

f(z) =
∞∑
k=0

akz
k,
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and in [2] the large n asymptotics of the zero distribution of

fn(nz) =
n∑
k=0

ak(nz)
k

is studied. In [11] Vargas analyzed the zero attractors of (normalized) partial sums of

power series for Bessel functions of the first kind as well as a class of entire functions

definable by integrals of the form

ˆ b

−a
ϕ(t)ezt dt.

Finally, Boyer and Goh in [4] examine the zero attractors of Appell polynomials.
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Section 2: The Zero Attractor of a Sequence

Let (X, d) be a metric space, and let K be the collection of all nonempty compact

subsets of X. The Hausdorff distance on K is the function dH : K ×K → R given by

dH(A,B) = max

{
sup
a∈A

(
inf
b∈B

d(a, b)

)
, sup
b∈B

(
inf
a∈A

d(a, b)

)}
for all A,B ∈ K, which makes (K, dH) a metric space in its own right. Define

Dε(x) = {y ∈ X : d(x, y) < ε}

for any x ∈ X and ε > 0, and declare the ε-neighborhood of any S ⊆ X to be the set

Sε =
⋃
x∈S

Dε(x).

Then it is known that

dH(A,B) = inf
{
ε > 0 : B ⊆ Aε and A ⊆ Bε

}
(2.1)

for any A,B ∈ K.

Let (pn(z)) be a sequence of polynomial functions such that deg(pn+1) > deg(pn). For

each n the set Z(pn) of zeros of pn is finite, and so (Z(pn)) is a sequence of subsets of the

metric space (K, dH), where K now is the collection of nonempty compact subsets of C. If

(Z(pn)) is dH -convergent to some A ∈ K as n→∞, then A is called the zero attractor

of (pn(z)), and we write

A = lim
n→∞

Z(pn). (2.2)

In explicit terms (2.2) holds if and only if

∀ε > 0 ∃n0 ∀n ≥ n0

(
dH(Z(pn),A) < ε

)
(2.3)

holds. In light of (2.1), we find that (2.3) holds if and only if for each ε > 0 there exists

some n0 such that A ⊆ Z(pn)ε and Z(pn) ⊆ Aε whenever n ≥ n0.

The following derives from [9]. Let (fn(z)) be a sequence of analytic functions on a

region Ω ⊆ C, let F and I be the collection of finite and infinite subsets of Z, respectively,
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and for each z ∈ Ω let Nz be the collection of open neighborhoods of z. Now define

lim inf Z(fn) =
{
z ∈ Ω : ∀U ∈ Nz ∃F ∈ F ∀n /∈ F

(
U ∩ Z(fn) 6= ∅

)}
(2.4)

and

lim supZ(fn) =
{
z ∈ Ω : ∀U ∈ Nz ∃I ∈ I ∀n ∈ I

(
U ∩ Z(fn) 6= ∅

)}
. (2.5)

It is clear that

lim inf Z(fn) ⊆ lim supZ(fn), (2.6)

and we purpose to show that, under certain conditions, the zero attractor of a polynomial

sequence (pn(z)) is equal to lim inf Z(pn). First we must establish that (2.4) and (2.5) are

compact sets for a polynomial sequence whose zeros all lie in some bounded region.

Proposition 2.1. Let (pn(z)) be a sequence of polynomials such that
⋃
n Z(pn) ⊆ K for

some compact set K. Then lim inf Z(pn) and lim supZ(pn) are compact.

Proof. If z /∈ K, then there exists r > 0 such that Dr(z) ⊆ C\K, and so Dr(z)∩Z(pn) = ∅

for all n. Since Dr(z) is a neighborhood of z, it follows that z /∈ lim inf Z(pn), which makes

clear that lim inf Z(pn) ⊆ K and hence lim inf Z(pn) is a bounded set.

Let z′ be a limit point for lim inf Z(pn), and let U be a neighborhood of z′. Let ε > 0

be such that Dε(z
′) ⊆ U , define V = Dε(z

′) \ {z′}, and let z0 ∈ V ∩ lim inf Z(pn). Since

V is a neighborhood of z0, we have V ∩ Z(pn) 6= ∅ for all but finitely many n, and then

U ∩ Z(pn) 6= ∅ for all but finitely many n since U ⊇ V . Thus every neighborhood of

z′ has nonempty intersection for all but finitely many of the sets Z(pn), implying that

z′ ∈ lim inf Z(pn), and hence lim inf Z(pn) is closed. Therefore lim inf Z(pn) is compact.

That lim supZ(fn) is compact is shown by a similar argument. �

Proposition 2.2. Let (pn(z)) be a sequence of polynomials such that
⋃
n Z(pn) ⊆ K for

some compact K. Then a set A is the zero attractor of (pn(z)) if and only if

A = lim inf Z(pn) = lim supZ(pn). (2.7)

Proof. Suppose A is the zero attractor of (pn(z)). Let z0 ∈ A. Let U be a neighborhood

of z0, and let ε > 0 be such that Dε(z0) ⊆ U . There exists n0 such that A ⊆ Z(pn)ε for all
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n ≥ n0, so that z0 ∈ Z(pn)ε for n ≥ n0, and hence

U ∩ Z(pn) ⊇ Dε(z0) ∩ Z(pn) 6= ∅

for n ≥ n0. Thus every neighborhood of z0 has nonempty intersection with all but finitely

many Z(pn), so that z0 ∈ lim inf Z(pn), and hence A ⊆ lim inf Z(pn).

Next, suppose that z0 /∈ A. Since A is compact by Proposition 2.1, there exists ε > 0

such that D2ε(z0) ⊆ C\A, and so U = Dε(z0) is a neighborhood of z0 for which U ∩Aε = ∅.

Now, for some n0 be have Z(pn) ⊆ Aε for all n ≥ n0, so U ∩ Z(pn) = ∅ for n ≥ n0 and

it follows that z0 /∈ lim supZ(pn). Hence z0 ∈ lim supZ(pn) implies z0 ∈ A, and we now

have lim supZ(pn) ⊆ A ⊆ lim inf Z(pn). This, together with (2.6), yields (2.7).

For the converse, suppose (2.7) holds. Let ε > 0. Suppose for each k there exists nk ≥ k

such that A * Z(pnk)ε, and so there is a sequence (znk) in A such that znk /∈ Z(pnk)ε

for all k. Since A is compact, (znk) has a subsequence (znkm ) that converges to some

z∗ ∈ A. Let U = Dε/2(z∗). There exists m0 such that znkm ∈ U for all m ≥ m0, and now

znkm /∈ Z(pnkm )ε implies that U ∩Z(pnkm ) = ∅ for all m ≥ m0. Since U is a neighborhood

of z∗, it follows that z∗ /∈ lim inf Z(pn) = A, which is a contradiction. Therefore there

must exist j1 such that A ⊆ Z(pn)ε for all n ≥ j1.

Now suppose for each k there exists nk ≥ k such that Z(pnk) * Aε, thereby giving

rise to a sequence (znk) with znk ∈ Z(pnk) and znk /∈ Aε for all k. Since (znk) ⊆ K, there

exists a subsequence converging to some z∗ ∈ K. It follows that any neighborhood of z∗

has nonempty intersection with infinitely many of the sets Z(pnk), implying that z∗ ∈

lim supZ(pn). On the other hand znk /∈ Aε implies that z∗ /∈ A. Since lim supZ(pn) = A by

hypothesis, there is a contradiction, and therefore there must exist j2 such that Z(pn) ⊆ Aε

for all n ≥ j2. We now find that A ⊆ Z(pn)ε and Z(pn) ⊆ Aε for n ≥ max{j1, j2}, and

therefore A is the zero attractor of (pn(z)). �

The following theorem is essentially [9, Theorem 3.2]. It gives rise to a method, made

explicit in Theorem 2.5 and put into practice in the sequel, for determining the zero

attractor of certain sequences of polynomials.
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Theorem 2.3 (Sokal). Let Ω be a region in C, and let z0 ∈ Ω. Let (fn(z)) be a sequence

of analytic functions on Ω such that (|fn(z)|1/n) is uniformly bounded on compact subsets

of Ω. Suppose there does not exist a neighborhood U of z0 and a function v on U that is

either harmonic or identically −∞ such that

lim inf ln |fn(z)|1/n ≤ v(z) ≤ lim sup ln |fn(z)|1/n

for all z ∈ U . Then z0 ∈ lim inf Z(fn).

The following proposition will nicely facilitate the proof of Theorem 2.5. We hold to

the convention that S denotes the closure of a set S, and S◦ the interior.

Proposition 2.4. Let (fn(z)) be a sequence of functions that is compactly convergent to

f on a region Ω. Suppose f is continuous and nonvanishing on Ω. If Z(fn) is finite for all

n, then
⋃∞
n=1 Z(fn) has no limit points in Ω.

Proof. Fix z0 ∈ Ω. Let r > 0 be such that K := Dr(z0) ⊆ Ω. Since |f | : Ω → R is

continuous on K, the extreme value theorem implies there exists ẑ ∈ K such that

α := |f(ẑ)| = inf
z∈K
|f(z)|,

where α > 0 since f is nonvanishing on K. Now, there exists N such that |fn(z)− f(z)| <

α/2 for all n > N and z ∈ K, implying |f(z)| − |fn(z)| < α/2, and hence

|fn(z)| > |f(z)| − α

2
≥ α− α

2
=
α

2
> 0

for all n > N and z ∈ K, and so Z(fn) ∩K = ∅ for n > N . Hence

Z ∩K =

∞⋃
n=1

(
Z(fn) ∩K

)
=

N⋃
n=1

(
Z(fn) ∩K

)
,

a finite set, and so there are only finite many elements of Z within a distance r > 0 of z0.

This implies that z0 is not a limit point of Z, and since z0 ∈ Ω is arbitrary, we conclude

that Z has no limit points in Ω. �
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The next theorem is the culmination of the present section. Once proven, the theorem

will be put to work throughout the remainder of this thesis in order to find the zero

attractors of various polynomial sequences.

Theorem 2.5. Let (pn(z)) be a polynomial sequence such that
⋃
n Z(pn) is a bounded

set, and suppose (|pn|1/n) is uniformly bounded on compact sets. Suppose there exist

mutually disjoint domains Ω1, . . . ,Ωm (only one of which is unbounded), harmonic functions

vj : Ωj → R, and closed sets Fj ⊆ Ωj such that the following hypotheses hold:

1. C =
⋃m
j=1 Ωj.

2. For each 1 ≤ j ≤ m,

lim
n→∞

ln |pn(z)|1/n = vj(z)

uniformly on compact subsets of Ω′j := Ωj \ Fj.

3. For every z ∈ A :=
⋃m
j=1 ∂Ωj and neighborhood N of z, there exists no analytic

f : N → C such that Re(f) = vj on each nonempty N ∩ Ωj.

Then for F :=
⋃m
j=1 Fj,

A ⊆ lim inf Z(pn) ⊆ A ∪ F.

In particular, if the zero attractor A of (pn(z)) exists and F = ∅, then A = A; and if

F ⊆ A, then A = A ∪ F .

Proof. Suppose z0 ∈ ∂Ωk for some 1 ≤ k ≤ m. Let U be a neighborhood of z0. Then

v ≡ −∞ cannot satisfy

lim inf ln |pn(z)|1/n ≤ v(z) ≤ lim sup ln |pn(z)|1/n (2.8)

for all z ∈ U since lim inf ln |pn(z)|1/n is real-valued on U \ A by hypothesis (2) in the

theorem. Suppose there is a harmonic function v on U such that (2.8) holds for all z ∈ U .

Then for each 1 ≤ j ≤ m for which U ∩ Ω′j 6= ∅ (and there must be at least two such

values) we have

v(z) = lim
n→∞

ln |pn(z)|1/n = vj(z)

for all z ∈ U ∩ Ω′j . Since U is open and each Fj is closed, there exists r > 0 such that

N := Dr(z0) ⊆ U and N ∩ Fj = ∅ for all j, and thus N ∩Ω′j = N ∩Ωj for all j. Now, v is
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harmonic on the simply-connected set N , so there exists harmonic w : N → R to make

f := v + iw analytic on N . However, we then have Re(f) = v = vj on each nonempty

N ∩ Ωj , contradicting hypothesis (3). Thus z0 ∈ lim inf Z(pn) by Theorem 2.3, implying

that A ⊆ lim inf Z(pn).

Fix 1 ≤ k ≤ m. By hypothesis (2), |pn|1/n → evk uniformly on compact subsets of

Ω′k, and since evk is continuous and nonvanishing on Ω′k, Proposition 2.4 implies that⋃
n Z(|pn|1/n) has no limits points in Ω′k, and hence neither does the set

Z :=
⋃
n

Z(pn).

So if z0 ∈ Ω′k, then there exists ε > 0 such that [Dε(z0) \ {z0}] ∩ Z = ∅. Moreover,

z0 ∈ Z(pn) can hold only for at-most finitely many n, since otherwise limn→∞ ln |pn(z0)|1/n

cannot be real-valued as required by hypothesis (2). Therefore Dε(z0) ∩ Z(pn) = ∅ for

all but finitely many n, whence z0 /∈ lim inf Z(pn) follows. That is, z0 /∈ A ∪ F implies

z0 /∈ lim inf Z(pn), and so lim inf Z(pn) ⊆ A ∪ F .

Finally, if A exists and F = ∅, then A = lim inf Z(pn) = A by Proposition 2.2; and if

A exists with F ⊆ A, then A ⊆ A ⊆ A ∪ F implies that A = A ∪ F . �
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Section 3: The Classic One-Term Case

Here we use Theorem 2.5 to solve the problem considered by Szegő almost a century

ago. Recalling (1.1), in the present setting this is the problem of finding the zero attractor

of the sequence (sn(nz)). In fact we will generalize slightly and treat the sequence (san(nz))

for any fixed positive integer a. Letting

ϕ(z) = ze1−z,

define the region

Lw =
{
z :
∣∣∣ϕ( z

w

)∣∣∣ < 1 and |z| < |w|
}

(3.1)

for any w 6= 0, shown in Figure 5. To prove is the following.

Theorem 3.1. The zero attractor of the sequence san(nz) is ∂La.

A series of lemmas will be proven which, taken together with Theorem 2.5, will furnish

the proof of the theorem. The bulk of the work will be to determine the limit of |san(nz)|1/n

as n→∞ in the two regions C \ La and La.

First some convenient asymptotics for srn(nz) are needed, where r is any positive

integer. Defining

σrn =
√

2π(rn+ 1),

w

Lw

Tw

Figure 5. The regions Lw and Tw.
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asymptotics presented in [4] are readily adapted to give, for some fixed ν < 0, that

srn(nz) =

enzϕrn+1

(
nz

rn+ 1

)
(

nz

rn+ 1
− 1

)
σrn

[1 +O(nν)] (3.2)

whenever |z| > r + 1/n, and

srn(nz) = enz

1 +

ϕrn+1

(
nz

rn+ 1

)
(

nz

rn+ 1
− 1

)
σrn

[1 +O(nν)]

 (3.3)

whenever Re(z) < r + 1/n. Each order term O(nν) holds uniformly on compact sets.1

A pause to ponder notation seems timely here. As the overwhelming majority of the

discs and annuli in C that we will encounter from now on will be centered at the origin,

we establish the more economical notation

Ds = {z : |z| < s}

and

As,t = {z : s < |z| < t}.

We now commence with the construction of our aforementioned lemmas.

Lemma 3.2. In the region C \ La we have

lim
n→∞

ln |san(nz)|
n

= a ln
∣∣∣ez
a

∣∣∣
uniformly on compact sets.

Proof. Let K be a compact set in C \ La such that K ⊆ Aa,∞, so that z ∈ K implies

|z| > a. Then (3.2) with r = a gives

lim
n→∞

|san(nz)|1/n = |ez| lim
n→∞

∣∣∣∣∣∣∣∣
ϕan+1

(
nz

an+ 1

)
(

nz

an+ 1
− 1

)
σan

[1 +O(nν)]

∣∣∣∣∣∣∣∣
1/n

(3.4)

1These asymptotics are repeated in §10, where explicit steps are also given that show how one of them is
derived from the appropriate asymptotic in [4].
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The O(nν) term represents a sequence of functions fn(z) for which there exists a constant

C > 0 and integer n0 such that |fn(z)| < Cnν holds for all n ≥ n0 and z ∈ K. We now

write the limit in (3.4) as

|ez| lim
n→∞


∣∣∣∣ϕa( nz

an+ 1

)∣∣∣∣∣∣∣∣ nz

an+ 1
− 1

∣∣∣∣1/n |σan|1/n
·
∣∣∣∣ϕ( nz

an+ 1

)∣∣∣∣1/n · |1 + fn(z)|1/n

 , (3.5)

and consider the limit of each factor in the parentheses individually.

Let ε ∈ (0, 1]. Since ν < 0, there exists n1 > n0 such that Cnν1 < ε. Then |fn(z)| <

Cnν < ε for any n > n1 and z ∈ K, so that

1 + |fn(z)| < 1 + ε < (1 + ε)n,

and hence

|1 + fn(z)|1/n ≤
(
1 + |fn(z)|

)1/n
< 1 + ε.

On the other hand,

|fn(z)| < ε ⇒
∣∣1− |fn(z)|

∣∣ = 1− |fn(z)| > 1− ε ≥ (1− ε)n

⇒ |1 + fn(z)|1/n ≥
∣∣1− |fn(z)|

∣∣1/n > 1− ε

Combining our results yields ∣∣∣|1 + fn(z)|1/n − 1
∣∣∣ < ε,

and hence

lim
n→∞

|1 + fn(z)|1/n = 1

uniformly on K.

Next, define

ψn(z) = ϕ1/n

(
nz

an+ 1

)
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for each n, so that (ψn) is a sequence of nonvanishing analytic functions on C \ La. Let

E ⊆ C \ La be compact, and fix k. Define the sets

S =

{
z

a+ 1/n
: z ∈ E and n ∈ N

}
and

Sk =

{
z

a+ 1/k
: z ∈ E

}
.

Clearly Sk ⊆ S and S is compact. By the extreme value theorem there exists M ∈ (0,∞)

such that

max
w∈S
|ϕ(w)| = M,

and so

‖ψn‖E = sup
z∈E

∣∣∣∣ϕ1/n

(
z

a+ 1/n

)∣∣∣∣ = sup
w∈Sn

|ϕ(w)|1/n ≤ sup
w∈S
|ϕ(w)|1/n = M1/n < M + 1.

This implies that sup{‖ψn‖E : n ∈ N} ∈ R, and therefore (ψn) is a bounded subset of

A(C \ La), the family of analytic functions on C \ La. By [1, Theorem 5.1.8], then, (ψn) is

equicontinuous on C \ La, and since ψn(z) → 1 pointwise on C \ La, [1, Theorem 5.1.9]

implies that (ψn) converges uniformly to 1 on E. Now, because K ⊆ C \ La is compact,

we conclude that

lim
n→∞

∣∣∣∣ϕ( nz

an+ 1

)∣∣∣∣1/n = 1

uniformly on K.

A similar argument will show that

lim
n→∞

∣∣∣∣ϕa( nz

an+ 1

)∣∣∣∣ =
∣∣∣ϕa(z

a

)∣∣∣ =
ea|z|a

aa
|e−z| (3.6)

uniformly on K. Defining

ψ̂n(z) = ϕa
(

nz

an+ 1

)
,

we have

‖ψ̂n‖E = sup
z∈E

∣∣∣∣ϕa( z

a+ 1/n

)∣∣∣∣ = sup
w∈Sn

|ϕ(w)|a ≤ sup
w∈S
|ϕ(w)|a = Ma,



16

and thus (ψ̂n) is a bounded subset of A(C \ La). Equicontinuity follows, and because (3.6)

holds pointwise on C \ La, we conclude that it holds uniformly on compact subsets of

C \ La.

Finally, as it is clear that

lim
n→∞

1

|σan|1/n
= 1 and lim

n→∞

1∣∣∣∣ nz

an+ 1
− 1

∣∣∣∣1/n
= 1

both hold uniformly on K, from (3.5) we find that

lim
n→∞

|san(nz)|1/n = |ez|
∣∣∣ϕa(z

a

)∣∣∣ =
ea|z|a

aa
(3.7)

uniformly on K.

If K is a compact set in C \ La such that K ⊆ {z : Re z < a}, then (3.3) with r = a

gives

lim
n→∞

|san(nz)|1/n = |ez| lim
n→∞

∣∣∣∣∣∣∣∣1 +

ϕan+1

(
nz

an+ 1

)
(

nz

an+ 1
− 1

)
σan

[1 +O(nν)]

∣∣∣∣∣∣∣∣
1/n

, (3.8)

and it can be shown that (3.7) again holds uniformly on K. Combining the results of our

analyses on |z| > a and Re z < a, we conclude that (3.7) holds uniformly on any compact

K ⊆ C \ La. Taking the logarithm then proves the lemma. �

In the proof of Lemma 3.2 the argument that |1 +fn(z)|1/n → 1 uniformly on compacta

could have been accomplished quicker with application the following proposition, which

will become a staple in future proofs.

Proposition 3.3. Let (fn(z)) be a sequence of functions on a compact set K ⊆ C, and

suppose there exists ` : K → C such that

lim
n→∞

|fn(z)|1/n = `(z)

uniformly on K. If ‖`‖K ∈ [0, 1), then

lim
n→∞

|1 + fn(z)|1/n = 1
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uniformly on K.

Proof. Suppose ‖`‖K ∈ [0, 1), so there is some δ ∈ (0, 1) such that |`(z)| ≤ 1− 2δ for all

z ∈ K. Now, there exists n0 such that∣∣∣|fn(z)|1/n − `(z)
∣∣∣ < δ

for n > n0 and z ∈ K, whence

|fn(z)|1/n < δ + |`(z)| ≤ 1− δ,

and thus

1 + |fn(z)| < 1 + (1− δ)n (3.9)

for n > n0 and z ∈ K. Let ε ∈ (0, 1). Since 1 + (1− δ)n → 1 and (1 + ε)n →∞ as n→∞,

there exists n1 > n0 such that

1 + (1− δ)n < (1 + ε)n

for all n > n1, and then

|1 + fn(z)| ≤ 1 + |fn(z)| < 1 + (1− δ)n < (1 + ε)n (3.10)

for n > n1 and z ∈ K. Also, from (3.9) we have |fn(z)| < (1 − δ)n < 1 for n > n0 and

z ∈ K, so there exists n2 > n1 such that |fn(z)| < ε for n > n2 and z ∈ K, and then

|1 + fn(z)| ≥
∣∣1− |fn(z)|

∣∣ ≥ 1− |fn(z)| > 1− ε ≥ (1− ε)n (3.11)

for n > n2 and z ∈ K. Combining (3.10) and (3.11), we finally obtain∣∣∣|1 + fn(z)|1/n − 1
∣∣∣ < ε

for all n > n2 and z ∈ K. Therefore |1 + fn(z)|1/n → 1 uniformly on K. �

Lemma 3.4. In the region La we have

lim
n→∞

ln |san(nz)|
n

= Re(z)
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uniformly on compact sets.

Proof. Let K ⊆ La be compact. Equation (3.3) again gives (3.8). From the analysis

starting with (3.4) and ending with (3.7), we know that

lim
n→∞

∣∣∣∣∣∣∣∣
ϕan+1

(
nz

an+ 1

)
(

nz

an+ 1
− 1

)
σan

[1 +O(nν)]

∣∣∣∣∣∣∣∣
1/n

=
∣∣∣ϕa(z

a

)∣∣∣ =
ea|z|a

aa
|e−z|

uniformly on K. (The functions ψn and ψ̂n are not nonvanishing on La, but we can assume

0 /∈ K since the z = 0 case is easily treated separately.) Now, |ϕa(z/a)| < 1 holds for all

z ∈ La, and since z 7→ ϕa(z/a) is continuous on K, the extreme value theorem implies that∥∥∥ϕa(z
a

)∥∥∥
K
∈ [0, 1).

By Proposition 3.3 it follows that the limit at right in (3.8) equals 1 uniformly on K, and

therefore

lim
n→∞

|san(nz)|1/n = |ez|

uniformly on K. Since |ez| = eRe z, taking logarithms finishes the proof. �

The sequence san(nz) is now seen to satisfy hypothesis (2) in Theorem 2.5, and it is

a relatively straightforward matter to verify the theorem’s other hypotheses. Uniform

boundedness on compacta is addressed next.

Lemma 3.5. The sequence |san(nz)|1/n is uniformly bounded on compact sets.

Proof. Suppose K ⊆ C is compact, and fix n ≥ 1. Let s ∈ (0,∞) be such that K ⊆ Ds.

Now, for any z ∈ K,

|san(nz)|1/n =

∣∣∣∣∣
an∑
k=0

(nz)k

k!

∣∣∣∣∣
1/n

≤

(
an∑
k=0

|nz|k

k!

)1/n

≤

( ∞∑
k=0

|nz|k

k!

)1/n

= (en|z|)1/n = e|z| ≤ es,

and so es is an upper bound for {|san(nz)|1/n : z ∈ K}. Hence

‖|san(nz)|1/n‖K = sup
{
|san(nz)|1/n : z ∈ K

}
≤ es
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for all n ≥ 1, so that

sup
{
‖|san(nz)|1/n‖K : n ≥ 1

}
≤ es,

and therefore |san(nz)|1/n is uniformly bounded on K. �

Finally, from [7, p.106] we have the following result which will be used to verify the

boundedness of
⋃
n Z(sn(nz)) that is required by Theorem 2.5.

Proposition 3.6. For c1, . . . , cn ∈ C, let

P (z) = zn + c1z
n−1 + c2z

n−2 + · · ·+ cn−1z + cn.

If P (z0) = 0, then

|z0| ≤ 2 max
1≤k≤n

|ck|1/k.

Lemma 3.7.
⋃
n Z(sn(nz)) is a bounded set.

Proof. Fix n ≥ 0. Recalling

san(nz) =
an∑
k=0

(nz)k

k!
=

nan

(an)!
zan + · · ·+ n2

2!
z2 + nz + 1,

factoring out the leading coefficient makes clear that san(nz) = 0 if and only if

zan +
an

n
zan−1 +

(an)(an− 1)

n2
zan−2 +

(an)(an− 1)(an− 2)

n3
zan−3 + · · ·

· · ·+ (an)(an− 1)(an− 2) · · · 2
nan−1

z +
(an)!

nan
= 0,

which in turn implies, by Proposition 3.6, that

|z| ≤ 2 max

{
a,

[
(an)(an− 1)

n2

] 1
2

, . . . ,

[
(an)(an− 1)(an− 2) · · · 2

nan−1

] 1
an−1

,

[
(an)!

nan

] 1
an

}
.

However, for any integer 1 ≤ k ≤ an,

[
(an)(an− 1) · · · [an− (k − 1)]

nk

] 1
k

≤
[

(an)k

nk

] 1
k

= a,

and thus we find that |z| ≤ 2a. Therefore Z(sn(nz)) ⊆ D2a for all n ≥ 0, and
⋃
n Z(sn(nz))

is a bounded set. �
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Clearly La ∪ (C \ La) = C. Also, for any z ∈ ∂La, there is no neighborhood N

of z for which f : N → C is analytic, and yet Re f(w) = Re(w) for w ∈ La while

Re f(w) = Re[a ln |(ew)/a| ] for w ∈ C \ La. Hence hypotheses (1) and (3) of Theorem 2.5

are satisfied, and therefore the zero attractor of the sequence san(nz) is ∂La. Theorem 3.1

is proven.
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Section 4: Asan(nz) +Bsbn(nz) with A,B 6= 0 and B 6= −A

We conjecture that the zero attractor of Asan(nz) + Bsbn(nz) is the same for any

nonzero A,B ∈ C such that B 6= −A. To show this, we note Asan(nz) + Bsbn(nz) and

san(nz) + (B/A)sbn(nz) have the same zero attractor, and so it is sufficient to prove that

pn(z) := san(nz) +Bsbn(nz)

has the same zero attractor for any B 6= −1. The case when B = 1 and a = 1 was analyzed

in [5], and so we carry out a similar (albeit streamlined) analysis here.

The zeros of p800(800z) in the case when a = 1, b = 2, and B = 1 are shown in Figure

6, along with the curves |ϕ(z/a)| = 1 and |ϕ(z/b)| = 1, and also the circle Cab at the origin

containing the points of intersection of these curves. Let Dab denote the interior of the

circle, and define the region

Tw =
{
z :
∣∣∣ϕ( z

w

)∣∣∣ < 1 and |z| > |w|
}
,

-1 1 2

-2

-1

1

2

Cab

Sa

Sb

Figure 6. The zeros of sn(nz) + s2n(nz) for n = 800, with Sa, Sb, Cab for
(a, b) = (1, 2).
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shown in Figure 5. Recalling (3.1), the figure strongly hints that the zero attractor of pn(z)

is the union of the boundaries of the following four regions:

Ω1 = C \ (Dab ∪ Lb),

Ω2 = Dab \ (La ∪ T a),

Ω3 = Lb ∩ Ta,

Ω4 = La.

Theorem 4.1. The zero attractor of the sequence pn(z) is
⋃4
k=1 ∂Ωk.

For convenience, Figure 7 illustrates the conjectured zero attractor together with the

regions Ωk. As with Theorem 3.1, the proof of Theorem 4.1 will be facilitated by a series

of lemmas which affirm that various hypotheses of Theorem 2.5 are satisfied. But first we

establish a lemma which will help resolve certain limits in this section and the next.

Lemma 4.2. Let µ, λ ∈ C with |µ| = |λ| = 1. For 1 ≤ a < b set

M =

|eλz|
∣∣∣∣ϕ(λza

)∣∣∣∣a
|eµz|

∣∣∣ϕ(µz
b

)∣∣∣b .
If z ∈ Dab \ {0}, then M > 1; and if z ∈ C \Dab, then M < 1.

Proof. Since

z ∈ Dab \ {0} ⇔ |z| < a

e

(
b

a

) b
b−a

⇔ |z|b−a < eabb

ebaa
⇔ |z|a−b > ebaa

eabb
,

we have

M =

|eλz|
∣∣∣∣ϕ(λza

)∣∣∣∣a
|eµz|

∣∣∣ϕ(µz
b

)∣∣∣b =

|eλz|
∣∣∣∣λza e1−λz/a

∣∣∣∣a
|eµz|

∣∣∣µz
b
e1−λz/s

∣∣∣b =
eabb

ebaa
|z|a−b > 1

for any nonzero z ∈ Dab. Similarly we obtain M < 1 if z ∈ C \Dab. �

To confirm hypothesis (2) in Theorem 2.5 we now evaluate the limit of |pn(z)|1/n as

n→∞ in each of the regions Ωk.
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a b

Ω1

Ω2

Ω3Ω4

Sa

Sb

Cab

Figure 7. The regions Ωk, with the zero attractor of san(nz) +Bsbn(nz)
in bold.

Lemma 4.3. In the region Ω1 we have

lim
n→∞

ln |pn(z)|
n

= b ln
∣∣∣ez
b

∣∣∣
uniformly on compact sets.

Proof. The analysis of Ω1 can be broken into two cases: |z| ≤ b and |z| > b. Assume

|z| ≤ b, so that in particular Re z < b. By (3.2) with r = a and (3.3) with r = b,

|pn(z)|1/n

|ez|
=

∣∣∣∣∣∣∣∣
 ϕan+1

(
nz

an+ 1

)
(

nz

an+ 1
− 1

)
σan

+

Bϕbn+1

(
nz

bn+ 1

)
(

nz

bn+ 1
− 1

)
σbn

[1 +O(nν)] +B

∣∣∣∣∣∣∣∣
1/n

. (4.1)

Since ν < 0 and nz/(rn+ 1)→ z/r as n→∞ for r 6= 0, it is clear that

lim
n→∞

|pn(z)|1/n

|ez|
= lim

n→∞

∣∣∣∣∣∣
ϕan+1

(z
a

)
(z
a
− 1
)
σan

+
Bϕbn+1

(z
b

)
(z
b
− 1
)
σbn

+B

∣∣∣∣∣∣
1/n

.
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Now, since |ϕ(z/b)| > 1, the second term above will dominate the constant term B. We

thus may drop the constant term and further simplify the expression in the limit:

lim
n→∞

|pn(z)|1/n

|ez|
= lim

n→∞

∣∣∣∣∣∣
ϕan+1

(z
a

)
(z
a
− 1
)√

an+ 1
+

Bϕbn+1
(z
b

)
(z
b
− 1
)√

bn+ 1

∣∣∣∣∣∣
1/n

.

We simplify still further by dropping the 1 in each radicand, drawing out 1/
√
n to obtain

lim
n→∞

|pn(z)|1/n

|ez|
= lim

n→∞

∣∣∣∣∣∣
ϕan+1

(z
a

)
(z
a
− 1
)√

a
+
Bϕbn+1

(z
b

)
(z
b
− 1
)√

b

∣∣∣∣∣∣
1/n

,

since (1/
√
n)1/n → 1 as n→∞. Finally, let

Az =
ϕ
(z
a

)
(z
a
− 1
)√

a
and Bz =

Bϕ
(z
b

)
(z
b
− 1
)√

b
,

so that

lim
n→∞

|pn(z)|1/n

|ez|
= lim

n→∞

∣∣∣Azϕan(z
a

)
+Bzϕ

bn
(z
b

)∣∣∣1/n

= lim
n→∞

|Bz|1/n
∣∣∣ϕ(z

b

)∣∣∣b
∣∣∣∣∣∣
Azϕ

an
(z
a

)
Bzϕbn

(z
b

) + 1

∣∣∣∣∣∣
1/n

=
∣∣∣ϕ(z

b

)∣∣∣b lim
n→∞

∣∣∣∣∣∣
Azϕ

an
(z
a

)
Bzϕbn

(z
b

) + 1

∣∣∣∣∣∣
1/n

. (4.2)

Since

lim
n→∞

∣∣∣∣∣∣
Azϕ

an
(z
a

)
Bzϕbn

(z
b

)
∣∣∣∣∣∣
1/n

=

∣∣∣ϕ(z
a

)∣∣∣a∣∣∣ϕ(z
b

)∣∣∣b < 1

by Lemma 4.2, from equation (4.2) we obtain

lim
n→∞

|pn(z)|1/n = |ez|
∣∣∣ϕ(z

b

)∣∣∣b =
(e
b

)b
|z|b (4.3)

by Proposition 3.3.
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If z ∈ Ω1 is such that |z| > b, then by (3.2) with r = a, b we have

|pn(z)|1/n

|ez|
=

∣∣∣∣∣∣∣∣
ϕan+1

(
nz

an+ 1

)
(

nz

an+ 1
− 1

)
σan

[1 +O(nν)] +

Bϕbn+1

(
nz

bn+ 1

)
(

nz

bn+ 1
− 1

)
σbn

[1 +O(nν)]

∣∣∣∣∣∣∣∣
1/n

,

which is handled in the same manner as (4.1) and again leads to (4.3). Thus we obtain

(4.3) for all z ∈ Ω1, and since the [1 +O(nν)] factors in (3.2) and (3.3) hold uniformly on

compact sets, we find that (4.3) holds uniformly on compact subsets of Ω1. �

Lemma 4.4. In the region Ω2 we have

lim
n→∞

ln |pn(z)|
n

= a ln
∣∣∣ez
a

∣∣∣
uniformly on compact sets.

Proof. Let z ∈ Ω2 with Re z < a. By (3.3) with r = a, b,

|pn(z)|1/n

|ez|
=

∣∣∣∣∣∣∣∣
 ϕan+1

(
nz

an+ 1

)
(

nz

an+ 1
− 1

)
σan

+

Bϕbn+1

(
nz

bn+ 1

)
(

nz

bn+ 1
− 1

)
σbn

[1 +O(nν)] +B + 1

∣∣∣∣∣∣∣∣
1/n

. (4.4)

The constant terms B and 1 may be neglected since |ϕ(z/a)| > 1, giving

lim
n→∞

|pn(z)|1/n

|ez|
= lim

n→∞

∣∣∣∣∣∣
ϕan+1

(z
a

)
(z
a
− 1
)
σan

+
Bϕbn+1

(z
b

)
(z
b
− 1
)
σbn

∣∣∣∣∣∣
1/n

= lim
n→∞

∣∣∣∣∣∣
ϕan+1

(z
a

)
(z
a
− 1
)√

a
+
Bϕbn+1

(z
b

)
(z
b
− 1
)√

b

∣∣∣∣∣∣
1/n

= lim
n→∞

∣∣∣Azϕan(z
a

)
+Bzϕ

bn
(z
b

)∣∣∣1/n
=
∣∣∣ϕ(z

a

)∣∣∣a lim
n→∞

∣∣∣∣∣∣1 +
Bzϕ

bn
(z
b

)
Azϕan

(z
a

)
∣∣∣∣∣∣
1/n

(4.5)

Since

lim
n→∞

∣∣∣∣∣∣
Bzϕ

bn
(z
b

)
Azϕan

(z
a

)
∣∣∣∣∣∣
1/n

=

∣∣∣ϕ(z
b

)∣∣∣b∣∣∣ϕ(z
a

)∣∣∣a < 1
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by Lemma 4.2, from (4.5) we obtain

lim
n→∞

|pn(z)|1/n = |ez|
∣∣∣ϕ(z

a

)∣∣∣a =
( e
a

)a
|z|a (4.6)

by Proposition 3.3. A nearly identical analysis for z ∈ Ω2 with |z| > a will again yield

(4.6). �

Lemma 4.5. In the region Ω3 we have

lim
n→∞

ln |pn(z)|
n

= Re(z)

uniformly on compact sets.

Proof. For z in

Ω3 = {z : |ϕ(z/a)| < 1} ∩ {z : |ϕ(z/b)| < 1} ∩ {z : a < Re z < b},

equation (3.2) with r = a and (3.3) with r = b yields (4.1). The nonzero constant term B

dominates since |ϕ(z/a)| < 1 and |ϕ(z/b)| < 1 both hold, so that

lim
n→∞

|pn(z)|1/n

|ez|
= lim

n→∞
|B|1/n = 1,

and hence

lim
n→∞

|pn(z)|1/n = |ez|. (4.7)

�

Lemma 4.6. In the region Ω4 we have

lim
n→∞

ln |pn(z)|
n

= Re(z)

uniformly on compact sets.

Proof. For z ∈ Ω4 equation (3.3) with r = a, b yields (4.4). Now, B 6= −1 implies that

the constant term B + 1 is nonzero, and since |ϕ(z/a)| < 1 and |ϕ(z/b)| < 1, this constant

term dominates. From (4.4),

lim
n→∞

|pn(z)|1/n

|ez|
= lim

n→∞
|B + 1|1/n = 1,
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so that (4.7) results once more. This finishes the proof of Lemma 4.3. �

We now have

lim
n→∞

ln
∣∣pn(z)

∣∣1/n =



b ln
∣∣∣ez
b

∣∣∣, z ∈ Ω1

a ln
∣∣∣ez
a

∣∣∣, z ∈ Ω2

ln |ez|, z ∈ Ω3 ∪ Ω4,

and so ln
∣∣pn(z)

∣∣1/n converges uniformly on compact sets to a harmonic function in each

region. Hypotheses (1) and (3) of Theorem 2.5 being clear, it remains to verify that the

sequence |pn(z)|1/n is uniformly bounded on compact sets and
⋃
n Z(pn(z)) is a bounded

set.

Lemma 4.7. The sequence |pn(z)|1/n is uniformly bounded on compact sets.

Proof. Let K be a compact set, and fix n. Let r > 0 be such that K ⊆ Dr, and set

M = |B|+ 1. For any z ∈ K,

|pn(z)|1/n =

∣∣∣∣∣∣
an∑
j=0

(nz)j

j!
+B

bn∑
j=0

(nz)j

j!

∣∣∣∣∣∣
1/n

≤

 an∑
j=0

nj |z|j

j!
+ |B|

bn∑
j=0

nj |z|j

j!

1/n

≤M1/n

 an∑
j=0

nj |z|j

j!
+

bn∑
j=0

nj |z|j

j!

1/n

≤M1/n

2

∞∑
j=0

(n|z|)j

j!

1/n

=
(
2Men|z|

)1/n
= e|z|

n
√

2M ≤ er n
√

2M ≤ (2M + 1)er := C, (4.8)

so {|pn(z)|1/n : z ∈ K} has upper bound C ∈ R. It follows that

∥∥|pn|1/n∥∥K = sup{|pn(z)|1/n : z ∈ K}

exists in R, with
∥∥|pn|1/n∥∥K ≤ C for all n, and hence

sup
n∈N

∥∥|pn|1/n∥∥K
exists in R. Therefore the sequence |pn|1/n is uniformly bounded on K. �

Lemma 4.8.
⋃
n Z(pn(z)) is a bounded set.
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Proof. We have

pn(z) = B
bn∑

k=an+1

nkzk

k!
+ (B + 1)

an∑
k=0

nkzk

k!
,

and so pn(z) = 0 if and only if

[
zbn + bzbn−1 +

(bn)(bn− 1)

n2
zbn−2 + · · ·+ (bn)(bn− 1) · · · (an+ 2)

nbn−an+1
zan+1

]
+
B + 1

B

[
(bn)(bn− 1) · · · (an+ 1)

nbn−an
zan +

(bn)(bn− 1) · · · (an)

nbn−an+1
zan−1 + · · ·+ (bn)!

nbn

]
= 0.

Thus if pn(z) = 0, then, letting B0 = |B + 1|/|B|, Proposition 3.6 implies that |z| is at

most equal to

M = 2 max

{
b,

√
(bn)(bn− 1)

n2
,

3

√
(bn)(bn− 1)(bn− 2)

n3
, . . . ,

bn−an−1

√
(bn)(bn− 1) · · · (an+ 2)

nbn−an−1
,

bn−an

√
B0(bn)(bn− 1) · · · (an+ 1)

nbn−an
,
bn−an+1

√
B0(bn)(bn− 1) · · · (an)

nbn−an+1
, . . . ,

bn−1

√
B0(bn)(bn− 1) · · · 2

nbn−1
,
bn

√
B0(bn)!

nbn

}
.

Now, since in general

(bn)(bn− 1) · · · [bn− (k − 1)] ≤ (bn)k,

we find that

M ≤ 2bmax
{

1,M1/(bn−an),M1/(bn−an+1), . . . ,M1/(bn)
}
,

and so M < 3b for all sufficiently large n. That is, there exists some n0 such that Z(pn(z))

lies in the disc D3b for all n ≥ n0, and therefore
⋃
n Z(pn(z)) is a bounded set. �

We finally conclude by Theorem 2.5 that the zero attractor of san(nz) +Bsbn(nz) is⋃4
k=1 ∂Ωk, proving Theorem 4.1.
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Section 5: Asan(nz) +Bsbn(ωnz) with A,B ∈ C \ {0} and |ω| = 1

We now find the zero attractor of all sequences of the form Asan(nz) +Bsbn(ωnz) with

A,B ∈ C \ {0} and unimodular ω ∈ C. As is demonstrated in a more general setting at

the beginning of the next section, it is enough to consider

pn(z) := san(nz) +Bsbn(eiθnz).

for B 6= 0 and 0 ≤ θ < 2π.

For any fixed w ∈ C let Sw denote the Szegő curve |ϕ(z/w)| = 1. The zeros of p800(800z)

in the case when a = 1, b = 2, B = 1, and θ = π/5 are shown in Figure 8, along with the

curves Sa, Sae−iθ , Sbe−iθ , and the circle Cab at the origin that contains the intersection

points of the latter two curves. In addition to portions of the aforementioned Szegő curves

and circle, the zero attractor would seem to also include a line segment with endpoints

being the elements of Sa ∩ Sae−iθ ∩ Da.

-1 1 2 3

-2

-1

1

2

Cab

Sa

Sae−iθ

Sbe−iθ

Ω1

Ω2

Ω3

Ω4

Ω5

Figure 8. Zeros of sn(nz) + s2n(eiπ/5nz) for n = 800, with Sa, Sae−iθ ,
Sbe−iθ , Cab for (a, b, θ) = (1, 2, π/5).
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For any θ ∈ R the angle this segment makes with the positive real axis is −θ/2. To see

this, suppose z ∈ Sa ∩ Sae−iθ , so that∣∣∣z
a
e1−z/a

∣∣∣ =
∣∣∣ z

ae−iθ
e1−z/(ae−iθ)

∣∣∣ = 1.

Assuming z = re−iθ/2 for some r > 0, we obtain∣∣∣e−re−iθ/2/a∣∣∣ =
∣∣∣e−reiθ/2/a∣∣∣ =

a

er
,

then

Re
(r
a
e−iθ/2

)
= Re

(r
a
eiθ/2

)
= ln

(er
a

)
.

The first equality is in fact an identity that puts no constraints on r, and so from the

second equality we arrive at the single equation

cos
θ

2
=
a

r
ln
er

a
.

We need only confirm that there must exist r > 0 that satisfies this equation, which

amounts to showing the function

f(r) =
a

r
ln
er

a

has range containing [−1, 1]. But this follows from the continuity of f and the observation

that f(a) = 1 and f(a/e2) = −e2 < −1.

Let Dab denote the interior of the circle Cab, so ∂Dab = Cab. For

H = {z : Re(z) > 0}

and fixed θ ∈ R define the open half-plane

Hθ = eiθH = {eiθz : z ∈ H}.

Designating the regions

Ω1 = C \ (Dab ∪ Lbe−iθ),

Ω2 = Dab \ (La ∪ Lae−iθ ∪ T ae−iθ),
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Ω3 = Lbe−iθ ∩ Tae−iθ ,

Ω4 = Lae−iθ \H(π−θ)/2,

Ω5 = La ∩H(π−θ)/2,

which are displayed in Figure 8, we make the following theorem.

Theorem 5.1. For any θ ∈ [0, 2π), the zero attractor of san(nz)+Bsbn(eiθnz) is
⋃5
k=1 ∂Ωk.

To prove this theorem with the use of Theorem 2.5 will require some asymptotic results

for sbn(eiθnz). From (3.2) and (3.3) we have

sbn(eiθnz) =

ee
iθnzϕbn+1

(
eiθnz

bn+ 1

)
(
eiθnz

bn+ 1
− 1

)
σbn

[
1 +O(nν)

]
(5.1)

for |z| > b+ 1/n, and

sbn(eiθnz) = ee
iθnz

1 +

ϕbn+1

(
eiθnz

bn+ 1

)
(
eiθnz

bn+ 1
− 1

)
σbn

[
1 +O(nν)

]
 (5.2)

for Re(eiθz) < b+ 1/n, or equivalently for z ∈ C \ e−iθ[(b+ 1/n) + H].

We now apply our asymptotic results to evaluate the limit limn→∞ ln |pn(z)|1/n in each

of the regions Ωk, as required by Theorem 2.5. Here we will make use of the symbol ∼ to

denote asymptotic equivalence or “equality of the limits.”

Lemma 5.2. In the region Ω1 = C \ (Dab ∪ Lbe−iθ) we have

lim
n→∞

ln |pn(z)|
n

= b ln
∣∣∣ez
b

∣∣∣.
uniformly on compact sets.

Proof. Let z ∈ Ω1 such that Re(eiθz) < b. From (3.2) with r = a and (5.2) we have

ln |pn(z)|
n

∼ 1

n
ln

∣∣∣∣∣∣∣∣∣
enzϕan+1

(z
a

)
(z
a
− 1
)
σan

+Bee
iθnz

1 +

ϕbn+1

(
eiθz

b

)
(
eiθz

b
− 1

)
σbn


∣∣∣∣∣∣∣∣∣



32

∼ 1

n
ln

∣∣∣∣enzϕan(za)+Bee
iθnz

[
1 + ϕbn

(
eiθz

b

)]∣∣∣∣ , (5.3)

and then |ϕ(eiθz/b)| > 1 implies that

ln |pn(z)|
n

∼ 1

n
ln

∣∣∣∣enzϕan(za)+Bee
iθnzϕbn

(
eiθz

b

)∣∣∣∣
=

1

n
ln
∣∣∣Beeiθnz∣∣∣ ∣∣∣∣ϕ(eiθzb

)∣∣∣∣bn
∣∣∣∣∣∣∣∣∣

enzϕan
(z
a

)
Beeiθnzϕbn

(
eiθz

b

) + 1

∣∣∣∣∣∣∣∣∣
∼ b ln

∣∣∣ez
b

∣∣∣+ 1

n
ln

∣∣∣∣∣∣∣∣∣
enzϕan

(z
a

)
Beeiθnzϕbn

(
eiθz

b

) + 1

∣∣∣∣∣∣∣∣∣ . (5.4)

Since

lim
n→∞

∣∣∣∣∣∣∣∣∣
enzϕan

(z
a

)
Beeiθnzϕbn

(
eiθz

b

)
∣∣∣∣∣∣∣∣∣
1/n

=
|ez|

∣∣∣ϕ(z
a

)∣∣∣a
|eeiθz|

∣∣∣∣ϕ(eiθzb
)∣∣∣∣b

< 1

by Lemma 4.2, the desired conclusion follows from (5.4) and Proposition 3.3. If z ∈ Ω1 is

such that |z| > b, then a similar argument follows using (5.1). �

Lemma 5.3. In the region Ω2 = Dab \ (La ∪ Lae−iθ ∪ T ae−iθ) we have

lim
n→∞

ln |pn(z)|
n

= a ln
∣∣∣ez
a

∣∣∣.
uniformly on compact sets.

Proof. Let z ∈ Ω2 such that Re z < a. We have, from (3.3) with r = a and (5.2),

ln |pn(z)|
n

∼ 1

n
ln

∣∣∣∣∣∣∣∣∣e
nz

1 +
ϕan+1

(z
a

)
(z
a
− 1
)
σan

+Bee
iθnz

1 +

ϕbn+1

(
eiθz

b

)
(
eiθz

b
− 1

)
σbn


∣∣∣∣∣∣∣∣∣

∼ 1

n
ln

∣∣∣∣enz + enzϕan
(z
a

)
+Bee

iθnz +Bee
iθnzϕbn

(
eiθz

b

)∣∣∣∣
=

1

n
ln
∣∣eeiθnz∣∣ ∣∣∣∣e(1−eiθ)nz + e(1−eiθ)nzϕan

(z
a

)
+B +Bϕbn

(
eiθz

b

)∣∣∣∣ . (5.5)
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Since

e(1−eiθ)nzϕan
(z
a

)
= (e−iθ)anϕan

(
eiθz

a

)
(5.6)

and |ϕ(eiθz/a)| > 1, the constant term B in (5.5) is dominated by the preceding term, and

hence

ln |pn(z)|
n

∼ 1

n
ln
∣∣eeiθnz∣∣ ∣∣∣∣e(1−eiθ)nz + e(1−eiθ)nzϕan

(z
a

)
+Bϕbn

(
eiθz

b

)∣∣∣∣
∼ 1

n
ln |enz|

∣∣∣∣∣∣1 + ϕan
(z
a

)
+
Bϕbn

(
eiθz
b

)
e(1−eiθ)nz

∣∣∣∣∣∣ .
We have |ϕ(z/a)| > 1, so that

ln |pn(z)|
n

∼ 1

n
ln |enz|

∣∣∣∣∣∣∣∣∣ϕ
an
(z
a

)
+

Bϕbn
(
eiθz

b

)
e(1−eiθ)nz

∣∣∣∣∣∣∣∣∣
=

1

n
ln |enz|

∣∣∣ϕ(z
a

)∣∣∣an
∣∣∣∣∣∣∣∣∣1 +

Bϕbn
(
eiθz

b

)
e(1−eiθ)nzϕan

(z
a

)
∣∣∣∣∣∣∣∣∣ ,

and since

lim
n→∞

∣∣∣∣∣∣∣∣∣
Bϕbn

(
eiθz

b

)
e(1−eiθ)nzϕan

(z
a

)
∣∣∣∣∣∣∣∣∣
1/n

=

∣∣eeiθz∣∣ ∣∣∣∣ϕ(eiθzb
)∣∣∣∣b

|ez|
∣∣∣ϕ(z

a

)∣∣∣a < 1

by Lemma 4.2, Proposition 3.3 implies that

lim
n→∞

ln |pn(z)|
n

= lim
n→∞

1

n
ln |enz|

∣∣∣ϕ(z
a

)∣∣∣an = ln |ez|
∣∣∣ϕ(z

a

)∣∣∣a = a ln
∣∣∣ez
a

∣∣∣.
If z ∈ Ω2 is such that |z| > a, then a similar argument follows using (3.2). �

Lemma 5.4. In the region Ω3 = Lbe−iθ ∩ Tae−iθ we have

lim
n→∞

ln |pn(z)|
n

= ln
∣∣eeiθz∣∣.

uniformly on compact sets.
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Proof. As in the proof of Lemma 5.2 we use (3.2) with r = a and (5.2) to obtain (5.3),

whereupon (5.6) leads us to

ln |pn(z)|
n

∼ 1

n
ln
∣∣eeiθnz∣∣ ∣∣∣∣(e−iθ)anϕan(eiθza

)
+B +Bϕbn

(
eiθz

b

)∣∣∣∣ .
Since |ϕ(eiθz/a)| < 1 and |ϕ(eiθz/b)| < 1, the constant term B dominates, so

lim
n→∞

ln |pn(z)|
n

= lim
n→∞

1

n
ln
∣∣eeiθnz∣∣|B| = ln

∣∣eeiθz∣∣
as desired. �

To carry out the analysis in the remaining regions Ω4 and Ω5 necessitates use of the

following lemma, as these two regions lie on either side of the line segment discussed at

the beginning of the section.

Lemma 5.5. Suppose θ ∈ [0, 2π), and let ζ = (eiθ − 1)z. Then Re(ζ) < 0 if z ∈ H(π−θ)/2,

and Re(−ζ) < 0 if z ∈ C \H(π−θ)/2.

Proof. Fix z ∈ H(π−θ)/2. Then z = ei(π−θ)/2w = ie−iθ/2w for some w ∈ H. Now,

ζ = (eiθ − 1)ie−iθ/2w = iw(eiθ/2 − e−iθ/2) = −2w sin
θ

2
,

and since Re(w) > 0 we have

Re(ζ) = −2 Re(w) sin
θ

2
< 0.

If z ∈ C \H(π−θ)/2, then z = ie−iθ/2w for w such that Re(w) < 0, whereupon

Re(−ζ) = 2 Re(w) sin
θ

2
< 0

obtains. �

Lemma 5.6. In the region Ω4 = Lae−iθ \H(π−θ)/2 we have

lim
n→∞

ln |pn(z)|
n

= ln
∣∣eeiθz∣∣.

uniformly on compact sets.
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Proof. As in the proof of Lemma 5.3 we use (3.3) with r = a and (5.2) to obtain

ln |pn(z)|
n

∼ 1

n
ln
∣∣eeiθnz∣∣ ∣∣∣∣e(1−eiθ)nz + e(1−eiθ)nzϕan

(z
a

)
+Bϕbn

(
eiθz

b

)
+B

∣∣∣∣
= ln

∣∣eeiθz∣∣+
1

n
ln

∣∣∣∣e(1−eiθ)nz + (e−iθ)anϕan
(
eiθz

a

)
+Bϕbn

(
eiθz

b

)
+B

∣∣∣∣ . (5.7)

Since |ϕ(eiθz/a)| < 1 and |ϕ(eiθz/b)| < 1, and Re[(1 − eiθ)z] < 0 by Lemma 5.5, the

constant term B in (5.7) dominates the others as n→∞, and so

lim
n→∞

ln |pn(z)|
n

= lim
n→∞

(
ln
∣∣eeiθz∣∣+

1

n
ln |B|

)
= ln

∣∣eeiθz∣∣.
�

Lemma 5.7. In the region Ω5 = La ∩H(π−θ)/2 we have

lim
n→∞

ln |pn(z)|
n

= ln |ez|.

uniformly on compact sets.

Proof. As in the proof of Lemma 5.6 the equations (3.3) and (5.2) give the asymptotics,

leading to

ln |pn(z)|
n

∼ 1

n
ln |enz|

∣∣∣∣1 + ϕan
(z
a

)
+Be(eiθ−1)nz +Be(eiθ−1)nzϕbn

(
eiθz

b

)∣∣∣∣
= ln |ez|+ 1

n
ln
∣∣∣1 + ϕan

(z
a

)
+Be(eiθ−1)nz +B(eiθ−1)bnϕbn

(z
b

)∣∣∣ . (5.8)

Since |ϕ(z/a)| < 1 and |ϕ(z/b)| < 1, and Re[(eiθ − 1)z] < 0 by Lemma 5.5, the constant

term 1 in (5.8) dominates the others, so that

lim
n→∞

ln |pn(z)|
n

= lim
n→∞

(
ln |ez|+ 1

n
ln |1|

)
= ln |ez|.

�

That the sequence |pn(z)|1/n is uniformly bounded on compact sets and
⋃
n Z(pn(z))

is a bounded set is argued along lines similar to the proofs of Lemmas 4.7 and 4.8. We

therefore conclude by Theorem 2.5 that the zero attractor of san(nz) + Bsbn(eiθnz) is⋃5
k=1 ∂Ωk, proving Theorem 5.1.
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Section 6: Introducing the General Two-Term Case

We undertake to find the zero attractors of all sequences (pn(z))∞n=1 for which

pn(z) = Asan(αnz) +Bsbn(βnz)

for fixed integers 1 ≤ a < b and nonzero constants α, β,A,B ∈ C. To do this it will be

sufficient to consider only sequences of the form

p̂n(z) = san(nz) + Csbn(γnz) (6.1)

for nonzero γ,C ∈ C. To see this, we note that

p̂n(z) =
1

A
pn

( z
α

)
if we choose γ = β/α and C = B/A, and so if Z(pn(z)) is the set of zeros of pn(z), then

the set of zeros of p̂n(z) is αZ(pn(z)). Therefore

Z(pn(z)) =
1

α
Z(p̂n(z))

for all n, and so if Â is the zero attractor of (p̂n(z)), then the zero attractor of (pn(z)) is

1
αÂ.

Setting γ = reiθ for constants r > 0 and θ ∈ R, we recast the family of sequences (6.1)

as

Pn(z) = san(nz) + Csbn(reiθnz) (6.2)

with C taking the place of B. In [3] the exceptional case in which r = 1, θ = 0, and C = −1

was treated. (Strictly speaking that paper kept a fixed at 1, but the technique employed

would be the same for a > 1.) The case r = 1, θ = 0, and C 6= −1 is addressed in §4, while

all other cases in which r = 1 are addressed in §5. It thus remains to consider the cases

when r < 1 and r > 1.

The value of C will be seen to have no effect on the zero attractor except in the

aforementioned special case when C = −1 for r = 1 and θ = 0.
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As in the past we define ϕ : C→ C by

ϕ(z) = ze1−z,

and use this function to define the following four Szegő curves:

S1 :
∣∣∣ϕ(z

a

)∣∣∣ = 1,

S2 :

∣∣∣∣ϕ(reiθzb
)∣∣∣∣ = 1,

S3 :

∣∣∣∣ϕ(reiθza
)∣∣∣∣ = r,

S4 :
∣∣∣ϕ(z

b

)∣∣∣ =
1

r
.

For any Szegő curve S given by |ϕ(wz)| = s for constants w ∈ C and s ∈ R, it will be

convenient to define the “interior of S” to be the open region

S < = {z : |ϕ(wz)| < s}, (6.3)

and the “exterior of S” to be

S > = {z : |ϕ(wz)| > s}.

The symbols S <
and S >

will denote the closures of regions S < and S >, so for instance

S <
:= S < = {z : |ϕ(wz)| ≤ s}.

We will discover in the next section that the points in S2 ∩ S3 and S1 ∩ S4 lie on an

“intersection circle” Cr of special significance, with center at the origin and radius

ρr =
a

e

(
b

ar

) b
b−a

, (6.4)

called the “intersection radius.” All points in S1 ∩ S3, moreover, we will find from

Proposition 7.1 lie on an “intersection line”

Lrθ = {z : Arg(±z) = `rθ},
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where

`rθ = arctan

(
r cos θ − 1

r sin θ

)
(6.5)

if θ 6= kπ for any k ∈ Z. If θ = kπ we (quite arbitrarily) set

`rθ =


π/2, if θ = 2kπ

−π/2, if θ = (2k + 1)π.

In any case a suitable parametrization for Lrθ would be

t 7→ tei`rθ , t ∈ R.

A useful formula for the future is

cos `rθ =
r| sin θ|√

r2 − 2r cos θ + 1
. (6.6)

It will be convenient to give notation to the half planes with common boundary Lrθ,

letting

H+

rθ = e(`rθ+π/2)iH and H−
rθ = −H+

rθ.

Also

Dr =

{
z : |z| < a

e

(
b

ar

) b
b−a
}

will be the disc with boundary Cr.

a

x1 x2 x3

S ′

S ′′

ax1

Figure 9. Left: an example of S for r < 1. Right: an example of S for r > 1.
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For fixed values a, b, θ, and r, the zero attractor of (Pn) will always be a subset of

the four Szegő curves, circle, and line defined above. To prove this it will be necessary

to first establish some basic facts about Szegő curves. The proposition below does this

with the aid of the Lambert-W function. The function E : R → [−1/e,∞) given by

E(x) = xex defines a bijection [−1,∞)→ [−1/e,∞) with inverse the increasing function

W0 : [−1/e,∞) → [−1,∞) (which forms the principal branch), and another bijection

(−∞,−1]→ [−1/e, 0) with inverse the decreasing function W−1 : [−1/e, 0)→ (−∞,−1].

In particular we have

W0(−1/e) = W−1(−1/e) = −1. (6.7)

The various parts of the next proposition, and especially the last two parts, are tailored

to provide the minimum that is required to push the proofs of certain future results across

the finish line.

Proposition 6.1 (Properties of Szegő Curves). For a, r > 0 let S be the Szegő curve∣∣∣ϕ(rz
a

)∣∣∣ = r,

which is symmetric about R.

(1) If r < 1, S ∩ R consists of the points

x1 = −a
r
W0

(r
e

)
, x2 = −a

r
W0

(
−r
e

)
, x3 = −a

r
W−1

(
−r
e

)
,

where −a < x1 < 0 < x2 < a < a/r < x3. Moreover S ∩ R = {x1, a} when r = 1,

and S ∩ R = {x1} when r > 1 (where again −a < x1 < 0).

(2) If r < 1, the graph of S consists of two components: a simple closed curve S ′ in

Da and a simple unbounded curve S ′′ in x3 + H.

(3) If r ≥ 1, the graph of S is connected and lies in x1 + H. Also S is simple if r > 1.

(4) If r < 1, then |ϕ(rz/a)| < r for all z inside S ′ and on the side of S ′′ containing

(x3,∞). Otherwise |ϕ(rz/a)| > r holds.

(5) If r > 1, then |ϕ(rz/a)| < r in the region bounded by S that contains (x1,∞),

otherwise |ϕ(rz/a)| > r holds. If r = 1, then |ϕ(z/a)| < 1 in the region bounded by

S containing the origin, and also the region bounded by S containing (a,∞).
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(6) For 0 < r ≤ 1 the portion of S lying in the upper half-plane where x1 ≤ Re z ≤ x2

is concave.

(7) When r = 1 define S ′ to be the region enclosed by the portion of S in Da. Then S ′

is convex for all 0 < r ≤ 1.

Figure 9 illustrates the essential shape of the curve S when r < 1 (at left) and r > 1

(at right). The shape of S when r = 1 is exactly as shown at right in Figure 3, with a in

place of 1, and x1 the leftmost point on the curve. We now commence with the proof of

the proposition.

Proof.

Proof of (1). For z = x+ iy,∣∣∣ϕ(rz
a

)∣∣∣ = r ⇔
∣∣∣rz
a
e1−rz/a

∣∣∣ = r ⇔
∣∣erz/a∣∣ =

e|z|
a

⇔ erx/a =
e
√
x2 + y2

a
⇔ y2 = a2e2rx/a−2 − x2, (6.8)

and so the graph of the level curve |ϕ(rz/a)| = r in C may be identified with the graphs of

v(x) =
√
a2e2rx/a−2 − x2 (6.9)

and −v(x) in R2. Thus S is symmetric about the real axis, and of particular importance is

the fact that S consists of two continuous simple curves that are reflections of each other

about R. No vertical line intersects S at more than two points.

Define

fr(x) =
x

a
e1−rx/a.

If z ∈ R, then a2e2rx/a−2 − x2 = 0 by (6.8), giving

0 =
(
aerx/a−1 − x

)(
aerx/a−1 + x

)
= aerx/a−1

[
1− fr(x)

][
1 + fr(x)

]
,

and thus fr(x) = 1 or fr(x) = −1. Of special import are the observations that

fr(x) = −1 ⇔ −rx
a
e−rx/a =

r

e
, (6.10)
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and

fr(x) = 1 ⇔ −rx
a
e−rx/a = −r

e
. (6.11)

Suppose r < 1. Since r/e ∈ (0, 1/e), it is exclusively in the domain of W0 and so (6.10)

yields the unique solution

x1 = −a
r
W0

(r
e

)
.

In contrast −r/e ∈ (−1/e, 0) is in the domain of both W0 and W−1, and so (6.11) yields

two solutions:

x2 = −a
r
W0

(
−r
e

)
and x3 = −a

r
W−1

(
−r
e

)
.

It is immediate from the definitions of W0 and W−1 that x1 < 0 < x2 < x3, noting in

particular that W0 : [−1/e, 0]→ [−1, 0] is a bijection. Next, since E(x) = xex is increasing

on [−1, 0], we find

e−1 < e−r ⇒ −r
e
> −re−r ⇒ E

(
W0

(
−r
e

))
> E(−r) ⇒ W0

(
−r
e

)
> −r,

and hence x2 < a. A similar argument shows −a < x1 for any r > 0, and −∞ <

W−1(−r/e) < −1 implies x3 > a/r > a.

If r = 1, then x2 = x3 = a results from (6.7), implying S ∩ R = {x1, a}.

Finally, if r > 1 then −r/e falls outside the domain of W−1 and W0, and so only the

solution x1 deriving from (6.10) results. That −a < x1 < 0 still holds for r ≥ 1 is argued

similarly as in the r < 1 setting. In particular, since E(x) = xex is increasing on (0,∞),

e−1 < er ⇒ r

e
< rer ⇒ E

(
W0

(r
e

))
> E(r) ⇒ W0

(r
e

)
< r,

and so x1 > −a.

Proof of (2). Suppose r < 1. From (6.8) it is clear that |ϕ(rz/a)| = r admits a solution

z = x+ iy if and only if |x| ≤ aerx/a−1, or equivalently fr(x) ∈ [−1, 1]. Calculating

f ′r(x) =
1

a

(
1− rx

a

)
e1−rx/a,

we find that f ′r > 0 on (−∞, a/r) and f ′r < 0 on (a/r,∞), and so fr has a maximum at

a/r with fr(a/r) = 1/r > 1. Now, setting fr(x) = 1 yields the solutions x2 < a/r and
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x3 > a/r found before, so that the graph of S is disjoint from the strip x2 < Re z < x3, and

at least some portion of the graph lies in x3 + H. Indeed, because fr(x3) = 1, fr decreases

on [x3,∞), and fr(x) = −1 has only solution x1 /∈ [x3,∞), it follows that fr(x) ∈ [−1, 1]

for all x ≥ x3, and hence the graph of S in x3 + H consists of the points

x± iv(x), x ≥ x3.

Since the function v is continuous with v(x3) = 0, we conclude that x3+H contains precisely

one component of the level curve |ϕ(rz/a)| = r, and it is both simple and unbounded.

Since fr(x) decreases on (−∞, a/r) as x → −∞ and f(x) = −1 has solution x1 < 0,

we find that another portion of the graph of |ϕ(rz/a)| = r is confined to the strip

x1 ≤ Re z ≤ x2, and in addition the graph intersects every vertical line in the strip.

Because x2 < a, if z = x+ iy is a solution to |ϕ(rz/a)| = r such that x1 ≤ x ≤ x2, then

x < a follows, and

x < a ⇒ a2e2rx/a−2 < a2 ⇒ x2 + y2 < a2

by (6.8). This clearly indicates that the portion of the graph of |ϕ(rz/a)| = r in the strip

x1 ≤ Re z ≤ x2 must lie within Da. The graph is generated by the graphs of the continuous

functions ±v, which are symmetric about the real axis and join at x1 and x2. Therefore

the graph of S possesses a component in Da that is a simple closed curve.

Proof of (3). Recalling that x2 = x3 when r = 1, in the r ≥ 1 case the strips x1 ≤ Re z ≤ x2

and x2 < Re z < x3 of part (2) join to form the half-plane x1 +H, and by similar arguments

we find that the graph of |ϕ(rz/a)| = r is comprised of the graphs of the continuous

functions ±v for all x ≥ x1. As x→∞, the functions proceed from the common starting

point x1 symmetrically into the upper and lower half planes to form a single connected

level curve. The graph of S is also simple when r > 1, since in this case S ∩R consists of a

single point by part (1).

Proof of (4). This follows from part (2) and the observations that |ϕ(0)| = 0 < r and

lim
Re z→∞

∣∣∣ϕ(rz
a

)∣∣∣ =
er

a
lim
x→∞

e−rx/a
√
x2 + y2 = 0 < r
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for any r < 1.

Proof of (5). By part (3), the same observations made in the proof of part (4) hold here

for any r ≥ 1.

Proof of (6). Fix 0 < r ≤ 1. In the proof of parts (1) and (2) it was found that the portion

of S in question is given by (6.9) and lies in the strip x1 ≤ Re z ≤ x2. To show is that

v′′(x) < 0 for all x ∈ (x1, x2). From

v′′(x) =
e2rx/a−2(a2r2e2rx/a−2 − a2 + 2arx− 2r2x2)

(a2e2rx/a−2 − x2)3/2

it’s seen that, for x ∈ (x1, x2), v′′(x) < 0 if and only if

h(x) := 2r2x2 − 2arx+ a2 − a2r2

e2
e2rx/a > 0.

To start, we observe that

exp
(
−2W0

(
−r
e

))
=

[
W0(−r/e)eW0(−r/e)

W0(−r/e)

]−2

=

(
−r/e

W0(−r/e)

)−2

=
e2

r2
W 2

0

(
−r
e

)
,

and so

h(x2) = 2r2 · a
2

r2
W 2

0

(
−r
e

)
+ 2ar · a

r
W0

(
−r
e

)
+ a2 − a2r2

e2
exp

(
−2r

a
· a
r
W0

(
−r
e

))
= 2a2W 2

0

(
−r
e

)
+ 2a2W0

(
−r
e

)
+ a2 − a2W 2

0

(
−r
e

)
= a2

[
W 2

0

(
−r
e

)
+ 2W0

(
−r
e

)
+ 1
]

= a2
[
W0

(
−r
e

)
+ 1
]2
.

In particular h(x2) ≥ 0, and so h(x) > 0 for x1 < x < x2 if h′ < 0 on (x1, x2). We have

h′(x) = 4r2x− 2ar − 2ar3

e2
e2rx/a,

and since

h′(x2) = −4r2 · a
r
W0

(
−r
e

)
− 2ar − 2ar3

e2
exp

(
−2r

a
· a
r
W0

(
−r
e

))
= −4arW0

(
−r
e

)
− 2ar − 2arW 2

0

(
−r
e

)
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= −2ar
[
W0

(
−r
e

)
− 1
]2
≤ 0,

h′ < 0 on (x1, x2) will obtain if h′′ > 0 on (x1, x2). Now,

h′′(x) = 4r2 − 4r4

e2
e2rx/a,

and so h′′ > 0 on (x1, x2) will obtain if

e2rx/a <
e2

r2
(6.12)

for all x < x2. Since (6.12) is equivalent to x < (a/r) ln(e/r), it remains only to show that

x2 ≤ (a/r) ln(e/r). Recalling that W0 maps [−1/e, 0) onto [−1, 0), so W0(−r/e) < 0 in

particular, we have

x2 ≤
a

r
ln
(e
r

)
⇔ W0

(
−r
e

)
≥ ln

(r
e

)
⇔ r

e
≤ eW0(−r/e) = − r

eW0(−r/e)
,

or equivalently W0(−r/e) ≥ −1, which is of course true. The proof is done.

Proof of (7). By parts (1) and (6), the boundary of S ′ consists of the graphs of the concave

function v(x) in the upper half-plane and the convex function −v(x) in the lower half-plane

for x ∈ [x1, x2], which immediately implies that S ′ is convex. �

The curve S3 is merely S of Proposition 6.1 rotated about the origin clockwise by θ,

and so the properties of S are easily adapted to suit S3. Moreover, the curve S1 is S with

r = 1, while S2 is obtained by rotating S clockwise by θ and replacing r with 1 and a

with b/r. Finally, if r is replaced by 1/r and a by b/r, we find that S becomes S4. These

observations readily imply the following several corollaries, the first and third of which will

occasionally be called upon in some of the proofs carried out in §9. The second and fourth

corollaries are given for the sake of completeness, but will not be used in any proofs.

Corollary 6.2. The curve S1 is symmetric about R and has the following properties.

(1) The set S1 ∩ R consists of the points

x11 = −aW0

(
1

e

)
and a, where −a < x11 < 0.
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(2) The graph of S1 is connected and lies in x11 + H.

(3) S <

1 consists of the region bounded by S1 containing the origin, and also the region

bounded by S1 containing (a,∞).

(4) The region enclosed by the portion of S1 in Da is convex.

Corollary 6.3. The curve S2 is symmetric about the line e−iθR and has the following

properties.

(1) The set S2 ∩ e−iθR consists of the points

x21 = − b
r
W0

(
1

e

)
e−iθ

and (b/r)e−iθ, where −b/r < −(b/r)W0(1/e) < 0.

(2) The graph of S2 is connected and lies in x21 + e−iθH.

(3) S <

2 consists of the region bounded by S2 containing the origin, and also the region

bounded by S2 containing the open ray e−iθ(b/r,∞).

(4) The region enclosed by the portion of S2 in Db/r is convex.

The following corollary is the most important of the four. In its statement we omit the

rather obvious analogues to parts (6) and (7) of Proposition 6.1.

Corollary 6.4. The curve S3 is symmetric about the line e−iθR and has the following

properties.

(1) If r < 1, S3 ∩ e−iθR consists of the points

x31 = −a
r
W0

(r
e

)
e−iθ, x32 = −a

r
W0

(
−r
e

)
e−iθ, x33 = −a

r
W−1

(
−r
e

)
e−iθ.

Moreover S3 ∩ e−iθR = {x31, ae
−iθ} when r = 1, and S3 ∩ e−iθR = {x31} when

r > 1.

(2) If r < 1, the graph of S3 consists of two components: a simple closed curve S ′3 in

Da and a simple unbounded curve S ′′3 in x33 + e−iθH.

(3) If r ≥ 1, the graph of S3 is connected and lies in x31 + e−iθH. Also S3 is simple if

r > 1.

(4) If r < 1, then S <

3 consists of the region inside S ′3, and also the region bounded by

S ′′3 that contains the open ray e−iθ(x33,∞).
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(5) If r > 1, then S <

3 consists of the region bounded by S3 that contains e−iθ(x31,∞).

If r = 1, then S <

3 consists of the region bounded by S3 containing the origin, and

also the region bounded by S3 containing e−iθ(a,∞).

Corollary 6.5. The curve S4 is symmetric about R and has the following properties.

(1) If r > 1, S4 ∩ R consists of the points

x41 = −bW0

(
1

er

)
, x42 = −bW0

(
− 1

er

)
, x43 = −bW−1

(
− 1

er

)
,

where −b/r < x41 < 0 < x42 < b/r < b < x43. Moreover S4 ∩ R = {x41, b} when

r = 1, and S4 ∩ R = {x41} when r < 1 (where again −b/r < x41 < 0).

(2) If r > 1, the graph of S4 consists of two components: a simple closed curve S ′4 in

Db/r and a simple unbounded curve S ′′4 in x43 + H.

(3) If r ≤ 1, the graph of S4 is connected and lies in x41 + H. Also S4 is simple if

r < 1.

(4) If r > 1, then S <

4 consists of the region inside S ′4 and the region bounded by S ′′4
that contains (x43,∞).

(5) If r < 1, then S <

4 consists of the region bounded by S4 that contains (x41,∞). If

r = 1, then S <

4 consists of the region bounded by S4 containing the origin, and also

the region bounded by S4 containing (a,∞).
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Section 7: Coordinates of Key Points

Here we determine precise coordinates for the intersection points of certain pairs of

Szegő curves. In the case of the points in S1 ∩ S3, which we consider first, we will once

again have need of the Lambert-W function. As usual we assume a and b are positive

integers with a < b.

Proposition 7.1. If θ 6= kπ for any k ∈ Z, then the intersection points of S1 and S3 are

p1 =
a

cos `rθ
W0

(
cos `rθ
e

)
ei(`rθ+π), p2 = − a

cos `rθ
W0

(
−cos `rθ

e

)
ei`rθ ,

and

p3 = − a

cos `rθ
W−1

(
−cos `rθ

e

)
ei`rθ .

If θ = kπ (with r 6= 1 if k is even), then the only intersection points are p1 = (a/e)i and

p2 = −(a/e)i. Moreover the points p1, p2, and p3 always lie on the line Lrθ.

Proof. Suppose θ 6= kπ. Any z ∈ S1 ∩ S3 must satisfy∣∣∣z
a
e1−reiθz/a

∣∣∣ =
∣∣∣z
a
e1−z/a

∣∣∣ = 1. (7.1)

Setting z = sei` for s > 0, the first equality in particular gives

rs cos(θ + `) = s cos `. (7.2)

If cos ` = 0 then (7.2) becomes sin θ = 0, so our assumption that θ 6= kπ implies cos ` 6= 0.

Now, from (7.2) we obtain

r(cos θ − sin θ tan `) = 1,

and hence

tan ` =
r cos θ − 1

r sin θ
.

There are two solutions:

`1 = arctan

(
r cos θ − 1

r sin θ

)
and `2 = π + arctan

(
r cos θ − 1

r sin θ

)
.
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We note that `1 in particular is precisely `rθ as given by (6.5), thus showing that all points

in the set S1 ∩ S3 lie on the line Lrθ.

From the second equality in (7.1) we obtain

s

a
e1−(s/a) cos ` = 1,

and hence

−s cos `

a
e−(s/a) cos ` = −cos `

e
,

and so if E(z) = zez it follows that

E

(
−s cos `

a

)
= −cos `

e
(7.3)

for ` ∈ {`1, `2}.

We consider first the ` = `1 case. Since `1 ∈ (−π/2, π/2) implies cos `1 > 0, we have

−(1/e) cos `1 ∈ [−1/e, 0). This makes clear that the value at right in (7.3) is in the domain

of both W0 and W−1, and there exist s2, s3 > 0 such that −(s2/a) cos `1 ∈ [−1, 0) and

−(s3/a) cos `1 ∈ (−∞,−1] with

−s2 cos `1
a

= W0

(
−cos `1

e

)
and − s3 cos `1

a
= W−1

(
−cos `1

e

)
.

Now we have solutions for s given by

s2 = − a

cos `1
W0

(
−cos `1

e

)
and s3 = − a

cos `1
W−1

(
−cos `1

e

)
for ` = `1, and therefore we have points p2 = s2e

i`1 and p3 = s3e
i`1 in S1 ∩ S3.

Next we consider ` = `2. Since cos `2 < 0 we have −(1/e) cos `1 ∈ (0, 1/e], implying the

value at right in (7.3) is in the domain of W0. Indeed, because W0 : (0,∞)→ (0,∞) is a

bijection, there exists a unique s1 > 0 such that −(s1/a) cos `2 ∈ (0,∞) and

−s1 cos `2
a

= W0

(
−cos `2

e

)
.

Now we have a solution for s given by

s1 = − a

cos `2
W0

(
−cos `2

e

)
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for ` = `2, and therefore the point p1 = s1e
i`2 is in S1 ∩ S3. This is the same formulation

of p1 as in the lemma, since `2 = `1 + π and cos `2 = − cos `1.

Suppose θ = kπ. We seek all z = x+ iy that satisfy (7.1). The first equality in (7.1)

yields |e±rz/a| = |e−z/a|, so that x/a± rx/a = 0 and either x = 0 or r = 1. If x = 0, then

the second equality in (7.1) implies |y| = a/e, and so z = ±(a/e)i are the only solutions.

The result is the same if r = 1 for odd k. �

In the foregoing proof there exists at each stage the technical necessity of additionally

solving the equation ∣∣∣z
a
e1−reiθz/a

∣∣∣ = 1

deriving from (7.1), but the work is similar and the outcome identical to the treatment of

the second equality in (7.1). We discount the case when θ = 2kπ for r = 1 since we then

find that S3 = S1.

The manner in which p1 and p2 are defined in Proposition 7.1 ensures that, for θ 6= kπ,

the point p1 lies always in C \H and p2 lies always in H. Thus, for fixed a, b, r, the manner

in which these points move as θ increases is not continuous. As θ → ∞, the segment

[p1, p2] that is a subset of Lrθ will rotate in clockwise fashion until it passes through the

imaginary axis, whereupon the points will switch places to remain in their specified half

planes. This is to say the designations p1 = (a/e)i and p2 = −(a/e)i in the case when

θ = kπ are arbitrary.

Lemma 7.2. Let r > 0.

(1) |p1| ≤ a/e for all θ ∈ R.

(2) |p1| < |p2| if θ 6= kπ, with equality if θ = kπ.

(3) |p2| < a for all θ ∈ R such that cos θ 6= 1/r, with p2 = a if cos θ = 1/r.

(4) |p3| > a if θ 6= kπ and cos θ 6= 1/r, with p3 = a if θ 6= kπ and cos θ = 1/r.

Proof.

Proof of (1). Proposition 7.1 makes clear that for any θ the point p1 lies on the portion of

S1 in C \ H, and so it’s sufficient to show that |z| ≤ a/e for any z ∈ S1 with Re(z) ≤ 0.
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Indeed, from |ϕ(z/a)| = 1 we obtain

|ϕ(z/a)| = 1 ⇒ |z||e1−z/a| = a ⇒ |z| = a

e
eRe(z)/a,

and so |z| ≤ a/e follows whenever Re(z) ≤ 0.

Proof of (2). Suppose θ 6= kπ, and fix x ∈ (0, 1/e]. Then there exist u, v > 0 such that

W0(x) = u and W0(−x) = −v, and so ueu = x and −ve−v = −x. Adding these results

gives ueu − ve−v = 0, so that
v

u
= eu+v > 1

holds, and therefore v > u. This shows that |W0(−x)| > |W0(x)|, and since (1/e) cos `rθ ∈

(0, 1/e] it follows that

|p1| =
a

cos `rθ

∣∣∣∣W0

(
cos `rθ
e

)∣∣∣∣ < a

cos `rθ

∣∣∣∣W0

(
−cos `rθ

e

)∣∣∣∣ = |p2|

by Proposition 7.1.

If θ = kπ, it is immediate from Proposition 7.1 that |p1| = |p2| = a/e.

Proof of (3). That |p2| < a if θ = kπ is clear, so assume θ 6= kπ. Suppose cos θ 6= 1/r.

By (6.5) it follows that `rθ ∈ (−π/2, π/2) with `rθ 6= 0, and thus 0 < cos `rθ < 1. Now

−e−1 cos `rθ ∈ (−1/e, 0), and since W0 maps (−1/e, 0) onto (−1, 0) we have

0 < 1 +W0

(
−cos `rθ

e

)
< 1.

Using Proposition 7.1 and the property W0(x) = xe−W0(x),

|p2| = −
a

cos `rθ
W0

(
−cos `rθ

e

)
=
(a
e

)
e−W0(−e−1 cos `rθ) =

a

e1+W0(−e−1 cos `rθ)
< a.

If cos θ = 1/r, then `rθ = 0 by (6.5), so that p2 = −aW0(−1/e) = a by Proposition 7.1.

Proof of (4). Suppose θ 6= kπ and cos θ 6= 1/r. From (6.5) we find that the latter condition

ensures `rθ 6= 0, and so 0 < cos `rθ < 1. Now we have −e−1 cos `rθ ∈ (−1/e, 0), and since

W0 maps (−1/e, 0) onto (−1, 0) while W−1 maps (−1/e, 0) onto (−∞,−1), Proposition

7.1 and part (2) give |p3| > |p2| > a. If cos θ = 1/r, then `rθ = 0 holds and Proposition 7.1

gives p3 = −aW−1(−1/e) = a. �
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Lemma 7.3. Let r5 be the value of r for which ρr = min{|z| : z ∈ S1}. Then

r5 =
b

a

[
eW0

(
1

e

)]a/b−1

> 1. (7.4)

Proof. Corollary 6.2(1) implies that x1 = −aW0(1/e) ∈ S1. Suppose z = x+ iy is such

that |z| < aW0(1/e). Then |z|/a < W0(1/e), and because E(w) = wew is increasing on

[−1,∞), we have

|z|
a
e|x|/a ≤ |z|

a
e|z|/a = E(|z|/a) < E(W0(1/e)) = 1/e,

and hence
|z|
a
e1−|x|/a ≤ |z|

a
e1+|x|/a < 1.

If x < 0, then ∣∣∣ϕ(z
a

)∣∣∣ =
|z|
a
e1−x/a =

|z|
a
e1+|x|/a < 1,

and so z /∈ S1. If x ≥ 0, then ∣∣∣ϕ(z
a

)∣∣∣ =
|z|
a
e1−|x|/a < 1,

and again z /∈ S1 results. Therefore min{|z| : z ∈ S1} = aW0(1/e).2 Now setting ρr equal

to min{|z| : z ∈ S1} gives rise to the equation

a

e

(
b

ar

) b
b−a

= aW0

(
1

e

)
,

and solving for r yields the expression at right in (7.4). This by definition is r5.

Finally, using the identity ln[W0(x)] = lnx−W0(x) for x > 0,

W0(1/e) > 0 ⇔ 1 + ln(1/e)−W0(1/e) < 0 ⇔ ln
(
eW0(1/e)

)
< 0,

and so eW0(1/e) < 1. Thus [eW0(1/e)]a/b−1 > 1 since a/b < 1, and the inequality in (7.4)

follows. �

2In fact x1 = −aW0(1/e) is the unique point on S1 that is closest to 0: putting z = x1e
it into |ϕ(z/a)| = 1

readily gives t = π.
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The motivation for denoting the special value in Lemma 7.3 by the symbol r5 will be

revealed early in §9.

Proposition 7.4. The intersection points of S2 and S3 are

q1 = ρr exp

[(
−θ − arccos

(
b

rρr
ln
erρr
b

))
i

]
and

q2 = ρr exp

[(
−θ + arccos

(
b

rρr
ln
erρr
b

))
i

]
for all r ∈ (0, r5]. Moreover q1, q2 ∈ Cr.

Proof. We have z ∈ S2 ∩ S3 if and only if

1

r

∣∣∣∣ϕ(reiθza
)∣∣∣∣ =

∣∣∣∣ϕ(reiθzb
)∣∣∣∣ = 1, (7.5)

so that in particular

1

ra

∣∣∣∣ϕ(reiθza
)∣∣∣∣a =

∣∣∣∣ϕ(reiθzb
)∣∣∣∣b

holds, and hence
ea|z|a

aa
=
ebrb|z|b

bb
. (7.6)

Solving for |z| then yields

|z| = a

e

(
b

ar

) b
b−a

= ρr,

which indicates that all intersection points of the curves S2 and S3 lie on the circle Cr.

Set z = ρre
it and solve for t with the second equality in (7.5). This gives

∣∣erρrei(θ+t)∣∣ =
(erρr

b

)b
,

whence

cos(θ + t) =
b

rρr
ln
(erρr

b

)
= e
(ar
b

) a
b−a

ln

(
b

ar

) a
b−a

=
ea

a− b

(ar
b

) a
b−a

ln
(ar
b

)
.

Provided that the rightmost expression is in [−1, 1], there are generally two solutions for t,

t1 = −θ − arccos

(
b

rρr
ln
erρr
b

)
and t2 = −θ + arccos

(
b

rρr
ln
erρr
b

)
,
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which results in the desired expressions for q1 and q2.

It remains to shows that

F (r) :=
ea

a− b

(ar
b

) a
b−a

ln
(ar
b

)
lies in [−1, 1] for r ∈ (0, r5]. First,

F ′(r) = − ea

b− a

(ar
b

) a
b−a
[
1 +

a

b− a
ln
(ar
b

)] 1

r
,

and so F ′(r) = 0 for r > 0 only when

1 +
a

b− a
ln
(ar
b

)
= 0,

or r = (b/a)e1−b/a := r1. Since F is increasing on (0, r1), limr→0+ F (r) = 0, and F (r1) = 1,

it is clear that F (r) ∈ (0, 1] for r ∈ (0, r1]. Then, since F is decreasing on (r1,∞) and

F (r5) =
ea

b

[
eW0(1/e)

]−a/b
ln
[
eW0(1/e)

]
= −a

b

[
eW0(1/e)

]1−a/b
= −1/r5

for r5 > 1, we conclude that −1 ≤ F (r5) ≤ 1 for all r ∈ (0, r5]. �

That the value r1 in the proof of Proposition 7.4 is less than r5 is apparent from the

observation that F (r) > 0 for r ∈ (0, r1] and F (r5) < 0, but in §9 (before the statement of

Lemma 9.2) it is shown that in fact r1 < 1.

Proposition 7.5. The intersection points of S1 and S4 are

o1 = ρr exp

[
i arccos

(
a

ρr
ln
eρr
a

)]
and

o2 = ρr exp

[
−i arccos

(
a

ρr
ln
eρr
a

)]
for all r ∈ (0, r5]. Moreover o1, o2 ∈ Cr.

Proof. We have z ∈ S1 ∩ S4 if and only if∣∣∣ϕ(z
a

)∣∣∣ = r
∣∣∣ϕ(z

b

)∣∣∣ = 1,
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so that ∣∣∣ϕ(z
a

)∣∣∣a = rb
∣∣∣ϕ(z

b

)∣∣∣b
holds and we again obtain (7.6). Thus |z| = ρr, and all intersection points of S1 and S4 lie

on Cr.

We next find t such that z = ρre
it satisfies |ϕ(z/a)| = 1. Obtaining

∣∣eρreit∣∣ =
(eρr
a

)a
,

it follows that cos t = G(r) for

G(r) :=
a

ρr
ln
(eρr
a

)
=

eb

a− b

(ar
b

) b
b−a

ln
(ar
b

)
.

Provided that G(r) ∈ [−1, 1], there are two solutions for t,

t1 = arccos

(
a

ρr
ln
eρr
a

)
and t2 = − arccos

(
a

ρr
ln
eρr
a

)
,

which results in the desired expressions for o1 and o2.

It remains to shows that G(r) ∈ [−1, 1] indeed holds for r ∈ (0, r5]. We have

G′(r) = − ea

b− a

(ar
b

) a
b−a
[
1 +

b

b− a
ln
(ar
b

)]
,

and so G′(r) = 0 for r > 0 only when

1 +
b

b− a
ln
(ar
b

)
= 0,

or r = (b/a)ea/b−1 := r3. Since G is increasing on (0, r3), limr→0+ G(r) = 0, and G(r3) = 1,

it is clear that G(r) ∈ (0, 1] for r ∈ (0, r3]. In addition, since G is decreasing on (r3,∞)

and

G(r5) =
ln[eW0(1/e)]

W0(1/e)
=

1 + ln(1/e)−W0(1/e)

W0(1/e)
= −1

we conclude both that r5 > r3 and −1 ≤ G(r5) ≤ 1 for all r ∈ (0, r5]. �
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Section 8: A Qualitative Overview

We undertake here a survey of how the zero attractor A of (6.2) evolves as r →∞ in

the case when C = 1, a = 1, b = 2, and θ = 1. There are five critical values, κ1 < · · · < κ5,

when the characterization of A as a union of regional boundaries passes to a new homotopy

class as r passes from one open interval (κi−1, κi) to the next open interval (κi, κi+1),

starting with (0, κ1) and ending with (κ5,∞). (Whether κi itself should be included in

(κi−1, κi) or (κi, κi+1) depends on the value of i.) In the next section we will see that, in

0 1 2 3 4
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Figure 10. An r ∈ (0, κ1) case, illustrated by the zeros of P400(z) for
(a, b, θ) = (1, 2, 1) and r = 0.60. Here u = (b/r)e−i and `rθ ≈ −0.929.
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Figure 11. The r = κ1 case illustrated by the zeros of P400(z), with
κ1 = 2/e here.

the general case, most of the κi values are functions of at least one of the parameters a, b,

θ.

In Figure 10 is shown the r = 0.6 case, featuring the points p1, p2, p3 in S1∩S3, and q1,

q2 in S2 ∩ S3. (That p1, p2, p3 ∈ Lrθ and q1, q2 ∈ Cr follow from Propositions 7.1 and 7.4,

respectively.) This is a fairly representative value in the interval (0, κ1). Indeed, for small

r ∈ (0, κ1) the appearance of A changes little as r → 0+ save that the radius of Cr grows

without bound. The union of the boundaries of the regions Ω1, Ω2, Ω3, and Ω4 in Figure

10 precisely equals A. However, as r → κ−1 the circle Cr shrinks until it includes the point
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Figure 12. An r ∈ (κ1, κ2) case illustrated with zeros of P400(z) for r = 0.90.

u = (b/r)e−i on S2. In the present setting in which (a, b, θ) = (1, 2, 1) we find this occurs

when r = 2/e ≈ 0.736, shown in Figure 11. Once r surpasses 2/e a new component of Ω3

arises, shown in Figure 12, whose boundary contributes to A. (The reason for regarding

the new region as a component of Ω3 will be made manifest when the two domains merge

for higher values of r.) Thus we conclude that κ1 = 2/e is the first critical value.

Observation 8.1. For r ∈ (0, κ1] with κ1 = 2/e, A is disconnected and is the union of

the boundaries of the connected regions

Ω1 : C \ Dr
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Figure 13. The r = κ2 case illustrated by the zeros of P400(z), with κ2 = 1
here.

Ω2 : Dr \
[(
S <

1 ∪ S
<

3

)
∩ Da

]
Ω3 : S <

3 ∩H−
rθ ∩ Da

Ω4 : S <

1 ∩H+

rθ ∩ Da.

For r ∈ (κ1, κ2) the zero attractor A has the appearance suggested by the zeros of

P400(z) in Figure 12. In particular A consists of the boundaries of the regions Ω1, Ω2, Ω3,

and Ω4. As r → κ−2 the two components of the curve S3 draw toward one another, until

finally when r = 1 they meet at the point ae−iθ as shown in Figure 13, and A becomes a
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Figure 14. An r ∈ (κ2, κ3) case illustrated with zeros of P400(z) for r = 1.11.

connected set. Once r exceeds 1 the two components of Ω3 merge as in Figure 14, so that

while A remains connected, it is in a decidedly different homotopy class. Thus κ2 = 1 is

the second critical value. Because |u| = b/r, and the bounded and unbounded components

of S3 lie inside and outside Da, we have the following.

Observation 8.2. For r ∈ (κ1, κ2) with κ2 = 1, A is disconnected and is the union of the

boundaries of the regions

Ω1 : C \
[
Dr ∪

(
S <

2 ∩ Db/r
)]

Ω2 : Dr \
[
S <

3 ∪
(
S <

1 ∩ Da
)]
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Figure 15. An r ∈ (κ3, κ4) case illustrated with zeros of P400(z) for r = 1.25.

Ω3 :
[
S <

3 ∩H−
rθ ∩ Da

]
q
[
S <

2 ∩ S <

3 ∩ Aa,b/r
]

Ω4 : S <

1 ∩H+

rθ ∩ Da,

where only Ω3 is disconnected

For r ∈ (κ2, κ3) we find A has a form that is largely traced by the zeros of P400(z) in

Figure 14, where r = 1.11. The critical value κ3 is achieved when r is such that the radius

of Cr equals a. Then for r ≥ κ3 the region Ω2 inside Cr becomes disconnected, as in Figure

15. Just as interesting, however, is that the curve S4 begins contributing to A for the first

time. In Figure 15 the contribution lies between points o1 and o2 (the points where Cr
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Figure 16. An r ∈ (κ4, κ5) case illustrated with zeros of P400(z) for r = 1.50.

intersects S1), and while this is by no means visually obvious, it is borne out by a careful

asymptotic analysis later on in §12. The radius of Cr when a = 1 and b = 2 is 4/er2, and

so κ3 = 2/
√
e ≈ 1.213 in the present setting.

Observation 8.3. For r ∈ [κ2, κ3) with κ3 = 2/
√
e, A is connected and is the union of

the boundaries of the connected regions

Ω1 : C \
[
Dr ∪

(
S <

2 ∩ Db/r
)]

Ω2 : Dr \
[
S <

3 ∪
(
S <

1 ∩ Da
)]

Ω3 : S <

2 ∩ S <

3 ∩H−
rθ ∩ Db/r
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Figure 17. An r ∈ (κ5,∞) case illustrated with zeros of P400(z) for r = 3.

Ω4 : S <

1 ∩H+

rθ ∩ Da.

For r ∈ (κ3, κ4) we find A has a form that is largely traced by the zeros of P400(z) in

Figure 15, where r = 1.25. The region with boundary that traces S1 from o2 to p2, S3 from

p2 to q1, and Cr from q1 to o2 is a component of Ω2. The critical value κ4 is reached when

r is such that the radius of Cr equals |p2|. Then the smaller component of Ω2 vanishes,

and Ω2 becomes connected once again. For the statement of the next observation we

emphasize that the curve S4 has two components for any r > 1, with the region S <

4 having
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a bounded and unbounded component. The unbounded component, however, always lies

in the half-plane b+ H, a fact established by Corollary 6.5.

Observation 8.4. For r ∈ [κ3, κ4) with κ4 being such that ρκ4 = |p2|, A is the union of

the boundaries of the regions

Ω1 : C \
[
Dr ∪

(
S <

2 ∩ Db/r
)
∪
(
S <

4 ∩ Db
)]

Ω2 : Dr \
[
S <

3 ∪ S
<

1

]
Ω3 : S <

2 ∩ S <

3 ∩H−
rθ ∩ Db/r

Ω4 : S <

1 ∩ S <

4 ∩H+

rθ ∩ Da,

where only Ω2 is disconnected.

Region Ω2 vanishes completely at the same time both the circle Cr and the curve S1

cease to contribute to A, and so this is when the final critical value κ5 has been attained.

Since Cr is a part of the zero attractor so long as some piece of it lies outside S <

1 , we find

that κ5 is that value of r for which the radius of Cr equals the modulus of the point where

S1 intersects (−∞, 0).

Observation 8.5. For r ∈ [κ4, κ5) with κ5 as described above, A is the union of the

boundaries of the connected regions

Ω1 : C \
[
Dr ∪

(
S <

2 ∩ Db/r
)
∪
(
S <

4 ∩ Db
)]

Ω2 : Dr \ S
<

1

Ω3 : S <

2 ∩ S <

3 ∩H−
rθ ∩ Db/r

Ω4 : S <

1 ∩ S <

4 ∩H+

rθ ∩ Da.

For r ∈ (κ5,∞) the zero attractor is relatively simple, as it no longer tracks along Cr,

S1, or S3. The r = 3 case in Figure 17 looks much the same as the r = 10 case or higher.

With Ω2 gone, only three regions remain.
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Observation 8.6. For r ∈ [κ5,∞), A is the union of the boundaries of the connected

regions

Ω1 : C \
[(
S <

2 ∩ Db/r
)
∪
(
S <

4 ∩ Db
)]

Ω3 : S <

2 ∩H−
rθ ∩ Db/r

Ω4 : S <

4 ∩H+

rθ ∩ Da.
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Section 9: Critical Values of r > 0

Here we continue to lay the groundwork that will enable us to ascertain the zero

attractor A of the sequence

Pn(z) = san(nz) + Csbn(reiθnz)

for positive integers a < b, nonzero real C, positive real r, and real θ. The task is lengthy,

for as the previous section showed, the topological nature of A depends on r; and as we’ll

see in the present section, even for fixed r it may be that the nature of A depends on θ.

As stated at the beginning of §6 all r = 1 cases have already been treated. However, the

developments of this section will be applicable to all r = 1 cases for which cos θ 6= 1. Since

the r = 1, cos θ = 1 scenarios are treated in §4 for C 6= −1 and [3] for C = −1, we will

henceforth assume that r = 1 and cos θ = 1 are never simultaneously the case. Working

under this assumption, it will become apparent in the course of the asymptotic analyses in

sections 11 and 12 that the value of C has no impact on the nature of A. In any event

the curves Sk, Cr, and Lrθ defined early in §6, and the regions Ωk introduced in §8, do not

depend on C, and since the present section is concerned only with certain properties of

these curves and regions, we will neglect making any reference to C until future sections.

It is convenient to think of r as being “time,” and speak of the zero attractor A of

(Pn(z)) as an object that evolves as time r increases and the other parameters a, b, and θ

are held constant. In the previous section we let a = 1, b = 2, and θ = 1 in particular, and

presented a series of illustrations of A in order of increasing r. Five critical values of r

were identified, denoted κ1, . . . , κ5, which correspond to times when the homotopy class

of the zero attractor changes. We will find in this section’s general setting that no other

critical values exist aside from the five already discovered, and indeed in some cases there

are fewer than five. Most of the critical values depend in some way on at least some of

the other parameters a, b, and θ. Also the four regions Ω1, . . . ,Ω4 featured in §8 figure

prominently in the general setting, with no additional regions being necessary.

We now give decidedly topological definitions for the five critical values. A large part

of the work done in the present section will be devoted to determining, where possible,
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explicit algebraic expressions for these critical values of r in terms of the other parameters.

Any candidate for a critical value κj , or a bound on same, we will denote provisionally by

rj .

Definition 9.1. Define the regions

Ω2 = Dr \
[(
S <

1 ∩ Da
)
∪
(
S <

3 ∩ Db/r
)]

and

Ω3 = S <

2 ∩ S <

3 ∩
[
(H−

rθ ∩ Da)q Aa,b/r
]
,

where Aa,b/r = ∅ if b/r < a. Taking ε > 0 to be sufficiently small, we specify the following

critical values of r > 0.

(1) κ1 is the least r such that Ω3 is connected for r ∈ (0, κ1] and disconnected for

r ∈ (κ1, κ1 + ε).

(2) κ2 is the least r such that Ω3 is disconnected for r ∈ (κ2 − ε, κ2] and connected for

r ∈ (κ2,∞).

(3) κ3 is the least r such that Ω2 is connected for r ∈ (0, κ3) and disconnected for

r = κ3.

(4) κ4 is the least r such that Ω2 is disconnected for r ∈ (κ4 − ε, κ4) and connected for

r = κ4.

(5) κ5 is the least r such that Ω2 = ∅ for r = κ5.

Though not likely obvious at a glance, the regions Ω2 and Ω3 specified in Definition

9.1 correspond to the regions of the same name in the previous section’s figures. (The

complicated expressions given above for Ω2 and Ω3 stem from the need to accommodate

all possible parameter values, whereas in §8 the two regions were able to assume relatively

simple expressions owing to the specialized path within the parameter space to which that

section restricted itself.) We also define the subregions

Ω′3 = S <

2 ∩ S <

3 ∩H−
rθ ∩ Da (9.1)

and

Ω′′3 = S <

2 ∩ S <

3 ∩ Aa,b/r, (9.2)



67

so that Ω3 = Ω′3 q Ω′′3.

Before beginning our analyses we give here a broad overview of what they will discover.

First, the regions Ω1 and Ω4 of §8 are never mentioned in this section because they never

do anything interesting: they always exist and are always connected. As for Ω2, it turns

out that it is always connected if the angle θ falls within a sector I in H that is symmetrical

about the real axis and depends only on a and b; otherwise it does become disconnected, as

in Figure 15, for some bounded interval of r values. That Ω2 is connected for all r if θ ∈ I

means that the critical values κ3 and κ4 do not exist in this case. Moreover, for sufficiently

large r the region Ω2 vanishes altogether, as in Figure 17, which never occurs with any of

the other regions. Finally, Ω3 is always disconnected on some bounded r-interval, no matter

the values of the other parameters. Tables 1 and Table 2 give the number of components

constituting Ω2 and Ω3 when θ /∈ I and θ ∈ I, respectively, for r in the different open

subintervals of (0,∞) determined by the critical values.

There may be points in the parameter space where the homotopy class of the zero

attractor may change additional times as r increases in the interval (κ4, κ5). Fortunately

this potentiality can be ruled out whenever cos θ ≤ 0, and it will in any case be shown

that the inequality κj ≤ κj+1 always holds whenever κj and κj+1 both exist. We now

commence with our analyses.

For the statement of the first lemma consider the function

f(x) =
x

a
e1−x/a.

Table 1. The number of components of Ω2 and Ω3 as r varies for θ /∈ I,
where I depends only on a and b

θ /∈ I
r-interval Ω2 Ω3

(0, κ1) 1 1

(κ1, κ2) 1 2

(κ2, κ3) 1 1

(κ3, κ4) 2 1

(κ4, κ5) 1 1

(κ5,∞) ∅ 1
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Table 2. The number of components of Ω2 and Ω3 as r varies for θ ∈ I.
In this case κ3 and κ4 do not exist.

θ ∈ I
r-interval Ω2 Ω3

(0, κ1) 1 1

(κ1, κ2) 1 2

(κ2, κ5) 1 1

(κ5,∞) ∅ 1

Since f(a) = 1 and

f ′(x) =
1

a

(
1− x

a

)
e1−x/a < 0

for all x > a, it follows that f(x) < 1 on (a,∞), and hence in particular

r1 :=
b

a
e1−b/a < 1

for any a, b ∈ Z such that 1 ≤ a < b.

Lemma 9.2. Fix θ ∈ R and a, b ∈ Z with 1 ≤ a < b. Then the region Ω3 is connected if

and only if r ∈ (0, r1] ∪ (1,∞).

Proof. Suppose 0 < r ≤ r1. For x3 as defined in Proposition 6.1 we first show that x3 ≥ b/r.

From r ≤ r1 comes −(b/a)e−b/a ≤ −r/e, with both values in [−1/e, 0). Recalling from

page 39 that W−1 : [−1/e, 0)→ (−∞,−1] is a decreasing function, we next obtain

− b
a

= W−1

(
− b
a
e−b/a

)
≥W−1

(
−r
e

)
,

whereupon multiplying by −a/r gives

b

r
≤ −a

r
W−1

(
−r
e

)
= x3. (9.3)

Now, since r < 1, by Corollary 6.4 the region S <

3 is disconnected with bounded component in

the disc Da and unbounded component in the half-plane e−iθ(x3+H), so that S <

3 ∩Aa,b/r = ∅

here, and thus

Ω3 = S <

2 ∩ S <

3 ∩H−
rθ ∩ Da. (9.4)
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Corollary 6.3(4) makes clear that S <

2 ∩Db/r is a convex set, while Proposition 6.1(7) implies

S <

3 ∩ Da is convex. The unbounded components of S <

2 and S <

3 both lie outside Db/r, and

since Da ⊆ Db/r here, so that Da = Da ∩ Db/r, (9.4) may be recast as an intersection of

convex sets:

Ω3 = (S <

2 ∩ Db/r) ∩ (S <

3 ∩ Da) ∩H−
rθ.

Hence Ω3 is convex, and therefore is connected.

Next suppose r > 1. By Corollary 6.4 the boundary of the region S <

3 is a simple

continuous curve that partitions the complex plane, while S <

2 ∩ Db/r is convex as before.

In fact, with v(x) as given by (6.9),

S <

3 =
⋃
x>x1

e−iθ
(
x− iv(x), x+ iv(x)

)
;

and with

w(x) =

√
b2

r2
e2rx/b−2 − x2

and x′1 = −(b/r)W0(1/e),

S <

2 =
⋃
x>x′1

e−iθ
(
x− iw(x), x+ iw(x)

)
.

Recalling that be−iθ/r is the self-intersection point of S2, the above characterizations of

S <

3 and S <

2 make clear that S <

2 ∩ S <

3 ∩Db/r, which is S <

2 ∩ S <

3 ∩ (Da qAa,b/r), is connected,

and therefore so too is Ω3.

For the converse, suppose that r1 < r < 1, so −r/e < −(b/a)e−b/a, and by the steps

leading to (9.3)—only with all inequalities reversed—we obtain x3 < b/r. Corollary 6.4

implies x3 > a/r > a > x2, and the two components of S <

3 lie in e−iθ(x3 + H) and Da. It

follows that S <

3 ∩ ∂Da = ∅, and thus Ω3 ∩ ∂Da = ∅. With Ω′3, Ω′′3 as defined by (9.1) and

(9.2), we find that Ω′3 6= ∅ since it contains points in H−
rθ that are sufficiently close to the

origin, and also Ω′′3 6= ∅ since e−iθ(x3, b/r) ⊆ Ω′′3. Therefore Ω3 is disconnected.

If r = 1, then x3 = x2 = a, so S <

3 has components in e−iθ(a+ H) and Da by Corollary

6.4. Once again S <

3 ∩ ∂Da = ∅, and we conclude that Ω3 is disconnected. �
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The next proposition now follows directly from Lemma 9.2 and the remarks made

immediately before it. In particular the value r1 is found to be κ1, and the uniqueness

of the critical values κ1 and κ2 is seen to be assured even if the word “least” were to be

omitted from their descriptions in Definition 9.1.

Proposition 9.3. For θ ∈ R and a, b ∈ Z with 1 ≤ a < b,

κ1 =
b

a
e1−b/a < 1 and κ2 ≡ 1.

To determine the next critical value κ3 we again start with a lemma, this time addressing

the connectedness property of the region Ω2 given in Definition 9.1. Before stating the

lemma we first establish a needed fact. For fixed a ≥ 1 let

f(x) =
x

a
ea/x−1.

Since f(a) = 1 and

f ′(x) =

(
1

a
− 1

x

)
ea/x−1 > 0

for all x > a, we have

r3 :=
b

a
ea/b−1 > 1

whenever 1 ≤ a < b. After the next lemma we will discover in short order that κ3 = r3.

Lemma 9.4. For θ ∈ [0, π] let

Ω′2 = Ω2 ∩ {z : 0 < arg z < 2π − θ} and Ω′′2 = Ω2 ∩ {z : −θ ≤ arg z ≤ 0},

so that Ω2 = Ω′2 q Ω′′2. Defining

I =
[
− arccos(1/r3), arccos(1/r3)

]
,

the following hold.

(1) Ω2 is connected if 0 < r < r3.

(2) Ω2 is connected if r ≥ r3 and θ ∈ I.

(3) Ω′2 and Ω′′2 are connected if r ≥ r3 and θ /∈ I.
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If θ ∈ [−π, 0] the same conclusions hold for regions

Ω̃′2 = Ω2 ∩ {z : −θ < arg z < 2π} and Ω̃′′2 = Ω2 ∩ {z : 0 ≤ arg z ≤ −θ}.

Before proceeding with the proof the significance of the interval I of θ values bears

some mention. It is easy to verify that r3 is the unique value of r for which ρr = a, and

since ρr decreases as r increases, we find that the teardrop-shaped portion of S <

1 lies within

the disc Dr for all 0 < r < r3. Figures 10 through 14 of the previous section illustrate

this fact, which is wholly independent of the values of the other parameters a, b, and θ.

By definition the region Ω2 is what’s left of Dr after removing both the teardrop-shaped

portion of S <

1 as well as the portion of S <

3 that intersects Dr, and part (1) of the lemma

states that Ω2 is connected in the case when ρr > a (i.e. when 0 < r < r3). In the proof of

part (1) we undertake some pains to “firm up” this assertion which might otherwise be

passed off as being clear owing to the simple and well-studied nature of the curves involved.

Now, once r attains the value r3 or exceeds it by a nominal amount (so that some part

of the teardrop-shaped portion of S <

1 falls outside Dr) one of two things must occur: either

Ω2 becomes disconnected as in Figure 15, or Ω2 remains connected as in Figure 18. Which

scenario occurs depends on whether the point a (the tip of the teardrop) lies within S <

3

when ρr = a (i.e. when r = r3). Given that both figures have a = 1, b = 2, and r = 1.25,

it is clear that the parameter that makes the difference is θ. The endpoints of I are in

fact the θ values for which the point a on the curve S1 lies on S3 when ρr = a (i.e. when

r = r3). Thus Figure 15 illustrates a θ /∈ I case for r slightly larger than r3 ≈ 1.213, with

Ω′2 comprising all of Ω2 save the portion with vertices p2, q1 and o2, which is Ω′′2. If θ is

changed from its §8 value of 1 to something smaller such as 0.4, however, we obtain the

θ ∈ I case shown in Figure 18, where I ≈ [−0.6, 0.6] is also depicted. These situations are

addressed in parts (2) and (3) of the lemma, and in the corresponding parts of the proof

we will appeal much more to the known nature of the relevant curves to make the case

for the connectedness of Ω2 or its subregions Ω′2 and Ω′′2 so as to avoid becoming mired in

topological technicalities.
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Proof. We assume throughout that θ ∈ [0, π], as the proof for θ ∈ [−π, 0] is similar. A

simple appeal to periodicity then extends the proof to all real θ.

Proof of (1). Suppose r ∈ (0, κ1]. Then r < 1, so that x3 ≥ b/r by the proof of

Lemma 9.2 up to (9.3), and thus the point x33 = x3e
−iθ in Corollary 6.4 is such that

|x33| ≥ b/r > a. Next, referencing parts (2) and (4) of Corollary 6.4, we find that the

bounded and unbounded components of S <

3 lie inside Da and outside Db/r, respectively, so

that S <

3 ∩ Db/r = S <

3 ∩ Da, and hence

Ω2 = Dr \
[(
S <

1 ∪ S
<

3

)
∩ Da

]
. (9.5)

Since ρr3 = a and ρR decreases as R increases, we have ρR > a for all R ∈ (0, r3), and

hence ρr > a on account of the fact that κ1 < 1 < r3 by Proposition 9.3 and the remarks

after it. This observation, together with (9.5), makes clear that the outer boundary of Ω2

is simply the circle Cr, while the inner boundary must lie in Da and is in fact the boundary

of the domain (S <

1 ∪ S <

3 ) ∩ Da. Therefore Ω2 is homeomorphic to an annulus and hence

connected.

For r ∈ (κ1, 1) we of course still have ρr > a and |x33| > a, so that, as before, the

inner boundary of Ω2 is a simple closed curve in Da. The outer boundary, with no further

analysis, is either Cr again, or else (as happens to be the case) is the portion of Cr lying

outside S <

3 together with the portion of the unbounded component of S3 lying in Dr. This

results in a “dented” circle as in Figure 12, with the dent lying outside Da by Corollary

6.4(2). Again Ω2 is homeomorphic to an annulus and so connected.

In the r = 1 case Corollary 6.4 informs us that S3 becomes connected, and in fact is

the well-known curve S1 rotated by −θ about the origin (i.e. S3 = e−iθS1) as in Figure

13; and since ρ1 > a, removing S <

1 ∩ Da and S <

3 from D1 results in a set that is connected.

Therefore Ω2 is connected.

Suppose r ∈ (1, r3), so ρr > a still holds, and thus the connectedness of Dr \ (S <

1 ∩ Da)

is assured. By Corollary 6.4 the curve S3 is simple as well as connected, with S <

3 an

unbounded connected and simply connected domain that is symmetrical about the line

t 7→ te−iθ and contains the origin, as in Figure 14. These observations, together with

Proposition 7.4, make clear that S3 intersects the circle Cr at least at the points q1 and
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q2, with q1 6= q2 in particular. Indeed, carrying out calculations like those in the proof of

Proposition 7.4, we find the system of equations |ϕ(reiθz/a)| = r, |z| = ρr can have no

more than two solutions for z, so S3 must pass once into Dr at q1 and pass once out at

q2, with the implication that removal of S <

3 from Dr will not disconnect the disc. Indeed

Dr \ S
<

3 is also simply connected since Dr ⊆ Db/r on account of the equation ρr = b/r

having unique solution r = κ1 < 1, with ρr < b/r for r > κ1. Next, S1 ∩ S3 ∩ Da consists

of the two distinct points p1 and p2 by Proposition 7.1 and Lemma 7.2, so it may be

reasonably surmised—and will soon be shown—that the simple curve S3 passes once into

the domain S <

1 ∩ Da (convex by Corollary 6.2) at p1, and then passes once out at p2. If

this is the case, then removal of S <

1 ∩ Da from the connected and simply connected region

Dr \ S
<

3 results in a connected set that is, by definition, Ω2.
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Figure 18. An r ∈ (r3,∞), θ ∈ I case illustration with zeros of P340(z)
and (a, b, r, θ) = (1, 2, 1.25, 0.4). Sector I ≈ [−0.6, 0.6] lies between the two
rays in H.
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It remains to verify our “reasonable surmisal”; that is, we must show that S3 passes

properly into and out of the interior of S <

1 ∩ Da via the points p1 and p2, rather than

“bounce” off the boundary of the region at these points and thereby cause a pocket of Ω2 to

be isolated from the rest. Working in R2, the leftmost point on the curve S of Proposition

6.1 that lies on the x-axis is (x1, 0). Recalling that S3 is the curve S of Proposition 6.1

rotated about the origin by −θ, we wish to show that (x1, 0) is in fact the leftmost point on

all of S, and there are no other “local” leftmost points, which in light of the smoothness of

S for r > 1 must necessarily be points where the curve has a vertical tangent line. If Ŝ is

S rotated by −π/2, then our objective is met if we show that (0,−x1) is the unique global

maximum point on Ŝ, and there are no other local maxima (necessarily points where the

tangent line is horizontal). The equation for Ŝ in C is |ϕ(irz/a)| = r, which in R2 may be

rendered as √
x2 + y2 = ae−ry/a−1 (9.6)

via manipulations like those in (6.8). Squaring both sides of (9.6) and differentiating with

respect to x readily yields

y′ = − x

y + are−2ry/a−2
,

and thus y′ = 0 if and only if x = 0. Setting x = 0 in (9.6) gives |y|ery/a/a = 1/e after a

bit of algebra, and hence
ry

a
ery/a = ±r

e
.

Recalling that E(x) = xex has range [−1/e,∞), the equation E(ry/a) = −r/e has

no solution for r > 1. The equation E(ry/a) = r/e, on the other hand, has solution

y = (a/r)W0(r/e) = −x1. The point (0,−x1) on Ŝ must be a unique (global) maximum,

for Proposition 6.1 makes clear that Ŝ is bounded above and unbounded below. (Of course

(0,−x1) on Ŝ corresponds to (x1, 0) on S.) This implies a shape for S3 such that the curve

must intersect S1 transversally at p1 and p2, thereby precluding any possibility of S3 being

disjoint from the interior of S <

1 ∩ Da for r ∈ (1, r3).

Proof of (2). Fix r ≥ r3 and θ ∈ I, so in particular 0 ≤ θ ≤ arccos(1/r3) since θ ∈ [0, π].

Suppose z ∈ Dr is such that −θ ≤ arg z ≤ 0, so z = seit for some s > 0 and t ∈ [−θ, 0].
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Let f(x) = ln(ex/a) and g(x) = x/a. For E(x) = xex, we find f(x) = g(x) implies

E(−x/a) = −1/e, and because E(x) has a global minimum at E(−1) = −1/e, it follows

that −x/a = −1 and thus x = a is the only solution. Now, since f(a/2) < g(a/2) and

f(2a) < g(2a), the intermediate value theorem makes clear that f(x) < g(x) for all

x ∈ (0, a) ∪ (a,∞), so that

ln
(es
a

)
≤ s

a
=
sr3

b
e1−a/b ≤ sr

b
e1−a/b,

and hence
a

sr
ln
(es
a

)
≤ 1

r3
. (9.7)

On the other hand t+ θ ∈ [0, θ] implies

cos(t+ θ) ≥ cos θ ≥ cos

(
arccos

1

r3

)
=

1

r3
.

Taken together our findings indicate that

cos(t+ θ) ≥ a

sr
ln
(es
a

)
,

which leads to ∣∣∣esrei(θ+t)∣∣∣ ≥(es
a

)a
,

and finally ∣∣∣∣ϕ(reiθza
)∣∣∣∣ ≤ r.

That is, z ∈ S <

3 .

In the proof of part (1) we noted that ρr < b/r for r > κ1. Here r ≥ r3 by hypothesis,

and since r3 > κ1 it follows that Dr ⊆ Db/r and hence z ∈ Db/r. Now we have z ∈ S <

3 ∩Db/r,

implying z /∈ Ω2 and more to the point z /∈ Ω′′2. Therefore Ω′′2 = ∅, and so Ω2 = Ω′2. That

Ω′2 is connected we take to be clear from the nature of the curves S1 and S3, noting as in

the proof of part (1) that S3 intersects the teardrop-shaped portion of S1 at precisely two

points.

Proof of (3). Fix r ≥ r3 and θ /∈ I. That Ω′2 is connected follows from the same observations

made in the proof of part (2). As for Ω′′2, its connectedness is evident owing to its boundary
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being a simple closed curve that is the piecewise-smooth joining of portions of S1, S3, and

the circle Cr, with vertices being one of the points qj , one of the points oj , and point p2

(as in Figure 15).

If r = r3 in particular, so that a ∈ Cr, Propositions 7.4 and 7.5 show the qj and oj

points lie on Cr (so |qj | = |oj | = a), while |p2| < a by Lemma 7.2, and thus Ω′′2 6= ∅.

Moreover Ω′′2 must be connected, for otherwise there must be at least one additional point

of intersection amongst Cr, S1, and S3 beyond those which were found to exist in §7. �

The first two parts of Lemma 9.4 imply that κ3 and κ4 do not exist for any θ ∈ I. For

θ /∈ I the next proposition informs us that κ3 is none other than r3.

Proposition 9.5. If θ /∈ I, then

κ3 =
b

a
ea/b−1 > 1.

Proof. Fix θ /∈ I, assuming θ ∈ [0, π] for definiteness. In light of Lemma 9.4(1) it will

suffice to show that Ω2 is disconnected when r = r3.

Since cos θ 6= 1/r3 and ρr3 = a, Lemma 7.2 implies |p2| < ρr3 , and so the situation

is nearly as in Figure 15 except the circle Cr3 contains the point a. The boundary of Ω′′2

must therefore be the simple closed curve consisting of the piece of S1 in H+

r3θ
from a to

p2, the piece of S3 in H−
r3θ

from p2 to q1, and the piece of Cr3 in the lower half-plane from

q1 to a. The points p2, q1, and a are readily found to be distinct in the present setting

by computing their coordinates using the formulas furnished in §7, and therefore Ω′′2 6= ∅.

That Ω′2 is nonempty can be verified by showing that it contains ai/2. Since∣∣∣∣ϕ(ai/2a
)∣∣∣∣ =

1

2

∣∣e1−i/2∣∣ =
e

2
> 1,

we have ai/2 ∈ S >

1 ; and since, for r = r3,

θ ∈ [0, π] ⇒ −r
2

cos(θ + π/2) ≥ 0 ⇒ e−(r/2) cos(θ+π/2) ≥ 1,

so that ∣∣∣∣ϕ(reiθ(ai/2)

a

)∣∣∣∣ =
er

2

∣∣e−rieiθ/2∣∣ =
er

2
e−(r/2) cos(θ+π/2) > r,

we also have ai/2 ∈ S >

3 . Clearly ai/2 ∈ Dr3 = Da, and so ai/2 ∈ Ω′2.
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On the other hand, [0,∞) ⊆ S <

1 by Corollary 6.2(3) and e−iθ[0,∞) ⊆ S <

3 by Corollary

6.4(5), so that [0,∞) ∩ Ω2 = ∅ since Dr = Da, and e−iθ[0,∞) ∩ Ω2 = ∅ also. Because

the nonempty regions Ω′2 and Ω′′2 are each subsets of one of the two sectors formed by the

rays [0,∞) and e−iθ[0,∞), we conclude that Ω2 is disconnected. Therefore κ3 = r3, and it

was already shown that r3 > 1. A symmetrical argument leads to the same conclusion if

θ ∈ [−π, 0], and so the conclusion holds for any θ /∈ I. �

Lemma 9.6. Define r4 to be the smallest value of r for which ρr = |p2|. Then r4 exists

for any θ, with r4 > κ3 whenever θ /∈ I. Moreover r4 is the only solution to ρr = |p2| if

cos θ ≤ 0.

Proof. First, θ /∈ I implies cos θ 6= 1/κ3, so for r = κ3 we have |p2| < a by Lemma 7.2

while ρr = a. Since ρr decreases as r increases, and |p2| ≤ a in any case, it’s clear that

r4 > κ3 if r4 exists.

As for existence, ρr = |p2| is equivalent for any θ to

a

e

(
b

ar

) b
b−a

= − a

cos `rθ
W0

(
−cos `rθ

e

)
by (6.4) and Lemma 7.2, which with the property W0(x) = xe−W0(x) becomes

a

e

(
b

ar

) b
b−a

= − a

cos `rθ

(
−cos `rθ

e
e−W0(−e−1 cos `rθ)

)
,

and hence

W0

(
−cos `rθ

e

)
=

b

b− a
ln
(ar
b

)
. (9.8)

The equation (9.8) can be shown to always have at least one solution for r in terms of

the parameters a, b, and θ. Define

fθ(r) = W0

(
−cos `rθ

e

)
and λ(r) =

b

b− a
ln
(ar
b

)
. (9.9)

Noting that

0 < r < 1 ⇒ 2r < r2 + 1 ⇒ r2 − 2r cos θ + 1 > 0,
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use of the identity (6.6) yields

lim
r→0+

cos `rθ = lim
r→0+

r| sin θ|√
r2 − 2r cos θ + 1

= 0,

and so fθ(r) → W0(0) = 0 as r → 0+. Since λ(r) → −∞ as r → 0+ there exists some

r′ > 0 such that λ(r′) < fθ(r
′). On the other hand fθ(r)→W0(−| sin θ|/e) ∈ [−1, 0] and

λ(r) → ∞ as r → ∞, and so λ(r′′) > fθ(r
′′) for some r′′ > 0. The intermediate value

theorem now implies there exists some r > 0 such that fθ(r) = λ(r), and therefore (9.8)

has at least one solution for any θ ∈ R. The total number of solutions must be finite, and

so we may further conclude that there is a smallest solution. This proves the existence of

r4.

Before commencing the uniqueness inquiry we note that, because the possibility that

cos θ = 1 when r = 1 is excluded throughout this section, the inequality

r2 − 2r cos θ + 1 > 0 (9.10)

holds for all r > 0.

Suppose cos θ ≤ 0. Since

W ′0(x) =
1

x+ eW0(x)

when x > −1/e, for r > 0 such that cos `rθ < 1 we obtain

f ′θ(r) =
1

cos `rθ − efθ(r)+1
· (1− r cos θ)| sin θ|

(r2 − 2r cos θ + 1)3/2
(9.11)

after some simplification. In fact, cos `rθ < 1 is assured whenever cos θ ≤ 0, since

cos `rθ = 1 ⇔ r2 sin2 θ

r2 − 2r cos θ + 1
= 1

⇔ cos2 θ − 2

r
cos θ +

1

r2
= 0

⇔
(

cos θ − 1

r

)2

= 0.
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and yet cos θ = 1/r is impossible. Moreover, since cos `rθ ≥ 0 is clear from (6.6), we find

that

1

r
6= cos θ ⇒ −1

e
< −cos `rθ

e
≤ 0 ⇒ −1 < fθ(r) ≤ 0 ⇒ efθ(r)+1 ∈ (1, e],

and so the denominator of the first fraction in (9.11) is always negative, whereas the

denominator of the second fraction is always positive in light of (9.10). We conclude that

f ′θ(r) < 0 for all r > 0 whenever cos θ ∈ (−1, 0], so that fθ is decreasing on (0,∞) while λ

is increasing, and the uniqueness of the solution to fθ(r) = λ(r) is clear. When cos θ = −1

we of course have sin θ = 0, so fθ(r) ≡ 0 and again (9.8) must have a unique solution. �

Difficulties arise when attempting to prove the uniqueness of the solution to (9.8) when

cos θ > 0, as the factor 1− r cos θ in (9.11) may then be negative. One mitigating factor is

that the sector of θ values I, and all angles coterminal with the elements of I, comprise

a subset of the θ values for which cos θ > 0, and so are of no concern to us. Nonetheless

this leaves us with the symmetrical sectors (−π/2,− arccos(1/r3)) and (arccos(1/r3), π/2)

to worry about. At the end of this section we will push the uniqueness argument at least

partway into these sectors, though a full resolution to the problem remains elusive. For

this reason, and for the sake of simplicity, it will occasionally be assumed that cos θ ≤ 0.

Proposition 9.7. Suppose cos θ ≤ 0. Then κ4 is the unique solution to ρr = |p2|. Moreover

κ4 > κ3 always holds, with κ4 = b/a if θ = (2k + 1)π for any k ∈ Z.

Proof. Assume for definiteness that θ ∈ [π/2, π]. By Lemma 9.6 and its proof, |p2| < ρr

for all κ3 < r < r4, and thus Ω2 is disconnected by the same argument given in the proof

of Proposition 9.5. When r = r4, however, we have ρr = |p2|, and in fact p2 = q2 = o2 by

Propositions 7.1, 7.4 and 7.5, and we conclude that Ω′′2 = ∅. But since θ ∈ [π/2, π], when

r = r4 it can still be shown as in the proof of Proposition 9.5 that ai/2 ∈ Ω′2, and because

Ω′2 is connected by Lemma 9.4, it follows that Ω2 = Ω′2 q Ω′′2 is connected. Hence Ω2 is

disconnected for r ∈ (κ3, r4) and connected for r = r4, so that κ4 = r4 by Definition 9.1,

and therefore κ4 is the unique solution to ρr = |p2|.
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A similar argument can be made for the case θ ∈ [−π,−π/2], for all curves involved

merely reflect about the real axis, and so the conclusion that κ4 is the unique solution to

ρr = |p2| holds for all θ such that cos θ ≤ 0. That κ4 > κ3 is immediate from Lemma 9.6.

Next assume θ = (2k + 1)π. Then |p2| = a/e by Proposition 7.1, and so κ4 is the

unique solution to ρr = a/e. Solving this equation directly gives κ4 = b/a. �

Lemma 9.8. For any fixed θ the value of r for which ρr = |p1| is the unique solution to

W0

(
cos `rθ
e

)
=

b

b− a
ln
(ar
b

)
. (9.12)

Proof. Define gθ(r) = W0(e−1 cos `rθ) and let λ(r) be as in (9.9). That gθ(r) = λ(r),

which is (9.12), is equivalent to ρr = |p1| is ascertained in the same manner that ρr = |p2|

was found to be equivalent to (9.8). Also, nearly the identical argument that proved

the existence of a solution to (9.8) for any θ ∈ R will show the same for (9.12), only

gθ(r)→W0(| sin θ|/e) as r →∞.

The proof of the uniqueness of a solution to gθ(r) = λ(r) will be carried out assuming

θ ∈ [0, π]. Then, since gθ is unchanged when θ is replaced by −θ, the proof will apply to

all θ ∈ [−π, π]. Finally, since gθ is unchanged when θ is replaced by θ + 2πk for any k ∈ Z,

the proof will apply to all θ ∈ R.

The situation is especially simple if θ = 0 or θ = π, for then cos `rθ = 0 and (9.12)

becomes ln(ar/b) = 0, which clearly has the unique solution r = b/a.

Assume θ ∈ (0, π), so that cos `rθ ∈ (0, 1]. For r ∈ (0, b/a] we have λ(r) ≤ 0, whereas

e−1 cos `rθ ∈ (0, e−1] implies gθ(r) > 0. Thus gθ(r) = λ(r) has no solution on (0, b/a].

Suppose there exist r′, r′′ such that r′′ > r′ > b/a, gθ(r
′) = λ(r′), and gθ(r

′′) = λ(r′′). Then

by Rolle’s Theorem there is some r ∈ (r′, r′′) such that (gθ − λ)′(r) = 0, or equivalently

1

e−1 cos `rθ + egθ(r)
· 1

2e

(
r2 sin2 θ

r2 − 2r cos θ + 1

)−1/2
(2r sin2 θ)(1− r cos θ)

(r2 − 2r cos θ + 1)2
=

b

(b− a)r
.

Some algebra leads to

1

cos `rθ + egθ(r)+1
· (1− r cos θ) sin θ

(r2 − 2r cos θ + 1)3/2
=

b

(b− a)r
, (9.13)
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which cannot be satisfied if r cos θ ≥ 1 since the left-hand side would then be either zero

or negative, contradicting the assumption that 1 ≤ a < b.

Assume r cos θ < 1. From (9.13) we have

[
cos `rθ + egθ(r)+1

]
· (r2 − 2r cos θ + 1)3/2

(1− r cos θ) sin θ
=
(

1− a

b

)
r,

which with (6.6) becomes

r(r2 − 2r cos θ + 1)

1− r cos θ
+

(r2 − 2r cos θ + 1)3/2egθ(r)+1

(1− cos θ) sin θ
=
(

1− a

b

)
r. (9.14)

Now, because r > b/a > 1, we find that

r(r2 − 2r cos θ + 1)

1− r cos θ
≥ r(1− 2r cos θ + 1)

1− r cos θ
= 2r,

and hence the left-hand side of (9.14) is greater than 2r. However the right-hand side is

less than r, so the equation cannot be satisfied if r cos θ < 1.

It is now clear that (gθ − λ)′(r) = 0 cannot be satisfied for any r > 0, so that the

equation gθ(r) = λ(r) must have at most one solution on (b/a,∞) whenever θ ∈ (0, π).

Therefore any solution to (9.12) on (0,∞) must be unique for any θ ∈ [0, π]. �

Proposition 9.9. Let m1 be the point on S1 with minimum modulus and let k ∈ Z. Then

κ5 ∈ {r : |m1| ≤ ρr ≤ |p1|} (9.15)

for all θ ∈ R, with the inequalities being sharp. Moreover the following hold:

(1) κ5 > κ4 if cos θ ≤ 0 and θ 6= (2k + 1)π.

(2) κ5 = κ4 = b/a if θ = (2k + 1)π.

(3) κ5 > 1 for all θ.

In any case

κ5 ≤
b

a

[
eW0

(
1

e

)]a/b−1

:= r5. (9.16)

Proof. We first lay down a few needed facts. In the proof of Lemma 7.3 it was established

that m1 = −aW0(1/e), while the lemma itself showed r5 is the unique value of r for which

ρr = |m1|. Also |p1| = a/e for θ = kπ by Proposition 7.1, and since E(t) = tet is increasing
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on (−1,∞),

1/e < (1/e)e1/e ⇔ E(W0(1/e)) < E(1/e) ⇔ W0(1/e) < 1/e,

so |m1| = aW0(1/e) < a/e = |p1| whenever θ = kπ.

For fixed θ suppose r ≥ r5. Then ρr ≤ |m1|, and so z ∈ Dr implies |z| < |m1|. Now,

since

e|z|/a ≥ e|Re(z/a)| = e|−Re(z/a)| ≥ e−Re(z/a) = |e−z/a|,

we find that

|z| < |m1| ⇒
|z|
a
< W0(1/e) ⇒ |z|

a
e|z|/a <

1

e
⇒ |z|

a
|e−z/a| < 1

e
,

so |ϕ(z/a)| < 1 and hence z /∈ Ω2. Since Ω2 ⊆ Dr by definition, it follows that Ω2 = ∅ for

any r ≥ r5, thereby affirming (9.16) and making clear that no r > r5 can be in the range

of κ5. Given ρr decreases as r increases, it follows that no r for which ρr < |m1| can be in

the interval (9.15).

We now show that κ5 = r5 when θ = 0, so that r5 must be the least upper bound on

the range of κ5, and the first inequality in the interval (9.15) is sharp. For any r > 0 define

m3 = −(a/r)W0(r/e), and suppose x < m3. Since x < 0 and E(t) = tet is increasing on

(0,∞),

x < m3 ⇒ −r
a
x > W0

(r
e

)
⇒ E

(
−r
a
x
)
> E

(
W0

(r
e

))
⇒ −rx

a
e−rx/a >

r

e
⇒ −rx

a
e1−rx/a > r,

so that |ϕ(rx/a)| > r and we have x ∈ S >

3 when θ = 0. Assuming also that x < m1,

the same chain of implications with r replaced by 1 shows that |ϕ(x/a)| > 1 and hence

x ∈ S >

1 . Now, it’s readily shown that r3 > 1 as defined in Lemma 9.4 is the unique r

value for which ρr = a, with ρr > a if r < r3 and ρr < a if r > r3. Since −a < m1 and

−a < m3 by Corollary 6.2, we find −ρr ≤ −a < xm := min{m1,m3} for r ∈ (0, r3], and

hence (−ρr, xm) 6= ∅ for r ≤ 1 with (−ρr, xm) ⊆ Ω2. That is, Ω2 6= ∅ for r ≤ 1.

The case when θ = 0 and r > 1 we handle separately. Define f(t) = W0(t/e)

and g(t) = tW0(1/e). Clearly f(1) = g(1), and so suppose f(t0) = g(t0) for some
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t0 > 1. By Rolle’s Theorem there exists 1 < t < t0 such that f ′(t) = g′(t). Then since

eW0(1/e) = e−W0(1/e),

f ′(t) = g′(t) ⇒ 1/e

t/e+ eW0(t/e)
= W0(1/e) ⇒ 1

t/e+ eW0(t/e)
= e−W0(1/e),

so that
t

e
+ eW0(t/e) = eW0(1/e),

and hence W0(t/e) < W0(1/e). This is a contradiction, as W0 is known to be strictly

increasing on (0,∞), and so f(t) 6= g(t) for all t > 1. Continuity considerations and the

observation that f(2) < g(2) then establish that f(r) < g(r) for all r > 1. Now,

f(r) < g(r) ⇒ W0

(r
e

)
< rW0(1/e) ⇒ −a

r
W0

(r
e

)
> −aW0

(
1

e

)
,

and so m1 < m3 for all r > 1. Now, with Lemma 7.3 we find that −ρr < m1 = xm for

1 < r < r5, and so once again (−ρr, xm) 6= ∅ with (−ρr, xm) ⊆ Ω2. That is Ω2 6= ∅ for

1 < r < r5, and hence for all r < r5. Recalling that Ω2 = ∅ for all r ≥ r5, we conclude

κ5 = r5 when θ = 0.

The full verification of (9.15) is still a few steps away, but the next step is achieved by

establishing statement (2) in the proposition. In the proof of Proposition 9.7 we found that

κ4 is the smallest value of r for which Ω′′2 = ∅ for any θ /∈ I, and so the symmetry of the

regions Ω′2 and Ω′′2 about the real axis when θ = kπ implies that κ4 is the smallest r value

for which Ω2 = ∅ when θ = π. Thus κ5 = κ4 = b/a for any θ = (2k + 1)π by Definition

9.1 and Proposition 9.7, and since |p1| = |p2| for any θ = kπ by Lemma 7.2, when θ = π

we find κ5 to be the r value for which ρr = |p1|.

Next we show that if r is such that ρr > |p1| then κ5 6= r for any θ, thereby establishing

not only that the range of κ5 must lie in the interval (9.15), but also that the second

inequality in the interval’s definition is sharp. Lemma 9.8 establishes that there is a unique

r value, say r′, for which ρr = |p1|. Supposing that r ∈ (0, r′), then ρr > |p1| and there

exists some t > 1 such that tp1 ∈ Dr. Since |ϕ(p1/a)| = 1 and |ϕ(reiθp1/a)| = r, with
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Lemma 7.2(1) we obtain∣∣∣∣ϕ( tp1

a

)∣∣∣∣ =
t|p1|
a

∣∣∣e1−tp1/a
∣∣∣ = t

(
e|p1|
a

)1−t ∣∣∣ϕ(p1

a

)∣∣∣t = t

(
a/e

|p1|

)t−1

≥ t > 1,

and ∣∣∣∣ϕ(reiθtp1

a

)∣∣∣∣ =
rt|p1|
a

∣∣∣e1−reiθtp1/a
∣∣∣

= t

(
r|p1|
a

)1−t(r|p1|
a

)t ∣∣∣et−reiθtp1/a∣∣∣ e1−t

= t

(
er|p1|
a

)1−t [r|p1|
a

∣∣∣e1−reiθp1/a
∣∣∣]t

= t

(
er|p1|
a

)1−t ∣∣∣∣ϕ(reiθp1a

)∣∣∣∣t
= trt

(
er|p1|
a

)1−t
= rt

(
a/e

|p1|

)t−1

> r.

Thus tp1 ∈ Ω2, so that Ω2 6= ∅ and we conclude that r 6= κ5 for any θ. The proof of (9.15)

is done.

It remains to verify the statements (1) and (3) in the proposition. Suppose θ is such

that cos θ ≤ 0 and θ 6= (2k + 1)π. Then κ4 is the unique solution to (9.8) by Proposition

9.7, and we let r′5 be the unique solution to (9.12). By Lemmas 7.2, 9.6, and 9.8,

ρr′5 = |p1| < |p2| = ρκ4 ,

and thus r′5 > κ4 since r 7→ ρr is a decreasing function. As we found earlier, κ5 is an r

value for which ρr ≤ |p1|, implying ρκ5 ≤ ρr′5 , and hence r′5 ≤ κ5. Therefore κ4 < κ5, and

statement (1) is proven.

Finally, for fixed θ suppose r is such that ρr = |p1|. In the proof of Lemma 9.8 it

was found that (9.12) has no solution on (0, b/a], and so r ≥ b/a > 1. Now, from (9.15)

we have ρκ5 ≤ |p1| = ρr, whence κ5 ≥ r obtains, and we conclude that κ5 > 1 for any θ.

Statement (3) is proven. �

If r′5 is the unique solution to (9.12) for a given value of θ, Proposition 9.9 states that

κ5 lies in the interval [r′5, r5]. In particular, as we have just seen, κ5 = r5 for θ = 0 and
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κ5 = r′5 for θ = π. That is, when θ = 0, κ5 is that value of r for which the circle Cr contains

the point m1; and, when θ = π, κ5 is the r value for which Cr contains p1.

We now summarize our findings for the critical values κj . For fixed θ /∈ I we have

κ1 =
b

a
e1−b/a, κ2 ≡ 1, κ3 =

b

a
ea/b−1,

and if cos θ ≤ 0 then κ4 > κ3 is the unique r value that satisfies (9.8), while κ5 ≥ κ4 lies

between the solution r′5 to (9.12) and r5 = (b/a)[eW0(1/e)]a/b−1. If θ ∈ I the critical values

κ3 and κ4 do not exist, and we simply note that κ5 > κ2 = 1.

As promised, we now extend the argument that equation (9.8) has a unique solution

for r so as to include at least some θ values for which cos θ > 0.

First we establish a few more general properties of the function fθ as defined by (9.9),

at least for θ values for which cos θ > 0. If r < sec θ, then r cos θ < 1 and the second

fraction in equation (9.11) is positive while the first fraction (by the same arguments that

follow (9.11)) is negative, and thus f ′θ(r) < 0. If r > sec θ, then both fractions are negative

and f ′θ(r) > 0 results. Therefore fθ is decreasing on (0, sec θ), increasing on (sec θ,∞),

with fθ(sec θ) = −1 an easy matter to verify, and

lim
r→∞

fθ(r) = W0

(
−| sin θ|

e

)
≤ 0. (9.17)

Next, recalling (9.9), we readily find that λ(b/a) = 0. Set r̂ = b/a and θ̂ = arcsec r̂, so

θ̂ ∈ (0, π/2) and

fθ̂(r̂) = fθ̂(sec θ̂) = −1 < 0 = λ(r̂).

Suppose θ ∈ [θ̂, π/2), so sec θ ≥ sec θ̂ = r̂. Fix r ≥ sec θ. Then λ(r) ≥ λ(r̂) = 0 while

(9.17) and other findings of the previous paragraph make clear that fθ(r) < 0. Hence

fθ(r) 6= λ(r) for all r ∈ [sec θ,∞), and the existence part of the proof of Lemma 9.6 leads

to the conclusion that fθ(r) = λ(r) must hold for at least one r value in (0, sec θ). That λ

is increasing while fθ is decreasing on (0, sec θ) then finishes the proof of uniqueness for

all θ ∈ [θ̂, π/2). Since f−θ = fθ in general, the uniqueness of the solution to (9.8) is also

assured for θ ∈ (−π/2,−θ̂].
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So for example, if a = 1 and b = 2, then θ̂ = arcsec(2) = π/3, and (9.8) has a unique

solution for all θ /∈ (−π/3, π/3). This is a substantial improvement over θ /∈ (−π/2, π/2),

which we have been more properly characterizing as cos θ ≤ 0.

While an improvement, our new result does not capture all θ values outside the sector

I = [− arccos(1/κ3), arccos(1/κ3)],

since

cos

(
arcsec

b

a

)
=
a

b
<
a

b
e1−a/b =

1

κ3

implies θ̂ = arcsec(b/a) > arccos(1/κ3). We could sharpen the result by, for instance, letting

r̂ be such that λ(r̂) = W0(−| sin θ|/e), setting θ̂ = arcsec r̂, and taking W0(−| sin θ|/e) to

be the upper bound on f(r) for r ≥ sec θ and θ ∈ [θ̂, π/2). Capturing more θ values in this

manner, or by some other means, will be left as a possible avenue for future research.
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Section 10: Additional Tools

Here we establish some more results that will help in the course of proving upcoming

theorems about the zero attractors of sequences of the form (6.2). The foremost result

we’ve already seen, namely Theorem 2.5, which characterizes zero attractors as explicit

point sets. However, the following asymptotic result deriving from [4, Proposition 2.1] will

be useful in determining the limits mentioned in part (2) of Theorem 2.5.

Proposition 10.1. There exists ν < 0 such that, for each n ∈ N,

sbn(reiθnz) =

1 +

ϕbn+1

(
reiθnz

bn+ 1

)
(
reiθnz

bn+ 1
− 1

)√
2π(bn+ 1)

[1 +O(nν)]

 ereiθnz (10.1)

for all z ∈ C \ e−iθ(b/r + H), where O(nν) holds uniformly on compact sets.

Proof. A direct adaptation of a result given in [4] yields (10.1) for all z such that

Re(reiθz) < b + 1/n, with ν ∈ (−1/2, 0) fixed and O(nν) holding uniformly on compact

sets. Thus (10.1) holds for all n for any z such that Re(eiθz) < b/r, and since

{z : Re(eiθz) < b/r} = {e−iθz : Re z < b/r} = C \ {e−iθz : z ∈ b/r + H}

= C \ {z : e−iθz ∈ b/r + H} = C \ {z : z ∈ e−iθ(b/r + H)},

the claimed region of validity is obtained. �

The above asymptotic covers an open half-plane of C, while the following asymptotic

derived from [4, Proposition 2.2] covers all of C outside a closed disc. It can be seen that

the two asymptotics combined cover all of C except for the single point e−iθb/r.

Proposition 10.2. There exists ν < 0 such that, for each n ∈ N,

sbn(reiθnz) =

ϕbn+1

(
reiθnz

bn+ 1

)
(
reiθnz

bn+ 1
− 1

)√
2π(bn+ 1)

[1 +O(nν)]ere
iθnz

for all z such that |z| > b/r + 1/n, where O(nν) holds uniformly on compact sets.
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The next two asymptotics were already introduced in the beginning of §3, and they

in fact can be readily adapted to give the two more general asymptotics above. In the

interests of thoroughness we will give some of the steps whereby the final asymptotic, in

Proposition 10.4, is derived from [4, Proposition 2.2].

Proposition 10.3. There exists ν < 0 such that, for each n ∈ N,

san(nz) =

1 +

ϕan+1

(
nz

an+ 1

)
(

nz

an+ 1
− 1

)√
2π(an+ 1)

[1 +O(nν)]

 enz

for all z ∈ C \ (a+ H), where O(nν) holds uniformly on compact sets.

Proposition 10.4. There exists ν < 0 such that, for each n ∈ N,

san(nz) =

ϕan+1

(
nz

an+ 1

)
(

nz

an+ 1
− 1

)√
2π(an+ 1)

[1 +O(nν)]enz

for all z such that |z| > a+ 1/n, where O(nν) holds uniformly on compact sets.

Proof. By [4, Proposition 2.2], for any 1/3 < α < 1/2, we have

sn−1(nw)

enw
=

(we1−w)n√
2πn(w − 1)

(
1 +O(n1−3α)

)
for any |w| > 1, with the term O(n1−3α) holding uniformly on compacta in A1,∞. Setting

ν = 1− 3α, so that −1/2 < ν < 0, for w ∈ An,∞ we obtain

sn−1(w) =
ew
(w
n
e1−w/n

)n
(
w/n− 1

)√
2πn

(
1 +O(nν)

)
since w/n ∈ A1,∞. Noting that a function of order O((n+ 1)ν) as n→∞ is necessarily of

order O(nν), it follows that

sn(w) =

ew
(

w

n+ 1
e1−w/(n+1)

)n+1

(
w

n+ 1
− 1

)√
2π(n+ 1)

(
1 +O(nν)

)
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for |w| > n+ 1, and hence

san(w) =

ew
(

w

an+ 1
e1−w/(an+1)

)an+1

(
w

an+ 1
− 1

)√
2π(an+ 1)

(
1 +O(nν)

)

for |w| > an+ 1. This last equation then yields

san(nz) =

enz
(

nz

an+ 1
e1−nz/(an+1)

)an+1

(
nz

an+ 1
− 1

)√
2π(an+ 1)

(
1 +O(nν)

)

for |z| > a+ 1/n. �

In addition to the preceding asymptotics, the following proposition and several lemmas

will also prove to be valuable aids.

Proposition 10.5. If z ∈ H−
rθ then

Re[(1− reiθ)z] < 0,

and if z ∈ H+

rθ then

Re[(1− reiθ)z] > 0.

Proof. Let z ∈ H−
rθ = −e(`rθ+π/2)iH, so z = −e(`rθ+π/2)iζ for some ζ such that Re ζ > 0.

Now, letting

ζ0 =
ζ√

r2 − 2r cos θ + 1
and ζ1 = (r cos θ − 1) + i(r sin θ),

with (6.5) we obtain

(1− reiθ)z = (reiθ − 1)e(`rθ+π/2)iζ

= i(reiθ − 1) exp

[
i arctan

(
r cos θ − 1

r sin θ

)]
ζ

= i(reiθ − 1)

(
r sin θ√

r2 − 2r cos θ + 1
+ i

r cos θ − 1√
r2 − 2r cos θ + 1

)
ζ

= −
[
(r cos θ − 1) + i(r sin θ)

][
(r cos θ − 1)− i(r sin θ)

]
ζ0
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= −ζ1ζ1ζ0 = −|ζ1|2ζ0.

Thus Re[(1− reiθ)z] < 0 since Re ζ0 > 0. The proof that Re[(1− reiθ)z] > 0 if z ∈ H+

rθ is

similar. �

Lemma 10.6. For 1 ≤ a < b, r > 0, and θ ∈ R, let

M =
|ez|

∣∣∣ϕ(z
a

)∣∣∣a
|ereiθz|

∣∣∣∣ϕ(reiθzb
)∣∣∣∣b

.

Then z ∈ C \ Dr implies M < 1, and z ∈ Dr \ {0} implies M > 1.

Proof. Since

z ∈ C \ Dr ⇔ |z| > a

e

(
b

ar

) b
b−a

⇔ |z|a−b < ebaarb

eabb
,

we have

M =
|ez|

∣∣∣ϕ(z
a

)∣∣∣a
|ereiθz|

∣∣∣∣ϕ(reiθzb
)∣∣∣∣b

=
eabb

ebaarb
|z|a−b < 1.

Similarly we obtain M > 1 if z ∈ Dr \ {0}. �

Lemma 10.7. Suppose 1 ≤ a < b and r < 1. If z ∈ Da is such that |ϕ(reiθz/a)| < r, then

|ϕ(reiθz/b)| < 1.

Proof. The result is trivial if z = 0, so fix z 6= 0 such that |z| < a and |ϕ(reiθz/a)| < r.

We need two auxiliary inequalities. First, from |z| < a and b− a > 0 we have

|z|b

|z|a
<
ab

aa
. (10.2)

Next, defining

g(x) =
a

x
e1−a/x,
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we note that g = 1/f for f defined before Lemma 9.4, and so g < 1 on (a,∞), and hence

(a/b)e1−a/b < 1 in particular. From this we obtain our second needed inequality:

ab

bb
eb−a < 1. (10.3)

Now, |ϕ(reiθz/a)| < r implies that |ea−reiθz| < aa/|z|a, and then with (10.2), the fact that

r < 1, and (10.3) it follows that

|eb−reiθz| < aa

|z|a
· e

b

ea
=

bb

rb|z|b
· |z|

baaebrb

|z|abbea
<

bb

rb|z|b
· a

beb

bbea
<

bb

rb|z|b
.

Therefore
rb|z|b

bb
|eb−reiθz| < 1,

which immediately yields |ϕ(reiθz/b)| < 1. �

Lemma 10.8. Suppose 1 ≤ a < b. If z ∈ Da is such that |ϕ(z/a)| < 1, then |ϕ(z/b)| < 1/r

for all r ∈ (0, κ3].

Proof. The result is trivial if z = 0. Suppose z 6= 0 is such that |z| < a and |ϕ(z/a)| < 1.

From the latter inequality comes

|z|a

aa
|ea−z| < 1,

and hence

|ea−z| <
(
a

|z|

)a
<

(
a

|z|

)b
since a/|z| > 1 and 0 < a < b. Thus |z|b|e−z| < abe−a, implying

|ϕ(z/b)| = |z|
b
|e1−z/b| < a

b
e1−a/b =

1

κ3
,

which in turn implies |ϕ(z/b)| < 1/r for r ≤ κ3. �

Lemma 10.9. Suppose 1 ≤ a < b. Then

S <

1 ∩ Dr ⊆ S <

4 and S <

3 ∩ Dr ⊆ S <

2 (10.4)

for all r > 0 and θ ∈ R.
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Proof. Suppose z ∈ S <

1 ∩ Dr. If z = 0 then z ∈ S <

4 is immediate, so we assume z 6= 0.

Then

|ϕ(z/a)| < 1 ⇒
∣∣e1−z/a∣∣ < a

|z|
⇒

∣∣e1−z/b∣∣ < aa/b

|z|a/b
· e1−a/b

⇒ |ϕ(z/b)| = |z|
b

∣∣e1−z/b∣∣ < |z|1−a/b · aa/b
b
· e1−a/b,

and so, since |z| < ρr,

|ϕ(z/b)| <

[
a

e

(
b

ar

) b
b−a
]1−a/b(

aa/be1−a/b

b

)
=

1

r
,

and therefore z ∈ S <

4 .

To prove the second containment in (10.4) it suffices to examine only the case θ = 0.

Setting θ = 0, suppose that z ∈ S <

3 ∩ Dr. Then

|ϕ(rz/a)| < r ⇒
∣∣e1−rz/a∣∣ < a

|z|
⇒

∣∣e1−rz/b∣∣ < aa/b

|z|a/b
· e1−a/b

⇒ |ϕ(rz/b)| = r|z|
b

∣∣e1−rz/b∣∣ < |z|1−a/b · raa/b
b
· e1−a/b,

so that

|ϕ(rz/b)| <

[
a

e

(
b

ar

) b
b−a
]1−a/b(

raa/be1−a/b

b

)
= 1,

and therefore z ∈ S <

2 . �
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Section 11: The Zero Attractor for 0 < r ≤ κ1

Let A denote the zero attractor for the sequence of polynomials

Pn(z) = san(nz) + Csbn(reiθnz).

Since the compact set A passes through different homotopy classes as r → ∞, it is

necessary to carry out separate analyses over a series of disjoint intervals of r values that

are determined by the critical values given in Definition 9.1. The regions Ω2 and Ω3 given

in that definition are involved in nearly all these analyses, though we will often alter their

expressions in the upcoming theorems (depending on the interval in which r is assumed to

lie) for purposes of using the propositions of the previous section. In the present section

we concern ourselves strictly with 0 < r ≤ κ1 for all admissible a, b, θ.

Theorem 11.1. If 0 < r ≤ κ1, then A is the union of the boundaries of the connected

regions

Ω1 : C \ Dr

Ω2 : Dr \
[(
S <

1 ∪ S
<

3

)
∩ Da

]
Ω3 : S <

3 ∩H−
rθ ∩ Da

Ω4 : S <

1 ∩H+

rθ ∩ Da.

To facilitate the proof of the theorem we first establish lemmas that determine the

asymptotics in each of the four regions.

Lemma 11.2. If 0 < r ≤ κ1, then

lim
n→∞

ln |Pn(z)|
n

= b ln
∣∣∣rez
b

∣∣∣
uniformly on compact sets of Ω1 = C \ Dr.

Proof. Let K ⊆ C \ Dr be compact. Since ρr = a if and only if r = κ3, the fact that

r 7→ ρr is a decreasing function and κ1 < κ3 makes clear that Da ⊆ Dr. Some algebra
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shows

ρr ≥
b

r
⇔ e

a

(ar
b

) b
b−a ≤ r

b
⇔ r ≤ b

a
e1−b/a = κ1,

and so Db/r ⊆ Dr. Hence K is a subset of C \ Da and C \ Db/r, so Propositions 10.2 and

10.4 imply that

lim
n→∞

∣∣∣∣ san(nz)

Csbn(reiθnz)

∣∣∣∣1/n = lim
n→∞

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ϕan+1

(
nz

an+ 1

)
[1 +O(nν1)]enz(

nz

an+ 1
− 1

)√
2π(an+ 1)

ϕbn+1

(
reiθnz

bn+ 1

)
[1 +O(nν2)]ere

iθnz(
reiθnz

bn+ 1
− 1

)√
2π(bn+ 1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1/n

(11.1)

on K, where the order terms O(nν1) and O(nν2) hold uniformly on K for some ν1, ν2 < 0.

This readily simplifies, giving

lim
n→∞

∣∣∣∣ san(nz)

Csbn(reiθnz)

∣∣∣∣1/n = lim
n→∞

∣∣∣∣ϕa( nz

an+ 1

)∣∣∣∣ |ez|∣∣∣∣ϕb(reiθnzbn+ 1

)∣∣∣∣ |ereiθz|
=

∣∣∣ϕ(z
a

)∣∣∣a |ez|∣∣∣∣ϕ(reiθzb
)∣∣∣∣b |ereiθz|

=
eabb

ebaarb
|z|a−b < 1

for each z ∈ K, with the last inequality following from Lemma 10.6. Since f : K → C

defined as

f(z) =
eabb

ebaarb
|z|a−b

is continuous on K, we have ‖f‖K < 1. Also it was shown in §3 that |san(nz)|1/n converges

uniformly on compact subsets of C \ {a}, and a similar argument shows that

lim
n→∞

|Csbn(reiθnz)|1/n =

∣∣∣∣ϕ(reiθzb
)∣∣∣∣b |ereiθz| = ebrb

bb
|z|b
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uniformly on compact subsets of C \ {e−iθb/r}. Hence the limit (11.1) must converge

uniformly to f(z) on K, so that

lim
n→∞

∣∣∣∣ san(nz)

Csbn(reiθnz)
+ 1

∣∣∣∣1/n = 1

uniformly on K by Proposition 3.3, and therefore

lim
n→∞

|Pn(z)|1/n = lim
n→∞

|san(nz) + Csbn(reiθnz)|1/n

= lim
n→∞

|Csbn(reiθnz)|1/n
∣∣∣∣ san(nz)

Csbn(reiθnz)
+ 1

∣∣∣∣1/n
=
ebrb

bb
|z|b

uniformly on K. �

That our limits hold uniformly on compact subsets of whatever region is under consid-

eration can be established in much the same way as in the proof of the lemma above, and

so in subsequent proofs we shall concern ourselves largely with the evaluation of pointwise

limits.

Lemma 11.3. In the region Ω2 that is Dr \
[(
S <

1 ∪ S
<

3

)
∩ Da

]
,

lim
n→∞

ln |Pn(z)|
n

= a ln
∣∣∣ez
a

∣∣∣
uniformly on compact sets.

Proof. Suppose z is a point in Ω2 that lies in the intersection of C \ e−iθ(b/r + H) and

C \ (a+ H). By Propositions 10.1 and 10.3,

lim
n→∞

|Pn(z)|1/n = lim
n→∞

∣∣∣∣enz + enzϕan
(z
a

)
+ Cere

iθnz + Cere
iθnzϕbn

(
reiθz

b

)∣∣∣∣1/n
= lim

n→∞
|ereiθz|

∣∣∣∣e(1−reiθ)nz + e(1−reiθ)nzϕan
(z
a

)
+ C + Cϕbn

(
reiθz

b

)∣∣∣∣1/n.
(11.2)

Since

e(1−reiθ)nzϕan
(z
a

)
= (e−iθ)an

[
1

r
ϕ

(
reiθz

a

)]an
(11.3)
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and |ϕ(reiθz/a)| > r, the constant term in (11.2) may be neglected, and since |ϕ(z/a)| > 1

we obtain

lim
n→∞

|Pn(z)|1/n = lim
n→∞

|ereiθz|
∣∣∣∣e(1−reiθ)nz + e(1−reiθ)nzϕan

(z
a

)
+ Cϕbn

(
reiθz

b

)∣∣∣∣1/n

= lim
n→∞

|ez|

∣∣∣∣∣∣∣∣∣1 + ϕan
(z
a

)
+

Cϕbn
(
reiθz

b

)
e(1−reiθ)nz

∣∣∣∣∣∣∣∣∣
1/n

(11.4)

= lim
n→∞

|ez|
∣∣∣ϕ(z

a

)∣∣∣a
∣∣∣∣∣∣∣∣∣1 +

Cϕbn
(
reiθz

b

)
e(1−reiθ)nzϕan

(z
a

)
∣∣∣∣∣∣∣∣∣
1/n

.

Now, by Lemma 10.6,∣∣∣∣∣∣∣∣∣
Cϕbn

(
reiθz

b

)
e(1−reiθ)nzϕan

(z
a

)
∣∣∣∣∣∣∣∣∣
1/n

=

|ereiθz|
∣∣∣∣ϕ(reiθzb

)∣∣∣∣b
|ez|

∣∣∣ϕ(z
a

)∣∣∣a < 1,

and so Proposition 3.3 implies that

lim
n→∞

|Pn(z)|1/n = lim
n→∞

|ez|
∣∣∣ϕ(z

a

)∣∣∣a =
ea

aa
|z|a. (11.5)

If z lies in the portion of Ω2 that is in the intersection of C \Da and C \ e−iθ(b/r + H),

then it is not necessarily the case that |ϕ(z/a)| > 1, but then Propositions 10.1 and 10.4

may be used in order to obtain (11.4) without the 1 term to begin with, and the rest of

the analysis is the same.

Finally, if z lies in the part of Ω2 where C \ Da and C \ Db/r intersect, then neither

|ϕ(z/a)| > 1 nor |ϕ(reiθz/a)| > r necessarily hold, but Propositions 10.2 and 10.4 may be

used to find that

lim
n→∞

∣∣∣∣Csbn(reiθnz)

san(nz)

∣∣∣∣1/n < 1,
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much as the reciprocal expression was treated in the proof of Lemma 11.2. Then via

Proposition 3.3 we arrive at

lim
n→∞

|Pn(z)|1/n = lim
n→∞

|san(nz)|1/n
∣∣∣∣Csbn(reiθnz)

san(nz)
+ 1

∣∣∣∣1/n = |san(nz)|1/n,

which again leads to (11.5). We have now covered all of Ω2 save for the point b/r. �

Lemma 11.4. In the region Ω3 that is S <

3 ∩H−
rθ ∩ Da,

lim
n→∞

ln |Pn(z)|
n

= ln |ereiθz|

uniformly on compact sets.

Proof. Let z be a point in Ω3. As in the proof of Lemma 11.3 we employ Propositions

10.1 and 10.3 to obtain (11.2). Now, Re[(1 − reiθ)z] < 0 by Proposition 10.5, and also

|ϕ(reiθz/b)| < 1 by Lemma 10.7. Then, in light of (11.2) and the fact that |ϕ(reiθz/a)| < r,

we find that the nonzero constant term C in (11.2) dominates, and hence

lim
n→∞

|Pn(z)|1/n = lim
n→∞

|ereiθz||C|1/n = |ereiθz|.

This immediately implies the desired result. �

Lemma 11.5. In the region Ω4 that is S <

1 ∩H+

rθ ∩ Da,

lim
n→∞

ln |Pn(z)|
n

= ln |ez|

uniformly on compact sets.

Proof. Let z be a point in Ω4. Again using (11.2),

lim
n→∞

|Pn(z)|1/n = lim
n→∞

|ez|
∣∣∣∣1 + ϕan

(z
a

)
+ Ce(reiθ−1)nz + Ce(reiθ−1)nzϕbn

(
reiθz

b

)∣∣∣∣1/n
= lim

n→∞
|ez|

∣∣∣∣1 + ϕan
(z
a

)
+ Ce(reiθ−1)nz + C

[
reiθϕ

(z
b

)]bn∣∣∣∣1/n. (11.6)

Now, Re[(reiθ−1)z] < 0 by Proposition 10.5 and |ϕ(z/b)| < 1/r by Lemma 10.8. Moreover,

r ≤ κ1 implies r < 1 by Proposition 9.3, so that |reiθ| < 1. Since |ϕ(z/a)| < 1 as well, the
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constant term 1 in (11.6) dominates, and therefore

lim
n→∞

|Pn(z)|1/n = |ez|

as claimed. �

Proof of Theorem 11.1. From the lemmas we find that

lim
n→∞

ln |Pn(z)|
n

=



b ln |rez/b| , z ∈ Ω1

a ln |ez/a| , z ∈ Ω2

ln |ereiθz|, z ∈ Ω3

ln |ez|, z ∈ Ω4

and so by Theorem 2.5 the theorem is proven. �
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Section 12: The Zero Attractor for r in Other Intervals

We now consider the nature of A for r in other intervals beyond (0, κ1]. As Proposition

9.3 established, κ2 ≡ 1, and of course when r = 1 we are back to the unimodular case

treated in §5. Thus in the course of proving the following theorem we may assume r < 1,

though r = 1 should not present any difficulties.

Theorem 12.1. If κ1 < r ≤ 1, with θ 6= 2πk for k ∈ Z if r = 1, then A is the union of

the boundaries of the regions

Ω1 : C \
[
Dr ∪

(
S <

2 ∩ Db/r
)]

Ω2 : Dr \
[
S <

3 ∪
(
S <

1 ∩ Da
)]

Ω3 :
[
S <

3 ∩H−
rθ ∩ Da

]
q
[
S <

2 ∩ S <

3 ∩ Aa,b/r
]

Ω4 : S <

1 ∩H+

rθ ∩ Da,

where only Ω3 is disconnected.

Proof. The analysis of regions Ω2 and Ω4 is the same as in the proofs of Lemmas 11.3

and 11.5 in the previous section, and also the component

Ω′3 = S <

3 ∩H−
rθ ∩ Da

of the present region Ω3 is handled as in the proof of Lemma 11.4. It remains to consider

Ω1 and the component

Ω′′3 = S <

2 ∩ S <

3 ∩ Aa,b/r.

Any z ∈ Ω1 is such that either z ∈ C \Db/r or z ∈ C \ e−iθ(b/r+H). In the former case

the analysis proceeds as in the proof of Lemma 11.2, while in the latter case Proposition

10.1 leads to

lim
n→∞

∣∣Csbn(reiθnz)
∣∣1/n = lim

n→∞

∣∣∣∣[C +
Cϕbn(reiθz/b)

(reiθz/b− 1)
√

2πbn

]
ere

iθnz

∣∣∣∣1/n ;
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and then since |ϕ(reiθz/b)| > 1 we may neglect the constant term C to obtain

lim
n→∞

∣∣Csbn(reiθnz)
∣∣1/n = lim

n→∞

∣∣∣∣ Cϕbn(reiθz/b)

(reiθz/b− 1)
√

2πbn
ere

iθnz

∣∣∣∣1/n ,
This leads to (11.1), whereafter the analysis is the same.

For z ∈ Ω′′3, Propositions 10.1 and 10.4 imply

lim
n→∞

|Pn(z)|1/n = lim
n→∞

∣∣∣∣enzϕan(za)+ Cere
iθnz + Cere

iθnzϕbn
(
reiθz

b

)∣∣∣∣1/n
= lim

n→∞
|ereiθz|

∣∣∣∣e(1−reiθ)nzϕan
(z
a

)
+ C + Cϕbn

(
reiθz

b

)∣∣∣∣1/n
= lim

n→∞
|ereiθz|

∣∣∣∣[ 1

reiθ
ϕ

(
reiθz

a

)]an
+ C + Cϕbn

(
reiθz

b

)∣∣∣∣1/n ,
with the last equality following from (11.3). The constant term C dominates since

|ϕ(reiθz/a)| < r and |ϕ(reiθz/b)| < 1 by the definition of Ω′′3, and so

lim
n→∞

|Pn(z)|1/n = |ereiθz|.

Hence

lim
n→∞

ln |Pn(z)|
n

=



b ln |rez/b| , z ∈ Ω1

a ln |ez/a| , z ∈ Ω2

ln |ereiθz|, z ∈ Ω3

ln |ez|, z ∈ Ω4

�

For the statement of the following theorem recall the set I as defined in Lemma 9.4. It

will also be convenient to define

Ω∗3 = S <

2 ∩ S <

3 ∩H−
rθ ∩ C \ (a+ H)

and, for aesthetic reasons, Ω∗∗3 = Ω′′3.
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Theorem 12.2. If θ /∈ I and 1 < r < κ3, then A is the union of the boundaries of the

connected regions

Ω1 : C \
[
Dr ∪

(
S <

2 ∩ Db/r
)]

Ω2 : Dr \
[
S <

3 ∪
(
S <

1 ∩ Da
)]

Ω3 : Ω∗3 ∪ Ω∗∗3

Ω4 : S <

1 ∩H+

rθ ∩ Da.

Proof. The analysis of Ω1 is as in Theorem 12.1, while Ω2 and Ω4 are treated as in the

previous section. The current Ω3, however, is the result of a merging of the former regions

Ω3 and Ω′3, and so has properties of both. To fully cover Ω3 may require two separate

analyses: one using Propositions 10.1 and 10.3, and another using Propositions 10.1 and

10.4 provided that Ω∗∗3 \ Ω∗3 6= ∅. However, for z ∈ Ω∗3 the analysis proceeds precisely as in

Lemma 11.4, and for z ∈ Ω∗∗3 the analysis is the same as that carried out for Ω′3 in the

proof of Theorem 12.1. Therefore

lim
n→∞

ln |Pn(z)|
n

=



b ln |rez/b| , z ∈ Ω1

a ln |ez/a| , z ∈ Ω2

ln |ereiθz|, z ∈ Ω3

ln |ez|, z ∈ Ω4

�

When r ≥ κ3, the radius of Cr is less than a, and thus the portion of the set S <

1 that

lies outside this circle is no longer a part of Ω2. This simplifies the expression for Ω2 in

the next theorem. A complicating feature is that a portion of S4 now forms part of the

boundary of Ω1 and Ω4.
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Theorem 12.3. If θ /∈ I and κ3 ≤ r < κ5, then A is the union of the boundaries of the

regions

Ω1 : C \
[
Dr ∪

(
S <

2 ∩ Db/r
)
∪
(
S <

4 ∩ Db
)]

Ω2 : Dr \
(
S <

3 ∪ S
<

1

)
Ω3 : Ω∗3 ∪ Ω∗∗3

Ω4 : S <

1 ∩ S <

4 ∩H+

rθ ∩ Da,

where Ω2 is disconnected for κ3 ≤ r < κ4 and connected for κ4 ≤ r < κ5 provided that

cos θ ≤ 0.

Proof. As in the proof of Theorem 12.1, any z ∈ Ω1 lies either in C\Db/r or C\e−iθ(b/r+H),

and in the former case the analysis is the same as that done in the previous section. If

z ∈ C \ e−iθ(b/r + H), then Propositions 10.1 and 10.3 imply that

lim
n→∞

|Pn(z)|1/n = lim
n→∞

∣∣∣∣enz [1 + ϕan
(z
a

)]
+ Cere

iθnz

[
1 + ϕbn

(
reiθz

b

)]∣∣∣∣1/n
= lim

n→∞

∣∣∣∣enz [1 + ϕan
(z
a

)]
+ Cere

iθnzϕbn
(
reiθz

b

)∣∣∣∣1/n

= lim
n→∞

|ez|

∣∣∣∣∣1 + ϕan
(z
a

)
+
Cere

iθnz

enz
ϕbn
(
reiθz

b

)∣∣∣∣∣
1/n

, (12.1)

where the constant term 1 is neglected in the right grouping since |ϕ(reiθz/b)| > 1. Now,∣∣∣∣∣ere
iθnz

enz
ϕbn
(
reiθz

b

)∣∣∣∣∣ =

∣∣∣∣∣ere
iθnz

enz

(
reiθz

b
e1−reiθz/b

)bn∣∣∣∣∣ =

(
r|z|
b

∣∣e1−z/b∣∣)bn ,
and since |ϕ(z/b)| > 1/r by the definition of Ω1, with∣∣∣ϕ(z

b

)∣∣∣ > 1

r
⇔ |z|

b

∣∣e1−z/b∣∣ > 1

r
⇔ r|z|

b

∣∣e1−z/b∣∣ > 1,

the 1 in (12.1) may be neglected to obtain

lim
n→∞

|Pn(z)|1/n = lim
n→∞

∣∣∣∣enzϕan(za)+ Cere
iθnzϕbn

(
reiθz

b

)∣∣∣∣1/n
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=
∣∣ereiθz∣∣ ∣∣∣∣ϕ(reiθzb

)∣∣∣∣b lim
n→∞

∣∣∣∣∣∣∣∣∣
enzϕan

(z
a

)
Cereiθnzϕbn

(
reiθz

b

) + 1

∣∣∣∣∣∣∣∣∣
1/n

.

Since

lim
n→∞

∣∣∣∣∣∣∣∣∣
enzϕan

(z
a

)
Cereiθnzϕbn

(
reiθz

b

)
∣∣∣∣∣∣∣∣∣
1/n

=
|ez|

∣∣∣ϕ(z
a

)∣∣∣a
|ereiθz|

∣∣∣∣ϕ(reiθzb
)∣∣∣∣b

< 1

by Lemma 10.6, we conclude by Proposition 3.3 that

lim
n→∞

|Pn(z)|1/n =
∣∣ereiθz∣∣ ∣∣∣∣ϕ(reiθzb

)∣∣∣∣b =
ebrb

bb
|z|b

as usual.

The analysis of Ω4 proceeds much as in the proof of Lemma 11.5, only with r ≥ κ3 we

cannot rely on Lemma 10.8. However, Ω4 ⊆ S <

4 is now built into the definition of the region,

so |ϕ(z/b)| < 1/r still holds for any z ∈ Ω4. We again obtain limn→∞ |Pn(z)|1/n = |ez|. �

The condition cos θ ≤ 0 in Theorem 12.3 stems from the possibility that equation (9.8)

may have multiple solutions when cos θ > 0, in which case (provided θ /∈ I) the region Ω2

may alternate between being connected and disconnected multiple times as r increases.

We recall, however, that uniqueness of solution for (9.8) was secured at the end of §9 for

some values of θ for which cos θ > 0, namely values in the intervals [arcsec b/a, π/2) and

(−π/2,− arcsec b/a], and so the condition cos θ ≤ 0 may correspondingly be relaxed in the

statement of the theorem.

Theorem 12.4. If r ≥ κ5, then A is the union of the boundaries of the connected regions

Ω1 : C \
[(
S <

2 ∩ Db/r
)
∪
(
S <

4 ∩ Db
)]

Ω3 : S <

2 ∩H−
rθ ∩ Db/r

Ω4 : S <

1 ∩ S <

4 ∩H+

rθ ∩ Da.

Proof. By definition κ5 = min{r : Ω2 = ∅}, and the proof of Proposition 9.9 shows that

Ω2 is in fact empty for all r > κ5. This enables a slight simplification of the expressions
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for Ω1 and Ω3. In the case of Ω1, Definition 9.1 implies that

Dr ⊆
(
S <

1 ∩ Da
)
∪
(
S <

3 ∩ Db/r
)

for r ≥ κ5, and hence

Dr ⊆
(
S <

1 ∩ Da
)
∪
(
S <

3 ∩ Db/r
)
.

Suppose z ∈ Dr, so either z ∈ S <

1 ∩ Da or z ∈ S <

3 ∩ Db/r. Now,

z ∈ S <

1 ∩ Da ⇒ z ∈ S <

1 ∩ Dr ⇒ z ∈ S <

4 ⇒ z ∈ S <

4 ∩ Db,

where the second implication follows from Lemma 10.9 and the third from the simple fact

that Da ⊆ Db. On the other hand,

z ∈ S <

3 ∩ Db/r ⇒ z ∈ S <

3 ∩ Dr ⇒ z ∈ S <

2 ⇒ z ∈ S <

2 ∩ Db/r,

where again Lemma 10.9 is used for the second implication. Thus

Dr ⊆
(
S <

2 ∩ Db/r
)
∪
(
S <

4 ∩ Db
)
,

and the expression for Ω1 in Theorem 12.3 simplifies to that in Theorem 12.4. This

observation, moreover, makes clear that the asymptotic analysis of Ω1 as expressed here

will be identical to that carried out in the previous theorem. The same holds true for Ω3,

and also for Ω4 (whose expression is unchanged in any case). �

Finally, if θ ∈ I we find that Ω2 remains connected for all 0 < r < κ5 until becoming

the empty set when r ≥ κ5. The zero attractor therefore remains in the same homotopy

class for r between κ2 = 1 and κ5 (where κ5 > 1 was established by Proposition 9.9). The

next theorem takes this into account, giving definitions for the various regions that are

valid for all such r values.

Theorem 12.5. If θ ∈ I and 1 < r < κ5, then A is the union of the boundaries of the

connected regions

Ω1 : C \
[
Dr ∪

(
S <

2 ∩ Db/r
)
∪
(
S <

4 ∩ Db
)]
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Ω2 : Dr \
[
S <

3 ∪
(
S <

1 ∩ Da
)]

Ω3 : Ω∗3 ∪ Ω∗∗3

Ω4 : S <

1 ∩ S <

4 ∩H+

rθ ∩ Da.

Proof. The asymptotic analysis of each region proceeds along lines already traced in the

course of proving Theorems 12.2 and 12.3, the sole difference being the present assumption

that θ ∈ I and therefore Ω2 never becomes disconnected. �
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Section 13: The Zero Attractor of Perturbed Chebyshev Polynomials

Let Tn(z) be the nth Chebyshev polynomial of the first kind, and for fixed integer ` ≥ 2

define the perturbation

T̃n(z) = Tn(z)− z`n.

Also, for r(z) =
√
z2 − 1 define the sets

C1 =
{
z /∈ D : z ∈ (C \H) ∪ (−i∞, 0) and |z − r(z)| = |z|`

}
and

C2 =
{
z /∈ D : z ∈ H ∪ (0, i∞) and |z + r(z)| = |z|`

}
,

so that C = C1 ∪ C2 is a simple closed curve in the domain |z| > 1. Shown in Figure 19

are the solutions to T̃ 40(z) = 0 when ` = 4, and also the graphs of |z ± r(z)| = |z|4. The

curves C1 and C2 form the left and right halves of the outer loop, respectively. If iR is

the imaginary axis, then C1 ∩ iR = {−iβ} and C2 ∩ iR = {iβ} for some β > 1. In explicit

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0 C1 C2

iβ

Figure 19. The graphs of |z ± r(z)| = |z|4 and zeros of T̃ 40(z) for ` = 4.
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terms β is such that

β +
√
β2 + 1 = β`. (13.1)

It is the disposition of the zeros of T̃ 40(z) in the figure that motivates the following.

Theorem 13.1. The zero attractor of the sequence T̃n(z) is C ∪ [−1, 1].

As has been our approach in the past, the proof of the theorem will follow from a series

of lemmas together with Theorem 2.5.

Our first lemma will establish that T̃n satisfies the two hypotheses stated in Theorem

2.5 concerning the boundedness of
⋃
n Z(T̃n) and the uniform boundedness of the family

of functions |T̃n|1/n on compacta. Part of the lemma’s proof will employ the following

result, a form of which is found in [6, p.74].

Proposition 13.2. For each 1 ≤ k ≤ m define the polynomial

pk(z) = znk + ak,1z
nk−1 + · · ·+ ak,nk ,

and suppose Dk is an open disc such that Z(pk) ⊆ Dk. For fixed λ1, . . . , λm ∈ C \ {0} let

p(z) =

m∑
k=1

λkpk(z).

If ζ ∈ Z(p), then there exist αk ∈ Dk such that ζ is a root of

m∑
k=1

λk(z − αk)nk = 0.

Also needed for the proof of the first lemma is the fact that if sequences |pn|1/n and

|qn|1/n are uniformly bounded on S ⊆ C, then so too is |pn + qn|1/n. To see this, define

σ, τ ∈ R by

σ = sup
{∥∥|pn|1/n∥∥S : n ∈ N

}
and τ = sup

{∥∥|qn|1/n∥∥S : n ∈ N
}
.

Fix n. Then

∥∥|pn + qn|1/n
∥∥
S

= sup
z∈S
|pn(z) + qn(z)|1/n ≤ sup

z∈S

(
|pn(z)|+ |qn(z)|

)1/n
. (13.2)



108

If z ∈ S is such that |pn(z)| ≥ |qn(z)|, then

(
|pn(z)|+ |qn(z)|

)1/n ≤ (2|pn(z)|
)1/n

= 21/n|pn(z)|1/n ≤ 2
∥∥|pn|1/n∥∥S ≤ 2σ;

and if |pn(z)| < |qn(z)|, then

(
|pn(z)|+ |qn(z)|

)1/n ≤ 2τ.

Thus (
|pn(z)|+ |qn(z)|

)1/n ≤ 2(σ + τ)

for all z ∈ S, and (13.2) implies

∥∥|pn + qn|1/n
∥∥
S
≤ 2(σ + τ)

for all n. It follows that

sup
{∥∥|pn + qn|1/n

∥∥
S

: n ∈ N
}
∈ R,

and therefore |pn + qn|1/n is uniformly bounded on S.

Finally, we will need the well-known identity

Tn(z) =
1

2

[(
z −

√
z2 − 1

)n
+
(
z +

√
z2 − 1

)n ]
(13.3)

for z ∈ C, given in [8, p. 5]. We now state and prove our first lemma.

Lemma 13.3. The set
⋃
n Z(T̃n) is bounded, and the family {|T̃n(z)|1/n} is uniformly

bounded on compact sets.

Proof. Fix n, and let p1(z) = z`n and p2(z) = Tn(z). For δ = 0.1, say, we have Z(p1) ⊆

D1 := Dδ and Z(p2) ⊆ D2 := D1+δ. We apply Proposition 13.2 to p = p1 − p2 = −T̃n to

conclude that any zero ζ of p(z) must be a root of

(z − α1)`n − (z − α2)n = 0 (13.4)

for some α1 ∈ D1 and α2 ∈ D2, which implies

|ζ − α1|` = |ζ − α2| (13.5)
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for some |α1| < 0.1 and |α2| < 1.1.

Suppose |ζ| ≥ 3. Some algebra shows (|ζ| − 0.1)2 > 2|ζ|, with ||ζ| − 0.1| >
√

6 > 1 in

particular, and thus (|ζ| − 0.1)` > 2|ζ| since ` ≥ 2. It follows that

(|ζ| − 0.1)` > |ζ|+ 1.1,

and since

|ζ − α1|` ≥ (|ζ| − |α1|)` > (|ζ| − 0.1)`

while

|ζ − α2| ≤ |ζ|+ |α2| < |ζ|+ 1.1,

we see (13.5) cannot be satisfied if |ζ| > 3, and thus (13.4) has no roots outside D3 for any

choice of αk ∈ Dk. Therefore Z(T̃n) = Z(p) ⊆ D3 for all n, and
⋃
n Z(T̃n) is bounded.

Next, let K ⊆ C be compact. Knowing that
√
z2 − 1 is bounded on K, we find that

sup
n∈N

∥∥∥∥∥∥
∣∣∣∣∣
(
z ±
√
z2 − 1

)n
2

∣∣∣∣∣
1/n
∥∥∥∥∥∥
K

= sup
n∈N

∥∥∥∥∥
∣∣z ±√z2 − 1

∣∣
21/n

∥∥∥∥∥
K

=
∥∥∥z ±√z2 − 1

∥∥∥
K
∈ R,

and also

sup
n∈N

∥∥∥∣∣z`n∣∣1/n∥∥∥
K

= sup
n∈N
‖z`‖K = ‖z`‖K ∈ R.

Therefore the family of functions given by

|T̃n(z)|1/n =

∣∣∣∣∣
(
z −
√
z2 − 1

)n
2

+

(
z +
√
z2 − 1

)n
2

− z`n
∣∣∣∣∣
1/n

is uniformly bounded on K. �

Next, define the sets

E1 =
[
{z : Re z < 0} ∪ (−i∞, 0)

]
\ [−1, 1]

and

E2 =
[
{z : Re z > 0} ∪ (0, i∞)

]
\ [−1, 1],

with E := E1 ∪ E2 = C \ [−1, 1].
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Lemma 13.4. The inequality

∣∣z −√z2 − 1
∣∣ > ∣∣z +

√
z2 − 1

∣∣ (13.6)

holds throughout E1, while

∣∣z −√z2 − 1
∣∣ < ∣∣z +

√
z2 − 1

∣∣ (13.7)

holds throughout E2.

Proof. For the principal branch of the square root,

√
a+ ib = u+ iv

if and only if

u =

√
(a2 + b2)1/2 + a

2
and v = (sgn b)

√
(a2 + b2)1/2 − a

2
,

where we set sgn b = 1 if b = 0 and a < 0, and sgn b = 0 if b = 0 and a ≥ 0.

Let z = x+ iy ∈ C \ [−1, 1] with x < 0. We have

√
z2 − 1 =

√
(x2 − y2 − 1) + i(2xy) := u+ iv,

with

u =

√
[(x2 − y2 − 1)2 + (2xy)2]1/2 + (x2 − y2 − 1)

2

and

v = sgn(2xy)

√
[(x2 − y2 − 1)2 + (2xy)2]1/2 − (x2 − y2 − 1)

2
.

Now,

∣∣z −√z2 − 1
∣∣ > ∣∣z +

√
z2 − 1

∣∣ ⇔ (x− u)2 + (y − v)2 > (x+ u)2 + (y + v)2

⇔ xu < −yv.

We examine cases, observing that z 6= ±1 and so u = v = 0 is impossible.

Suppose y 6= 0. Then sgn(2xy) = −1, so −yv = −y sgn(2xy)|v| = |yv| ≥ 0. If v = 0,

then u > 0 must hold and we have xu < 0 = −yv. If v 6= 0, then xu ≤ 0 < |yv| = −yv.
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Next suppose y = 0. Then z = x < −1, and

u+ iv =
√
x2 − 1

implies that u =
√
x2 − 1 > 0 and v = 0. Now it follows that xu < 0 = −yv, and we see

xu < −yv, and hence (13.6), holds on the half-plane Re z < 0 outside [−1, 1].

Finally, let z = iy. Then

u+ iv =
√
−y2 − 1 = i

√
y2 + 1,

indicating that u = 0 and v =
√
y2 + 1. From this we see xu = 0 < −yv if and only if

y < 0.

It is now clear that (13.6) holds for all z ∈ E1. The treatment of (13.7) for z ∈ E2 is

similar. �

Lemma 13.5. The function h : E → C given by

h(z) =


−
√
z2 − 1, z ∈ E1

√
z2 − 1, z ∈ E2

is analytic on E.

Proof. Define h̃ : iE → C by h̃(z) = ih(−iz). Thus

h̃(z) =


−i
√
−z2 − 1, z ∈ iE1

i
√
−z2 − 1, z ∈ iE2.

Clearly h is analytic on E if and only if h̃ is analytic on iE. Define f : iE1 → C by

f(z) = −i
√
−z2 − 1,

so that h̃(z) = f(z) for z ∈ iE1. Suppose z ∈ (iE2)◦, so Im z > 0 with z /∈ [0, i], and

hence Argw ∈ (−π, π) for w := −z2 − 1. From this it follows that Argw = −Argw, and

subsequently

√
w = |w|1/2 exp[(i/2) Argw] = |w|1/2 exp[(−i/2) Argw]
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= |w|1/2 exp[(i/2) Argw] =
√
w.

That is, √
−z2 − 1 =

√
−z2 − 1,

and since z ∈ (iE1)◦,

f(z) = −i
√
−z2 − 1 = i

√
−z2 − 1 = h̃(z).

Thus

h̃(z) =


f(z), z ∈ iE1

f(z), z ∈ (iE2)◦.

The mapping z 7→
√
z2 − 1 is known to be continuous and analytic on E1 and E◦1 ,

respectively, implying that f is continuous and analytic on

iE1 =
[
{z : Im z < 0} ∪ (0,∞)

]
\ [−i, 0]

and (iE1)◦. Moreover, for x > 0 we have

f(x) = −i
√
−x2 − 1 =

√
x2 + 1,

so f is real-valued on (0,∞). By the Schwarz reflection principle it follows that h̃ is

analytic on iE1 ∪ (iE2)◦. Since a symmetrical argument shows that analyticity holds on

iE2 ∪ (iE1)◦, we conclude that h̃ is analytic on iE = iE1 ∪ iE2 = C \ [−i, i], and therefore

h is analytic on E = C \ [−1, 1]. �

Let U be the unbounded domain outside the curve C, and let B = C\U be the bounded

domain inside. Furthermore, set B′ = B \ [−1, 1], and define the regions B1 = E1 ∩B and

B2 = E2 ∩B, so that B′ = B1 ∪B2. More explicitly we have

B1 = {z ∈ B′ : Re z < 0} ∪ (−iβ, 0)

and

B2 = {z ∈ B′ : Re z > 0} ∪ (0, iβ).
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Figure 20 illustrates these regions, as well as the points ±iβ mentioned at the beginning of

the section.

Lemma 13.6. The inequality

∣∣z −√z2 − 1
∣∣ > |z|` (13.8)

holds throughout B1, while ∣∣z +
√
z2 − 1

∣∣ > |z|` (13.9)

holds throughout B2.

Proof. We will verify the inequalities for the relevant intervals on the imaginary axis first.

Define

g(z) =

∣∣z −√z2 − 1
∣∣

|z|`
− 1.

For x > 0,

g(−ix) =
x+
√
x2 + 1

x`
− 1,

U

B′

C

−1 1

iβ

−iβ

−1 1

B1 B2

Figure 20. Left: regions U and B′. Right: regions B1 and B2, which
contain the portions of the negative and positive imaginary axes, respectively,
that lie in B′.
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so that

g(−ix) > 0 ⇔ x− x` +
√
x2 + 1 > 0. (13.10)

Since ` ≥ 2, it is clear the right-hand inequality holds for x ∈ (0, 1], and so g(−ix) > 0 for

x ∈ (0, 1]. Let

G(x) = x− x` +
√
x2 + 1,

where G(β) = 0 by (13.1). Then

G′(x) = 1− `x`−1 +
x√

x2 + 1
,

so that G′(x) < 0 if and only if

x√
x2 + 1

+ 1 < `x`−1. (13.11)

The left-hand side of (13.11) is always less than 2, whereas `x`−1 > 2 whenever x > 1.

This implies G is decreasing on (1,∞), so that G(x) > 0 for x ∈ (1, β) since G(1) =
√

2

and G(β) = 0. It follows that g(−ix) > 0 for x ∈ (1, β) by (13.10), and hence g(z) > 0 for

z ∈ (−iβ, 0). Therefore (13.8) holds on (−iβ, 0), and by a similar argument (13.9) holds

on (0, iβ).

Let Qk be the interior of the kth quadrant in C, and define

f(z) =
z +
√
z2 − 1

z`
.

We will show that (13.9), or equivalently |f(z)| > 1, holds on B2 ∩Q1 as well as on B2 ∩R.

Since ` ≥ 2, there exists 0 < δ < 1 sufficiently small that (13.9) holds for all z ∈ ∂Dδ.

That (13.9) holds on the interval (iδ, iβ) follows from the foregoing analysis, whereas

|z + r(z)| = |z|` holds on C2 ∩ Q1 by the definition of C2. To complete the circuit and

apply the minimum modulus principle, it is necessary to verify that the curve C2 intersects

R at a unique α > 1, and that |z + r(z)| ≥ |z|` holds on (δ, 1] while |z + r(z)| > |z|` holds

on (1, α) ⊆ B2.

Define the polynomial

p(x) = x2` − 2x`+1 + 1,
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−1 1

Rδ

Γ

δ

δi

α

iβ

Figure 21. The region Rδ in B2.

so p′(x) = 2x`(`x`−1 − `− 1), and for x > 0 we find p′(x) > 0 if and only if `x`−1 > `+ 1,

or equivalently

x >

(
`+ 1

`

)1/(`−1)

:= x0.

Clearly x0 > 1, so p(x) is decreasing in particular on (1, x0) and increasing on (x0,∞).

But p(1) = 0 implies p(x0) < 0, and hence there exists a unique α > 1 such that p(α) = 0.

This α is the sole point where C2 intersects R, since, for x > 1,

p(x) = 0 ⇔ x2 − 1 = (x` − x)2 ⇔ x+
√
x2 − 1 = x`.

Suppose x ∈ (1, α). Then p(x) < 0 by the immediately preceding analysis, and since

p(x) < 0 ⇔ x2 − 1 > (x` − x)2 ⇔ x+
√
x2 − 1 > x`,

we see (13.9) holds on (1, α). Next supposing that x ∈ (δ, 1], we obtain by direct calculation

|f(x)| =

∣∣∣∣∣x+
√
x2 − 1

x`

∣∣∣∣∣ =
|x+ i

√
1− x2|
x`

=

√
x2 +

(√
1− x2

)2
x`

=
1

x`
≥ 1.

Now, the points in

(∂Dδ ∩Q1) ∪ [iδ, iα] ∪ (C2 ∩Q1) ∪ [δ, α]
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form a simple closed curve that admits a piecewise smooth parametrization Γ. Let Rδ

denote the region enclosed by this parametrized curve Γ, as shown in Figure 21 Our findings

thus far show that |f(z)| ≥ 1 on ∂Rδ, with

min
z∈∂Rδ

|f(z)| = 1

since f(1) = 1. Noting that f is nonvanishing and analytic on Rδ, and continuous on Rδ,

the minimum modulus principle implies that |f(z)| > 1 for all z ∈ Rδ. Letting δ → 0+,

we conclude that |f(z)| > 1 holds for all z ∈ B2 ∩ Q1. That |f(z)| > 1 holds for z in

B2 ∩ R = (1, α) and B2 ∩ iR = (0, iβ) was shown above, and therefore (13.9) is verified on

B2 ∩Q1. The treatment in other quadrants runs along similar lines. �

Lemma 13.7. The inequalities∣∣z −√z2 − 1
∣∣

|z|`
< 1 and

∣∣z +
√
z2 − 1

∣∣
|z|`

< 1

both hold throughout the domain U .

Proof. It is clear that, for some sufficiently large R > 0,∣∣z ± r(z)∣∣
|z|`

≤ 1

2

for all z /∈ DR, with the curve C lying in the interior of the disc.

Define the domain Ω = U ∩ DR, so that ∂Ω = C ∪ ∂DR. Since Ω ⊆ E, by Lemma 13.5

implies that

h0(z) =
z + h(z)

z`

is analytic on Ω and continuous on Ω. Noting Ck ⊆ Ek, the definition of C1 implies

|h0(z)| = |z − r(z)|
|z|`

= 1

for all z ∈ C1, and similarly

|h0(z)| = |z + r(z)|
|z|`

= 1
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for z ∈ C2. Hence |h0| ≡ 1 on C, and since |h0| ≤ 1/2 on ∂DR, it follows that

max
z∈∂Ω

|h0(z)| = 1,

and thus |h0| < 1 on Ω by the maximum modulus principle. Therefore |h0(z)| < 1 for all

z ∈ U , so that
|z − r(z)|
|z|`

< 1

for z ∈ U ∩ E1, and
|z + r(z)|
|z|`

< 1

for z ∈ U ∩ E2.

Replacing h with −h in the foregoing analysis leads to the conclusion that

|z + r(z)|
|z|`

< 1

for z ∈ U ∩ E1, and
|z − r(z)|
|z|`

< 1

for z ∈ U ∩ E2. Since

(U ∩ E1) ∪ (U ∩ E2) = U ∩ E = U ∩
(
C \ [−1, 1]

)
= U,

the proof is done. �

With our various lemmas in place, we are now ready to prove our theorem concerning

the zero attractor of T̃n.

Proof of Theorem 13.1. Let K ⊆ U ∩H be compact. From (13.3), for z ∈ K,

lim
n→∞

|T̃n(z)|1/n = lim
n→∞

∣∣∣∣ [z − r(z)]n2
+

[z + r(z)]n

2
− z`n

∣∣∣∣1/n
= |z|` lim

n→∞

∣∣∣∣ [z − r(z)]n2z`n
+

[z + r(z)]n

2z`n
− 1

∣∣∣∣1/n . (13.12)

To evaluate this limit we first observe that

ρ(z) := lim
n→∞

∣∣∣∣(z − r(z)z + r(z)

)n∣∣∣∣1/n =
|z − r(z)|
|z + r(z)|
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uniformly on K. Since r(z) is continuous and z + r(z) nonvanishing on K, we see ρ(z) is

also continuous on K; moreover ρ(z) < 1 for all z ∈ K by Lemma 13.4, so that ‖ρ‖K < 1,

and Proposition 3.3 implies that

lim
n→∞

∣∣∣∣(z − r(z)z + r(z)

)n
+ 1

∣∣∣∣1/n = 1

uniformly on K as well. It then easily follows that

lim
n→∞

∣∣∣∣ [z − r(z)]n2z`n
+

[z + r(z)]n

2z`n

∣∣∣∣1/n = lim
n→∞

|z + r(z)|
21/n|z|`

∣∣∣∣(z − r(z)z + r(z)

)n
+ 1

∣∣∣∣1/n
=
|z + r(z)|
|z|`

(13.13)

uniformly on K. By Lemma 13.7 the sup norm on K of the function at right in (13.13) is

less than 1, so another application of Proposition 3.3 implies the limit in (13.12) equals 1

uniformly on K. Therefore

lim
n→∞

|T̃n(z)|1/n = |z|` (13.14)

uniformly on K. A similar argument that reverses the roles of z + r(z) and z − r(z) yields

the same result if K ⊆ U ∩ (C \H), and since r(z) restricted to U ∩ iR is continuous, we

conclude that (13.14) holds uniformly on any compact K ⊆ U .

Next, for z ∈ B1 we use (13.8) to obtain

lim
n→∞

|T̃n(z)|1/n = lim
n→∞

|z|`
∣∣∣∣∣
(
z −
√
z2 − 1

)n
2z`n

+

(
z +
√
z2 − 1

)n
2z`n

− 1

∣∣∣∣∣
1/n

= lim
n→∞

|z|`
∣∣∣∣∣
(
z −
√
z2 − 1

)n
2z`n

+

(
z +
√
z2 − 1

)n
2z`n

∣∣∣∣∣
1/n

=
∣∣∣z −√z2 − 1

∣∣∣ lim
n→∞

∣∣∣∣∣1 +

(
z +
√
z2 − 1

z −
√
z2 − 1

)n ∣∣∣∣∣
1/n

. (13.15)

Since

lim
n→∞

∣∣∣∣∣
(
z +
√
z2 − 1

z −
√
z2 − 1

)n ∣∣∣∣∣
1/n

=

∣∣∣∣∣z +
√
z2 − 1

z −
√
z2 − 1

∣∣∣∣∣ < 1

by (13.6) in Lemma 13.4, Proposition 3.3 implies the last limit in (13.15) equals 1, and

therefore

lim
n→∞

|T̃n(z)|1/n =
∣∣∣z −√z2 − 1

∣∣∣
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on B1. For z ∈ B2 a similar argument using (13.9) followed by (13.7) in Lemma 13.4 leads

to the conclusion that

lim
n→∞

|T̃n(z)|1/n =
∣∣∣z +

√
z2 − 1

∣∣∣
on B2. To show that these limits in fact hold uniformly on compact subsets of B1 or B2 is

straightforward with Proposition 3.3.

Observing that B1 ⊆ E1 and B2 ⊆ E2, Lemma 13.5 implies that h1 : B′ → C given by

h1(z) =


z −
√
z2 − 1, z ∈ B1

z +
√
z2 − 1, z ∈ B2

is analytic on B′, and thus our finding that

lim
n→∞

ln |T̃n(z)|1/n =


ln |h1(z)|, z ∈ B′

` ln |z|, z ∈ U

makes clear limn→∞ ln |T̃n(z)|1/n equals distinct harmonic functions on U and B′. By

Theorem 2.5 we conclude that the zero attractor A of the sequence T̃n contains C = ∂B,

and in fact C ⊆ A ⊆ C ∪ [−1, 1]. We will now employ other means to determine that the

interval [−1, 1] also lies in A, finishing the proof.

For each n it is known that

Tn(z) = 2n−1
n∏
k=1

(
z − cos

(2k − 1)π

2n

)
,

so Tn has n distinct real zeros distributed uniformly on [−1, 1]. Moreover, if ζ1 < ζ2 < ζ3

are three consecutive zeros of Tn, and µ1 = (ζ1 + ζ2)/2 and µ2 = (ζ2 + ζ3)/2, then

|Tn(µ1)| = |Tn(µ2)| = 1 with Tn(µ1) = −Tn(µ2).

Fix x0 ∈ [−1, 1] and ε > 0. Defining the deleted open disc D′ε(x0) = Dε(x0) \ {x0},

choose a < b to designate a closed interval [a, b] ⊆ D′ε(x0) ∩ (−1, 1). There exists n0 such

that, for all n > n0, [a, b] contains three consecutive zeros ζn,1 < ζn,2 < ζn,3 of Tn, with

midpoints ζn,1 < µn,1 < ζn,2 and ζn,2 < µn,2 < ζn,3. For definiteness assume Tn(µn,1) = −1

and Tn(µn,2) = 1. There also exists n1 such that 0 ≤ x`n < 1/2 for all n > n1 and x ∈ [a, b],
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so that in particular

T̃n(µn,1) = Tn(µn,1)− x`n = −1− x`n < 0

and

T̃n(µn,2) = Tn(µn,2)− x`n = 1− x`n > 1

2
> 0.

Now the intermediate value theorem ensures there is at least one zero of T̃n in (µn,1, µn,2) ⊆

D′ε(x0) for each n > max{n0, n1}. This implies that x0 is not only a limit point of the

set of all zeros of the sequence T̃n, but in fact is in the zero attractor A. Therefore

[−1, 1] ⊆ A. �
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Section 14: Conclusion

In the early days of grappling with the zero attractor of the sequence

pn(z) = Asan(αnz) +Bsbn(βnz)

it was hoped that, once the analysis was finished, the problem of determining the zero

attractor of

pn(z) =
N∑
k=1

Aksakn(αknz)

could be solved via a similar analysis. However, the “two-term case” that spans sections

6 through 12 of this thesis is seen to be quite complicated, and so we turned instead to

the problem of finding the zero attractor of perturbed Chebyshev polynomials in §13. As

this bore fruit, and proved to be neither too difficult nor too trivial an undertaking, the

problem of determining the zero attractors of more general perturbations of Chebyshev

polynomials remains a possible avenue (among many others) for future research.
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Appendix A: Symbol Glossary

As,t Open annulus {z ∈ C : s < |z| < t} p. 13

Cab Circle containing intersection of |ϕ(z/a)| = 1 and |ϕ(z/b)| = 1 p. 21

Cr “Intersection circle” at 0 with radius ρr, containing S2 ∩ S3 p. 37

Ds Open disc at 0 with radius s p. 13

Dab Open disc with boundary Cab p. 21

Dr Open disc with boundary Cr p. 38

Ds(z) Open disc at z with radius s p. 6

H Open half-plane {z ∈ C : Re(z) > 0} p. 30

H+

rθ Open half-plane e(`rθ+π/2)iH p. 38

H−
rθ Open half-plane −H+

rθ p. 38

Hθ Rotated open half-plane {eiθz : z ∈ H} p. 30

`rθ Angle between the line Lrθ and the positive real axis p. 38

Lrθ “Intersection line” {z : Arg(±z) = `rθ} containing S1 ∩ S3 p. 37

Lw Open region {z : |ϕ(z/w)| < 1 and |z| < |w|} p. 12

S Closure of set S p. 9

S◦ Interior of set S p. 9

S > Exterior of Szegő curve S p. 37

S < Interior of Szegő curve S p. 37

sn(z) Taylor polynomial
∑n

k=0 z
k/k! p. 3

Sw Szegő curve |ϕ(z/w)| = 1 p. 29

Tw Open region {z : |ϕ(z/w)| < 1 and |z| > |w|} p. 21

Z(p(z)) Also Z(p), set of zeros of the polynomial p(z) p. 6

ρr “Intersection radius,” or radius of Cr p. 37

ϕ(z) Expression ze1−z p. 12

∼ Asymptotic equivalence p. 31
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