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Appendix

A.1 – Formal Power Series

An indeterminate is a symbol, such as X, that serves as a scaffold for algebraic structures
but has no meaning by itself. That is, X is an abstract object that does not represent a variable,
a numerical quantity either known or unknown, or any other specific mathematical entity. A
mathematical expression constructed using one or more indeterminates is called a formal
expression. For example an expression of the form

a0 + a1X + a2X
2 + · · ·+ anX

n,

where a0, . . . , an ∈ C, is called a formal polynomial in X over C.
Let X be an indeterminate, and let R be a commutative ring with additive identity 0 and

multiplicative identity 1. Define a formal power series in X to be the expression

f(X) =
∞∑
n=0

anX
n = a0 + a1X + a2X

2 + a3X
3 + · · ·

with coefficients an ∈ R for all n ≥ 0. For any n ≥ 0 we call an the nth-order coefficient of
f(X), and anX

n the nth-order term. The 0th-order term is also called the constant term.
Some special formal power series are

exp(X) =
∞∑
n=0

1

n!
Xn, sin(X) =

∞∑
n=0

(−1)n

(2n+ 1)!
X2n+1, cos(X) =

∞∑
n=0

(−1)n

(2n)!
X2n.

Note in particular that sin(X) has nth-order coefficients equal to 0 if n is even, and cos(X) has
nth-order coefficients equal to 0 if n is odd. An alternate symbol for exp(X) is eX . Another
special series is the zero power series,

0(X) = 0 + 0X + 0X2 + 0X3 + · · · ,

also denoted simply by 0.

Remark. If the indeterminate X is understood, the symbol f may be used to denote f(X).
We will largely adhere to this convention from now on.

Definition A.1. The order of f =
∑∞

n=0 anX
n, denoted by ord(f), is defined to be the lowest

n for which an 6= 0. That is,
ord(f) = min{n : an 6= 0}.
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We define ord(0) =∞.

Given another formal power series

g =
∞∑
n=0

bnX
n,

we define the sum of f and g to be

f + g =
∞∑
n=0

(an + bn)Xn,

the product to be

fg =
∞∑
n=0

(
n∑
k=0

akbn−k

)
Xn,

the constant multiple to be

cf =
∞∑
n=0

(can)Xn

for any c ∈ R, and the difference to be

f − g = f + (−1)g.

With the sum and product operations we can construct the ring of formal power series
in X with coefficients in R, denoted by R[[X]]. If f =

∑∞
n=0 anX

n is such that an = 0 for
all but finitely many n ≥ 0 such as n1, . . . , nk, then f reduces to a formal polynomial,

f = an1X
n1 + · · ·+ ankX

nk ,

and we see that the ring of formal polynomials in X over R is a subring of R[[X]]. By definition
the arithmetic of formal polynomials in X over R conforms exactly with the rules of standard
algebra in which X is a variable that represents a complex number. In particular we have the
usual properties of exponents such as XmXn = Xm+n, (Xm)n = Xmn, and (aX)n = anXn for
any a ∈ R.

It is a fact that R[[X]] is a unitary ring, for we may define

1 =
∞∑
n=0

δ0nX
n = 1 + 0X + 0X2 + · · · = 1,

where δij represents the Kronecker delta, and see that

f =
∞∑
n=0

anX
n =

∞∑
n=0

(
n∑
k=0

akδ0,n−k

)
Xn = f1

and

f =
∞∑
n=0

anX
n =

∞∑
n=0

(
n∑
k=0

δ0kan−k

)
Xn = 1f.
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Remark. If f ∈ R[[X]] happens to be a polynomial, then it is customary to represent f by
the polynomial. Thus in particular we have 1 = 1 and 0 = 0, which is to say the formal power
series 1 and 0 may be represented by the polynomials 1 and 0.

We say that two formal power series

f =
∞∑
n=0

anX
n and g =

∞∑
n=0

bnX
n,

are equal if and only if an = bn for all n ≥ 0.

Definition A.2. Two formal power series f =
∑∞

n=0 anX
n and g =

∑∞
n=0 bnX

n are congruent
modulo Xk, written

f ≡ g mod (Xk),

if an = bn for all 0 ≤ n ≤ k − 1.

It is easy to verify that the relation ≡ is an equivalence relation, which is to say for any
f, g, h ∈ R[[X]] we have f ≡ f ,

f ≡ g ⇔ g ≡ f,

and
f ≡ g, g ≡ h ⇒ f ≡ h.

It is also easy to see that f = g if and only if f ≡ g mod (Xk) for all k ≥ 1.

Proposition A.3. Let f1, f2, g1, g2 ∈ R[[X]] such that f1 ≡ f2 mod (Xk) and g1 ≡ g2
mod (Xk).

1. For any c ∈ R, cf1 ≡ cf2 mod (Xk)
2. For any n ∈ N, fn1 ≡ fn2 mod (Xk)
3. f1 + g1 ≡ f2 + g2 mod (Xk)
4. f1g1 ≡ f2g2 mod (Xk)

The following proposition gives a few properties of formal power series arithmetic. The first
part in particular establishes that the ring R[[X]] is commutative.

Proposition A.4. Let a, b ∈ R. For any f, g, h ∈ R[[X]],

1. fg = gf
2. f(g + h) = fg + fh
3. (af)(bg) = (ab)(fg)

Definition A.5. Let f ∈ R[[X]]. If g ∈ R[[X]] is such that

fg = 1,

then f is said to be invertible in R[[X]], and g is called the multiplicative inverse (or
reciprocal) of f in R[[X]]. The multiplicative inverse of f is denoted by 1/f or f−1.

We will usually refer to the multiplicative inverse of any f ∈ R[[X]] as simply the “inverse”
of f whenever it does not lead to ambiguity.
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Theorem A.6. f =
∑∞

n=0 anX
n is invertible in R[[X]] if and only if a0 6= 0.

Proof. First suppose that f =
∑∞

n=0 anX
n with a0 = 1. If

h =
∞∑
n=0

(δ0n − 1)anX
n = −a1X − a2X2 − a3X3 − · · · ,

then by the definition of the constant multiple and sum operations

1− h =
∞∑
n=0

δ0nX
n −

∞∑
n=0

(δ0n − 1)anX
n =

∞∑
n=0

δ0nanX
n −

∞∑
n=0

(δ0n − 1)anX
n

=
∞∑
n=0

δ0nanX
n +

∞∑
n=0

(1− δ0n)anX
n =

∞∑
n=0

[δ0n + (1− δ0n)]anX
n

=
∞∑
n=0

(1)anX
n = f. (1)

Now, define

ϕ =
∞∑
n=0

hn = 1 + h+ h2 + h3 + · · · . (2)

We first show that ϕ ∈ R[[X]]. By the definition of the multiplication operation we easily
discover that, for each m ≥ 1,

hm =
∞∑
n=0

bmnX
n

with bmn = 0 for all n < m. Hence hm is a formal power series in X for which ord(hm) ≥ m,
and

ϕ = 1 +
∞∑
n=0

b1nX
n +

∞∑
n=0

b2nX
n +

∞∑
n=0

b3nX
n + · · ·

If we define b0n = δ0n for all n ≥ 0, then

ϕ =
∞∑
n=0

b0nX
n +

∞∑
n=1

b1nX
n +

∞∑
n=2

b2nX
n +

∞∑
n=3

b3nX
n + · · ·

= b00 + (b01 + b11)X + (b02 + b12 + b22)X
2 + (b03 + b13 + b23 + b33)X

3 + · · ·

by the definition of the sum operation. Setting

cn =
n∑
k=0

bkn,

we may write

ϕ =
∞∑
n=0

(
n∑
k=0

bknX
n

)
=
∞∑
n=0

cnX
n,

and so ϕ ∈ R[[X]] since cn ∈ R for each n.
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From (1) we find that f as an element of R[[h]] is given by f = 1− h, which is to say

f =
∞∑
n=0

αnh
n

with α0 = 1, α1 = −1, and αn = 0 for n ≥ 2. Of course ϕ ∈ R[[h]] is given by

ϕ =
∞∑
n=0

βnh
n

with βn = 1 for all n ≥ 0. Now, the product of f and ϕ as elements of R[[h]] is

fϕ =
∞∑
n=0

(
n∑
k=0

αkβn−k

)
hn =

∞∑
n=0

(
n∑
k=0

αk

)
hn = α0 + (α0 + α1)h+

∞∑
n=2

(
n∑
k=0

αk

)
hn

= 1 + (1− 1)h+
∞∑
n=2

(
n∑
k=2

αk

)
hn = 1 + 0h+

∞∑
n=2

(0)hn = 1,

and by Proposition A.15 below it follows that the product of f and ϕ as elements of R[[X]] is
also 1:

fϕ =

(
∞∑
n=0

anX
n

)(
∞∑
n=0

cnX
n

)
= 1.

Therefore ϕ is an inverse for f in R[[X]].
If a0 6= 0, 1, define

f̂ =
∞∑
n=0

ânX
n =

∞∑
n=0

an
a0
Xn =

1

a0
f,

so that f̂ is such that â0 = 1. There exists some ϕ̂ such that f̂ ϕ̂ = 1. Let ϕ = a−10 ϕ̂. Then
ϕ̂ = a0ϕ, and by Proposition A.4

f̂ ϕ̂ = 1 ⇔
(

1

a0
f

)
(a0ϕ) = 1 ⇔

(
1

a0
· a0
)

(fϕ) = 1 ⇔ fϕ = 1.

Therefore ϕ is an inverse for f .
The proof that f is not invertible in R[[X]] if a0 = 0 will come later. �

Definition A.7. The quotient of f, g ∈ R[[X]] is

f/g = fg−1,

provided that g−1 exists.

Example A.8. Find f/g for f = sin(X) and g = cos(X)

With the quotient operation we define new formal power series

tan(X) =
sin(X)

cos(X)
and cot(X) =

cos(X)

sin(X)
.

A formal Laurent series in X is a formal expression of the form∑
n∈Z

anX
n
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such that an = 0 for all but finitely many n < 0. Thus a formal Laurent series is much like
a formal power series, only a finite number of terms of negative order may be included. If
f ∈ R[[X]] does not have an inverse in R[[X]], there may nevertheless be a formal Laurent
series ` such that f` = 1, in which case ` is called the inverse for f . Suppose that

f =
∞∑
n=m

anX
n

for m > 1, where am 6= 0. We have

f = amX
m + am+1X

m+1 + am+2X
m+2 + · · · = amX

mg,

where

ψ = 1 +
am+1

am
X +

am+2

am
X2 + · · ·

has inverse ψ−1 ∈ R[[X]] by Theorem A.6. The formal power series amX
m is not invertible in

R[[X]], nevertheless we define

(amX
m)−1 = a−1m X−m.

Now, observing that

f · a−1m X−mψ−1 = amX
mψ · a−1m X−mψ−1 = ama

−1
m XmX−mψψ−1 = 1,

we obtain a reasonable definition for an inverse of f = amX
mψ:

f−1 = a−1m X−mψ−1.

With this expansion of the notion of the inverse of a formal power series, we are in a position
to determine a greater variety of quotients.

Example A.9. Let f = X and g = eX − 1. Find the terms of order ≤ 4 for f/g.

Solution. We have

eX − 1 =
∞∑
n=0

1

n!
Xn − 1 =

∞∑
n=1

1

n!
Xn = X +

1

2
X2 +

1

6
X3 +

1

24
X4 + · · · ,

which by Theorem A.6 has no inverse in R[[X]] since it has constant term equal to 0. We write

eX − 1 = X

(
1 +

1

2
X +

1

6
X2 +

1

24
X3 + · · ·

)
= Xψ,

where

ψ = 1 +
1

2
X +

1

6
X2 +

1

24
X3 + · · · =

∞∑
n=0

1

(n+ 1)!
Xn.

Now, we have ψ = 1− h for

h = −1

2
X − 1

6
X2 − 1

24
X3 + · · · = −

∞∑
n=1

1

(n+ 1)!
Xn,
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and by the proof of Theorem A.6

ψ−1 =
∞∑
n=0

hn.

Up to order 4 we have

h2 =
1

4
X2 +

1

6
X3 +

7

144
X4 + · · · ,

h3 = −1

8
X3 − 1

8
X4 + · · · ,

h4 =
1

16
X4 + · · · ,

and so

ψ−1 = 1 + h+ h2 + h3 + h4 + · · · = 1− 1

2
X +

1

12
X2 + 0X3 − 1

45
X4 + · · ·

We now compute the quotient f/g:

f/g = fg−1 = X(eX − 1)−1 = X(X−1ψ−1) = (XX−1)ψ−1 = ψ−1.

That is,

f/g = 1− 1

2
X +

1

12
X2 − 1

45
X4 + · · ·

�

Exercise A.10 (La2.1.6). Let a0, a1, u1, u2 ∈ C (with u2 6= 0), and define

an = u1an−1 + u2an−2 (3)

for n ≥ 2. If T 2 − u1T − u2 = (T − α)(T − β) for α 6= β, show that there exist numbers A,B
such that

an = Aαn +Bβn (4)

for all n ≥ 0. Also show that the formal power series
∞∑
n=0

anT
n

is a formal rational expression, and give its partial fraction decomposition.

Solution. Suppose T 2 − u1T − u2 = (T − α)(T − β) for α 6= β. Then

α2 − u1α− u2 = 0 and β2 − u1β − u2 = 0,

and so
u2 = α2 − u1α and u2 = β2 − u1β.

(Note: u2 6= 0 implies that α, β 6= 0.)
We start by showing that there exist numbers A and B such that (4) holds for n = 0, 1.

This entails showing that the system {
A + B = a0
Aα + Bβ = a1
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has a solution, which we easily find to be the case:

A =
a1 − a0β
α− β

and B = a0 −
a1 − a0β
α− β

. (5)

For each k ≥ 0 define the statement

P (k) = “The numbers A and B satisfy (4) for all 0 ≤ n ≤ k.”

We have found that P (1) is true. Fix k ≥ 1 and suppose that P (k) is true. We endeavor to
show that P (k + 1) must be true. Since k + 1 ≥ 2, we employ the difference equation (3) to
obtain

ak+1 = u1ak + u2ak−1

= u1(Aα
k +Bβk) + u2(Aα

k−1 +Bβk−1)

= Au1α
k +Bu1β

k + Au2α
k−1 +Bu2β

k−1

= Au1α
k +Bu1β

k + A(α2 − u1α)αk−1 +B(β2 − u1β)βk−1

= Au1α
k +Bu1β

k + Aαk+1 − Au1αk +Bβk+1 −Bu1βk

= Aαk+1 +Bβk+1.

From this it follows that A and B satisfy (4) when n = k + 1, and thus P (k + 1) is true. By
the principle of induction we conclude that P (k) is true for all k ≥ 1, and therefore A and B
satisfy (4) for all n ≥ 0.

With these values for A and B we have an = Aαn +Bβn for all n ≥ 0. This implies that
∞∑
n=0

anT
n =

∞∑
n=0

(Aαn +Bβn)T n =
∞∑
n=0

AαnT n +
∞∑
n=0

BβnT n

= A
∞∑
n=0

(αT )n +B
∞∑
n=0

(βT )n = A · 1

1− αT
+B · 1

1− βT
,

recalling that in general (1 − X)−1 =
∑∞

n=0X
n. Therefore

∑∞
n=0 anT

n is a formal rational
expression with partial fraction decomposition given by

∞∑
n=0

anT
n =

A

1− αT
+

B

1− βT
,

where A and B are as given by (5). �

Exercise A.11 (La2.1.7). Let b0, . . . , br−1, u1, . . . , ur ∈ C with ur 6= 0, and define

bn = u1bn−1 + · · ·+ urbn−r (6)

for n ≥ r. If
T r − u1T r−1 − · · · − ur−1T − ur = (T − α1) · · · (T − αr) (7)

such that αi 6= αj whenever i 6= j, show that there exist numbers A1, · · · , Ar such that

bn = A1α
n
1 + · · ·+ Arα

n
r
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for all n ≥ 0.

Solution. Suppose (7) is the case for distinct numbers α1, . . . , αr. Then for each 1 ≤ i ≤ r,

αri − u1αr−1i − · · · − ur−1αi − ur = 0,

whence

ur = αri − u1αr−1i − · · · − ur−1αi.

Observe that ur 6= 0 implies that α1, . . . , αr 6= 0.
We start by showing that there exist constants A1, . . . , Ar such that

bn =
r∑
j=1

Ajα
n
j (8)

holds for all 0 ≤ n ≤ r − 1. Consider the system
x1 + x2 + · · ·+ xr = b0

α1x1 + α2x2 + · · ·+ αrxr = b1
...

...
...

...
αr−11 x1 +αr−12 x2 + · · ·+αr−1r xr = br−1

Letting

A =


1 α1 · · · αr−11

1 α2 · · · αr−12
...

...
. . .

...
1 αr · · · αr−1r

, x =


x1
x2
...
xr

, and b =


b0
b1
...

br−1

,
the system may be written as ATx = b. Now, det(A) is an r × r Vandermonde determinant,
and by the results of an example in §5.2 of the Linear Algebra Notes [LAN] we have

det(A) =
∏

1≤i<j≤r

(αj − αi) 6= 0,

since αi 6= αj whenever i 6= j. Now, by a theorem in §7.2 of [LAN],

det(AT ) = det(A) 6= 0,

and so by a proposition in §5.4 of [LAN] we conclude that the system of equations has a unique
solution. That is, there exist numbers A1, . . . , Ar such that (8) holds for n = 0, . . . , r − 1.

For each k ≥ 0 define the statement

P (k) = “The numbers A1, . . . , Ar satisfy (8) for all 0 ≤ n ≤ k.”

We have found that P (r−1) is true. Fix k ≥ r−1 and suppose that P (k) is true. We endeavor
to show that P (k + 1) must be true. Since k + 1 ≥ r, we employ the difference equation (6) to
obtain

bk+1 =
r∑
i=1

uibk+1−i =
r∑
i=1

(
ui

r∑
j=1

Ajα
k+1−i
j

)
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=
r−1∑
i=1

(
ui

r∑
j=1

Ajα
k+1−i
j

)
+

r∑
j=1

Ajurα
k+1−r
j

=
r−1∑
i=1

r∑
j=1

Ajuiα
k+1−i
j +

r∑
j=1

Aj

(
αrj −

r−1∑
i=1

uiα
r−i
j

)
αk+1−r
j

=
r−1∑
i=1

r∑
j=1

Ajuiα
k+1−i
j +

r∑
j=1

Ajα
k+1
j −

r∑
j=1

r−1∑
i=1

Ajuiα
k+1−i
j

=
r∑
j=1

Ajα
k+1
j .

From this it follows that A1, . . . , Ar satisfy (8) when n = k + 1, and thus P (k + 1) is true.
By the principle of induction we conclude that P (k) is true for all k ≥ r − 1, and therefore
A1, . . . , Ar satisfy (8) for all n ≥ 0. �

Suppose that f, g ∈ R[[X]] are given by

f =
∞∑
n=0

anX
n and g =

∞∑
n=1

bnX
n,

so that in particular the constant term for g is b0 = 0. If we regard g to be itself an indetermi-
nate, then we have

f(g) = a0 + a1g + a2g
2 + · · · =

∞∑
n=0

ang
n ∈ R[[g]].

The argument that f(g) ∈ R[[X]] is much the same as that used to show the power series (2) is
in R[[X]]. For each n ≥ 0 we find that ang

n is itself a formal power series in R[[X]] such that
ord(ang

n) ≥ n, which is to say

ang
n = an

(
b1X + b2X

2 + b3X
3 + · · ·

)n
=
∞∑
k=n

cnkX
k

for appropriate values cnk ∈ R, k ≥ n. Thus the nth-order X coefficient of f(g) is

cn =
n∑
k=0

ckn

for n ≥ 0, which is to say

f(g) =
∞∑
n=0

cnX
n ∈ R[[X]].

We have now demonstrated a new kind of binary operation (f, g) 7→ f ◦ g for formal power
series that is closed on R[[X]] provided that ord(g) > 0.
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Definition A.12. Let f =
∑∞

n=0 anX
n and g =

∑∞
n=1 bnX

n be series in R[[X]]. The compo-
sition of f with g is the series f ◦ g ∈ R[[X]] given by

f ◦ g = f(g) =
∞∑
n=0

ang
n.

Proposition A.13. Let f1, f2, g1, g2 ∈ R[[X]] such that ord(g1), ord(g2) > 0. If

f1 ≡ f2 mod (Xk) and g1 ≡ g2 mod (Xk),

then
f1 ◦ g1 ≡ f2 ◦ g2 mod (Xk).

Proposition A.14. Let f, g, h ∈ R[[X]] such that ord(h) > 0.

1. (f + g) ◦ h = f ◦ h+ g ◦ h
2. (fg) ◦ h = (f ◦ h)(g ◦ h)
3. If ord(g) = 0, then (f/g) ◦ h = (f ◦ h)/(g ◦ h)
4. If ord(g) > 0, then f ◦ (g ◦ h) = (f ◦ g) ◦ h.

Proof. Proof of Part (4). Let

f =
∞∑
n=0

anX
n, g =

∞∑
n=1

bnX
n, h =

∞∑
n=1

cnX
n,

so that ord(g), ord(h) > 1. Fix k ≥ 1. Define the formal polynomials

F =
k−1∑
n=0

anX
n, G =

k−1∑
n=0

bnX
n, H =

k−1∑
n=0

cnX
n,

so we have
F ≡ f mod (Xn), G ≡ g mod (Xn), H ≡ h mod (Xn).

Since the algebra of formal polynomials is defined to be the same as the algebra of polynomial
functions, we obtain

F ◦ (G ◦H) = (F ◦G) ◦H. (9)

Now, by Proposition A.13 G ≡ g and H ≡ h imply G ◦H ≡ g ◦ h, and then since F ≡ f it
follows that

F ◦ (G ◦H) ≡ f ◦ (g ◦ h) mod (Xk). (10)

Next, from F ≡ f and G ≡ g comes F ◦G ≡ f ◦ g, and then since H ≡ h it follows that

(F ◦G) ◦H ≡ (f ◦ g) ◦ h mod (Xk). (11)

Combining (9), (10), and (11), we obtain

f ◦ (g ◦ h) ≡ F ◦ (G ◦H) = (F ◦G) ◦H ≡ (f ◦ g) ◦ h mod (Xk),

and hence
f ◦ (g ◦ h) ≡ (f ◦ g) ◦ h mod (Xk). (12)

Since k ≥ 1 is arbitrary, we conclude that (12) holds for all k ≥ 1.
Therefore f ◦ (g ◦ h) = (f ◦ g) ◦ h. �
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In general if Y =
∑∞

n=1 cnX
n and we define Yk =

∑k
n=1 cnX

n for all k ≥ 1, then to write
∞∑
n=0

anX
n =

∞∑
n=0

bnY
n

means simply
∞∑
n=0

anX
n ≡

k∑
n=0

bnY
n
k mod (Xk)

for all k ≥ 1.
Let the symbols ·X and ·Y denote the multiplication operations for R[[X]] and R[[Y ]],

respectively. One last result we should like to establish is that the multiplication operation for
formal power series is “well-defined” in the following sense.

Proposition A.15. Given Y =
∑∞

n=1 cnX
n, if

∞∑
n=0

anX
n =

∞∑
n=0

αnY
n and

∞∑
n=0

bnX
n =

∞∑
n=0

βnY
n,

then (
∞∑
n=0

anX
n

)
·X

(
∞∑
n=0

bnX
n

)
=

(
∞∑
n=0

αnY
n

)
·Y

(
∞∑
n=0

βnY
n

)
(13)

The crux of the proof depends on the known fact that multiplication of two formal poly-
nomials in X, say p(X) and q(X), yields the same polynomial (in terms of X) regardless of
how p and q may be expressed in terms of some other polynomial Y = r(X). That is, given

Y =
∑j

n=0 enX
n, if

p(X) =

k1∑
n=0

anX
n =

k2∑
n=0

bnY
n

and

q(X) =

`1∑
n=0

cnX
n =

`2∑
n=0

dnY
n,

then (
k1∑
n=0

anX
n

)(
`1∑
n=0

cnX
n

)
=

(
k2∑
n=0

bnY
n

)(
`2∑
n=0

dnY
n

)
holds.

Proof. Let k ≥ 1 be arbitrary. Define

Yk =
k∑

n=1

cnX
n.

Then
∞∑
n=0

anX
n ≡

k∑
n=0

αnY
n
k mod (Xk) (14)
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and
∞∑
n=0

bnX
n ≡

k∑
n=0

βnY
n
k mod (Xk). (15)

Noting that Y ≡ Yk mod (Xk), Proposition A.3(2) implies that

Y n ≡ Y n
k mod (Xk)

for all n ≥ 0, whence Proposition A.3(1) gives

αnY
n ≡ αnY

n
k mod (Xk)

for all n ≥ 0, and finally by Proposition A.3(3) we obtain

k∑
n=0

αnY
n ≡

k∑
n=0

αnY
n
k mod (Xk)

and similarly
k∑

n=0

βnY
n ≡

k∑
n=0

βnY
n
k mod (Xk).

These results, together with (14) and (15), imply that

∞∑
n=0

anX
n ≡

k∑
n=0

αnY
n and

∞∑
n=0

bnX
n ≡

k∑
n=0

βnY
n.

Hence (
∞∑
n=0

anX
n

)(
∞∑
n=0

bnX
n

)
≡

(
k∑

n=0

αnY
n

)(
k∑

n=0

βnY
n

)
mod (Xk)

by Proposition A.3(4), from which the desired conclusion (13) readily follows. �
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A.2 – Relations Between Formal and Convergent Series

Given a formal power series

f(X) =
∞∑
n=0

anX
n,

we may replace the indeterminate X with the complex-valued variable z to obtain

f(z) =
∞∑
n=0

anz
n. (16)

If the power series
∑
anz

n converges on some set S ⊆ C, then we can naturally regard (16) as
defining a function f : S → C and pass from a formal power series interpretation to that of a
complex-valued convergent power series. Then f is usually used as the symbol for the power
series, and f(z) represents the value of the power series at any z ∈ S.

Recall from §A.1 that two formal power series f(X) =
∑
anX

n and g(X) =
∑
bnX

n are
equal (we might now say formally equal) if and only if an = bn for all n ≥ 0. It should be
clear that if f = g in the formal sense, then if f and g are absolutely convergent power series
on some set S ⊆ C, then f(z) = g(z) for all z ∈ S. What is not clear is the converse: if
f(z) = g(z) for all z ∈ S, then is it necessarily so that an = bn for all n ≥ 0? It is true, but
we will not assume this fact in this section except in the exercises at the end. The proof that
equal absolutely convergent series are necessarily equal formal series would have come in §A.5
if the Lang treatment were pursued that far here.

Recall also from §A.1 that if f and g are formal power series given in term of an indetermi-
nate X by f(X) =

∑
anX

n and g(X) =
∑
bnX

n, then the sum of f and g is the formal power
series f + g given by

(f + g)(X) =
∑

(an + bn)Xn,

the product of f and g is the formal power series fg given by

(fg)(X) =
∞∑
n=0

(
n∑
k=0

akbn−k

)
Xn,

and the constant multiple of f by a constant c ∈ R (where R is any ring) is the formal power
series cf given by

(cf)(X) =
∞∑
n=0

(can)Xn.

Theorem A.16. Let α ∈ C. If f and g are power series which converge absolutely on Br(0) ⊆
C, then f + g, fg, and αf also converge absolutely on Br(0), with

(f + g)(z) = f(z) + g(z), (fg)(z) = f(z)g(z), and (αf)(z) = αf(z)

for all z ∈ Br(0).

Proof. Let f(z) =
∑
anz

n and g(z) =
∑
bnz

n. Then formally we have

(f + g)(z) =
∞∑
n=0

(an + bn)zn.
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Let z ∈ Br(0). Then f(z), g(z) ∈ C, which is to say the limits

lim
n→∞

n∑
k=0

akz
k and lim

n→∞

n∑
k=0

bkz
k

exist in C. Now, by a well-established law of limits,

(f + g)(z) =
∞∑
n=0

(an + bn)zn = lim
n→∞

n∑
k=0

(ak + bk)z
k = lim

n→∞

(
n∑
k=0

akz
k +

n∑
k=0

bkz
k

)

= lim
n→∞

n∑
k=0

akz
k + lim

n→∞

n∑
k=0

bkz
k =

∞∑
n=0

anz
n +

∞∑
n=0

bnz
n

= f(z) + g(z).

The part of the proof concerning αf is equally straightforward, and the arguments for fg are
already made in Lang. �

Theorem A.17. Let f(z) =
∑
anz

n be a non-constant power series with radius of convergence

r > 0. If f(0) = 0, then there exists some δ > 0 such that f(z) 6= 0 for all z ∈ B′δ(0).

Proof. Suppose that f(0) = 0. Then a0 = 0, and so ord(f) = m for some m ≥ 1 and we may
write

f(z) =
∞∑
n=m

anz
n.

Now, since am 6= 0 we have

f(z) = lim
k→∞

m+k∑
n=m

anz
n = lim

k→∞

(
amz

m

k∑
n=0

am+n

am
zn

)
. (17)

For 0 < |z| < r it must be that

g(z) =
∞∑
n=0

am+n

am
zn

converges. To see this, suppose there exists some z for which 0 < |z| < r and g(z) diverges.
This means the limit

lim
k→∞

k∑
n=0

am+n

am
zn

does not exist in C, and since amz
m 6= 0 it follows that the limit

lim
k→∞

(
amz

m

k∑
n=0

am+n

am
zn

)
likewise does not exist in C and so by (17) we conclude that f(z) diverges—contradicting the
hypothesis that f has radius of convergence r. Therefore g has radius of convergence ρ ≥ r.1

1Indeed ρ = r, but we do not need this fact.



16

For any |z| < r, then, an established law of limits gives

f(z) = amz
m lim
k→∞

k∑
n=0

am+n

am
zn = amz

m

∞∑
n=0

am+n

am
zn.

If we let bn = am+n/am for n ≥ 1, and define

h(z) =
∞∑
n=1

bnz
n,

then

f(z) = amz
mg(z) = amz

m(1 + h(z)). (18)

It is clear that h, like g, has radius of convergence at least r, and so
∞∑
n=1

|bn|(r/2)n

is a convergent series. Let S = Br/2(0). If we define fn : S → C by

fn(z) = bnz
n

for all n ≥ 1, then

‖fn‖S = sup
z∈S
|fn(z)| = sup

z∈S
|bn||z|n ≤ |bn|(r/2)n

for all n ≥ 1, and by the Weierstrass M-Test we conclude that the series h =
∑
fn converges

uniformly on S. That is, the sequence of partial sums

(sn)∞n=1 =
(∑n

k=1
fk

)∞
n=1

converges uniformly on S, with the limit function being h. Since each sn is a polynomial
function and therefore continuous on S, it follows by Theorem 2.13 that the limit function h is
itself continuous on S.

Finally, since h(0) = 0 and h is continuous at 0, there exists some 0 < δ < r/2 such that
|h(z)| < 1/2 for all z ∈ Bδ(0), whence 1 + h(z) 6= 0 on Bδ(0) and by (18) we conclude that

f(z) 6= 0 for all z ∈ B′δ(0). �

In the course of the proof above it was necessary to show that the power series h is continuous
at 0. Indeed we have the following proposition.

Proposition A.18. If f(z) =
∑
anz

n has radius of convergence r, then
∑
anz

n is continuous
on Br(0).

Proof. Suppose that f(z) =
∑
anz

n has radius of convergence r. If r = 0 then the domain
of f is simply {0} and continuity follows trivially. Suppose that r > 0. Let 0 < ρ < r be
arbitrary. For each n ≥ 0 define fn : Bρ(0)→ C by fn(z) = anz

n. We have

‖fn‖ = sup
z∈Bρ(0)

|fn(z)| = sup
z∈Bρ(0)

|an||z|n ≤ |an|ρn,
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and since the series
∑
|an|ρn is convergent it follows by the Weierstrass M-Test that

∑
fn

converges uniformly to f on Bρ(0). That is, the sequence

(sn)∞n=0 =
(∑n

k=0
fk

)∞
n=0

converges uniformly to f |Bρ(0), and since each sn is the restriction of a polynomial function to

Bρ(0) and therefore is continuous, Theorem 2.13 implies that f |Bρ(0) is continuous.

Hence f is continuous on Bρ(0) for all s < r, and we conclude that
∑
anz

n is continuous
on Br(0). �

Theorem A.19. Suppose f(z) =
∑
anz

n and g(z) =
∑
bnz

n converge absolutely on Bρ(0) for
some ρ > 0. Let

A = {z ∈ Bρ(0) : f(z) = g(z)} .
If A is an infinite set having 0 as a limit point, then f ≡ g on Bρ(0).

Proof. By Theorem A.16 f − g converges absolutely on Bρ(0), with

(f − g)(z) =
∞∑
n=0

(an − bn)zn =
∞∑
n=0

anz
n −

∞∑
n=0

bnz
n

for all z ∈ Bρ(0). From this we have

(f − g)(0) = f(0)− g(0) = a0 − b0.

Suppose 0 is a limit point of A. Then for each ε > 0 we have B′ε(0)∩A 6= ∅, which is to say
there exists some a ∈ A such that 0 < |a| < ε and f(a) = g(a), and so we obtain (f−g)(a) = 0.
Since f − g is continuous at 0 by Proposition A.18, it follows that (f − g)(0) = 0 and hence
a0 = b0.

Suppose that f − g is non-constant on Bρ(0). Since f − g has radius convergence r ≥ ρ > 0
and (f − g)(0) = 0, by Theorem A.17 there exists some δ > 0 such that (f − g)(z) 6= 0 for all

z ∈ B′δ(0). However this entails that B′δ(0)∩A = ∅, so that 0 is not a limit point of A and we
have arrived at a contradiction.

Therefore f − g must be constant on Bρ(0), and since (f − g)(0) = 0 we conclude that
f − g ≡ 0. That is, f ≡ g on Bρ(0). �

While two formal power series
∑
anX

n and
∑
bnX

n are defined to be equal if and only
if an = bn for all n ≥ 0, it is not at all clear at this point (Lang’s blithe declaration at the
end of his version of Theorem A.19 notwithstanding) that coefficients must match if

∑
anz

n

and
∑
bnz

n are numerically equal for all z in some open disc Br(0) ⊆ C on which both series
converge absolutely. It happens to be so, but a proof will have to wait until it is established
that convergent power series have derivatives of all orders.

Define power series E, S, and C by

E(z) =
∞∑
n=0

1

n!
zn, S(z) =

∞∑
n=0

(−1)n

(2n+ 1)!
z2n+1, and C(z) =

∞∑
n=0

(−1)n

(2n)!
z2n.

It is easy to show, using the Ratio Test, that the power series all have radius of convergence
∞; that is, they all define functions on C.
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In Chapter 10 of the Calculus Notes are developed the theorems to show that

exp(x) =
∞∑
n=0

1

n!
xn, sin(x) =

∞∑
n=0

(−1)n

(2n+ 1)!
x2n+1, cos(x) =

∞∑
n=0

(−1)n

(2n)!
x2n

for all x ∈ R (and in fact this is done for the sine function in an example). Thus, in particular,

exp(x) = E(x) for all x ∈ (−1, 1), and so if Ê(z) is any power series extension of exp : R→ R
to C, then certainly Ê(x) = E(x) for all x ∈ (−1, 1) and by Theorem A.19 we conclude that

Ê ≡ E on C. Therefore E(z) is the only possible power series extension of the exponential
function to the complex plane. There can be no other! We define

exp(z) := E(z) (19)

for all z ∈ C. Similar arguments establish that S(z) and C(z) are the unique power series
extensions of the sine and cosine functions to the complex plane, and so we define

sin(z) := S(z) and cos(z) := C(z)

for all z ∈ C.
In Chapter 1 we established the formula

ez = ex(cos y + i sin y). (20)

for all z = x+ iy. We should like to verify that the value of ez as defined without power series
by (20) is equal to exp(z) as defined by (19) for all z ∈ C. To do this we use two facts:

E(iz) = C(z) + iS(z)

for any z ∈ C, and

E(z1 + z2) = E(z1) · E(z2). (21)

for any z1, z2 ∈ C. Recalling that E(x) = exp(x) = ex for all x ∈ R, we have, for any z = x+ iy,

exp(z) = E(z) = E(x+ iy) = E(x) · E(iy) = ex
(
C(y) + iS(y)

)
= ex(cos y + i sin y) = ex+iy = ez.

Thus the equivalency of ez and exp(z) is established.

Definition A.20. Let f(X) =
∑
anX

n and ϕ(X) =
∑
cnX

n be two formal power series such
that an ∈ C and cn ∈ [0,∞) for all n. We say f is dominated by ϕ, written f ≺ ϕ, if there
exists some N ∈ Z such that |an| ≤ cn for all n ≥ N .

It is easy to verify that if f ≺ ϕ and g ≺ ψ, then

f + g ≺ ϕ+ ψ and fg ≺ ϕψ.

Theorem A.21. Suppose f(z) =
∑
anz

n has nonzero radius of convergence and constant term
a0 6= 0. Let g(z) =

∑
bnz

n be the formal multiplicative inverse of f , so that formally fg = 1.
Then g also has a nonzero radius of convergence.
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Proof. The proof will consist of formal manipulations, which is to say we will operate in R[[z]].

Let r > 0 be the radius of convergence of f . Define f̂ = f/a0, so that

f̂(z) =
∞∑
n=0

ânz
n

with ân = an/a0, and in particular â0 = 1. Clearly f̂ has nonzero radius of convergence r > 0

also. Let ĝ be the formal multiplicative inverse of f̂ . Much as in the proof of Theorem A.6, let

h(z) = 1− f̂(z) =
∞∑
n=0

(δ0n − 1)ânz
n

so that, formally,

ĝ(z) =
1

f̂(z)
=

1

1− h(z)
=
∞∑
n=0

hn(z). (22)

By Corollary 2.24 there exists some A > 0 such that |an| ≤ An for all n ≥ 0, so that

h(z) ≺
∞∑
n=1

Anzn =
Az

1− Az
(23)

and hence

ĝ(z) ≺
∞∑
n=0

(
Az

1− Az

)n
(24)

At this stage it should be noted that h and the dominating series in (23) and (24) all have
nonzero radii of convergence. In particular the dominating series in (23) will converge if∣∣∣∣ Az

1− Az

∣∣∣∣ < 1,

which implies |z| < |z − 1/A|, and so convergence is assured for all z such that |z| < 1/(2A).
Therefore ĝ must have radius of convergence at least equal to 1/(2A) > 0.

Now,

f̂ ĝ = 1 ⇔ (f/a0)ĝ = 1 ⇔ f(ĝ/a0) = 1,

so g = ĝ/a0 is the (unique) multiplicative inverse of f . Since ĝ has nonzero radius of conver-
gence, it follows that g also has nonzero radius of convergence. �

Alternate Proof. We proceed as before to obtain the formal equation (22). We then observe
that h has radius of convergence r > 0, and by Proposition A.18 h is continuous on Br(0).
Hence

lim
z→0

h(z) = h(0) = 0,

and so there exists some 0 < δ < r such that |h(z)| < 1 for all z ∈ Bδ(0). Thus for any z for
which |z| < δ we find that

∞∑
n=0

[h(z)]n

is a convergent geometric series, and so ĝ has radius of convergence at least δ > 0. Therefore
g has radius of convergence at least δ. �
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Recall that if f, g ∈ R[[X]] such that f(X) =
∑∞

n=0 anX
n and g(X) =

∑∞
n=1 bnX

n, then
f ◦ g is the formal power series given by

(f ◦ g)(X) = f(g(X)) =
∞∑
n=0

an[g(X)]n.

It was shown in §A.1 that f ◦ g ∈ R[[X]]; that is, there exist coefficients cn ∈ R such that
∞∑
n=0

an[g(X)]n =
∞∑
n=0

cnX
n.

Of course the equality here is formal. A natural question that arises is this: if z ∈ C is such
that

∑∞
n=0 an[g(z)]n and

∑∞
n=0 cnz

n converge, do they equal the same number? Part of the next
theorem answers this in the affirmative.

Theorem A.22. Let

f(z) =
∞∑
n=0

anz
n and g(z) =

∞∑
n=1

bnz
n

have radii of convergence rf > 0 and rg > 0, respectively. Let 0 < r < rf , and suppose s > 0 is
such that

∞∑
n=1

|bn|sn ≤ r.

If h =
∑
cnz

n is formally given by h = f ◦ g, then h converges absolutely for |z| ≤ s, and
h(z) = f(g(z)) for all z ∈ Bs(0).

Exercise A.23 (La2.3.1a). Let S = {z ∈ C : |z−1| < 1}, and define the function log : S → C
by

log(z) =
∞∑
n=1

(−1)n−1

n
(z − 1)n

for all z ∈ S. Recalling exp(z) =
∑∞

n=0 z
n/n! for all z ∈ C, prove that (exp ◦ log)(z) = z for all

z ∈ S.

Solution. As observed earlier, the developments in Chapter 10 of the Calculus Notes can be
used to show that exp(x) =

∑∞
n=0 x

n/n! for x ∈ (−∞,∞). The same developments will also
show that

ln(x) =
∞∑
n=1

(−1)n−1

n
(x− 1)n

for all x ∈ (0, 2), which is to say log(x) = ln(x) for all x ∈ R such that |x− 1| < 1. In Chapter
7 of the Calculus Notes it is shown that exp : R → (0,∞) and ln : (0,∞) → R are inverse
functions, and therefore for x ∈ R such that |x− 1| < 1 we have

(exp ◦ log)(x) = exp(log(x)) = exp(ln(x)) = x. (25)

Define p : C→ C to be the power series

p(z) = z + 1,
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The series exp ◦ log ◦ p and p both converge absolutely on B1(0), and moreover for all x ∈ (−1, 1)
we have

(exp ◦ log ◦ p)(x) = (exp ◦ log)(p(x)) = (exp ◦ log)(x+ 1) = x+ 1 = p(x),

observing that |(x + 1) − 1| < 1. Since 0 is a limit point for (−1, 1) and exp ◦ log ◦ p = p on
(−1, 1), by Theorem A.19 we conclude that

exp ◦ log ◦ p ≡ p

on B1(0). That is, for all z ∈ B1(0)

(exp ◦ log)(z + 1) = (exp ◦ log ◦ p)(z) = p(z) = z + 1,

or equivalently
(exp ◦ log)(z) = z (26)

for all z ∈ C such that |z − 1| < 1. �

Exercise A.24 (La2.3.1b). Let S∗ = {z ∈ C : |z − z0| < |z0|}, z0 6= 0, and α ∈ C be such
that exp(α) = z0. Define log∗ : S∗ → C by

log∗(z) =
∞∑
n=1

(−1)n−1

n

(
z

z0
− 1

)n
+ α.

Prove that (exp ◦ log∗)(z) = z for all z ∈ S∗.

Solution. Let z ∈ S∗. We have

|z − z0| < |z0| ⇒
|z − z0|
|z0|

< 1 ⇒
∣∣∣∣z − z0z0

∣∣∣∣ < 1 ⇒
∣∣∣∣ zz0 − 1

∣∣∣∣ < 1,

so z/z0 ∈ S = {z ∈ C : |z − 1| < 1} and from Exercise A.23

log

(
z

z0

)
=
∞∑
n=1

(−1)n−1

n

(
z

z0
− 1

)n
= log∗(z)− α.

That is,

log∗(z) = log

(
z

z0

)
+ α,

and therefore

(exp ◦ log∗)(z) = exp
(

log∗(z)
)

= exp
(

log(z/z0) + α
)

= exp
(

log(z/z0)
)
· exp(α) = (exp ◦ log)(z/z0) · z0

=
z

z0
· z0 = z

by (21) and (26). �

Exercise A.25 (La2.3.2a). Let exp(X) =
∑∞

n=0X
n/n! and log(1+X) =

∑∞
n=1(−1)n−1Xn/n.

Show that
(exp ◦ log)(1 +X) = 1 +X and (log ◦ exp)(X) = X.
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Solution. Define the power series

log∗(z) =
∞∑
n=1

(−1)n−1

n
zn, p(z) = z, and q(z) = z − 1.

The Ratio Test easily shows that log∗ converges absolutely on B1(0), and of course q converges
absolutely on C. Thus log∗ ◦ q converges absolutely on B1(1), and moreover

(log∗ ◦ q)(z) = log∗(z − 1) =
∞∑
n=1

(−1)n−1

n
(z − 1)n = log(z) (27)

for all z ∈ B1(1).
Now, since exp(0) = 1 and the function exp : C → C is everywhere continuous, there

exists some r > 0 such that | exp(z) − 1| < 1 for all z ∈ Br(0). Since exp(z) converges
absolutely on Br(0) and (log∗ ◦ q)(z) converges absolutely on exp(Br(0)) ⊆ B1(1), we conclude
that log∗ ◦ q◦exp converges absolutely on Br(0).2 From (27) we see that log∗ ◦ q = log on B1(1),
and so log ◦ exp and p converge absolutely on Br(0).

Observing that 0 is a limit point for (−r, r) ⊆ Br(0) and

(log ◦ exp)(x) = log(exp(x)) = ln(exp(x)) = x = p(x)

for all x ∈ (−r, r), by Theorem A.19 we have log ◦ exp ≡ p on Br(0). That is,

(log ◦ exp)(z) = z

for all z ∈ Br(0), and so the formal result (log ◦ exp)(X) = X obtains.
The formal result (exp ◦ log)(1 +X) = 1 +X follows immediately from Exercise A.23, with

z merely replaced by 1 +X. �

Exercise A.26 (La2.3.2b). Let g, h ∈ C[[X]] be such that ord(g), ord(h) ≥ 1. Prove that

log
(
(1 + g(X))(1 + h(X))

)
= log

(
1 + g(X)

)
+ log

(
1 + h(X)

)
. (28)

Solution. We have, formally,

exp
(

log
(
(1 + g(X))(1 + h(X))

))
= (exp ◦ log)

(
(1 + g(X))(1 + h(X))

)
= (exp ◦ log)

(
1 + g(X) + h(X) + g(X)h(X)

)
= 1 + g(X) + h(X) + g(X)h(X) = (1 + g(X))(1 + h(X))

= (exp ◦ log)(1 + g(X))(exp ◦ log)(1 + h(X))

= exp
(

log(1 + g(X))
)
exp
(

log(1 + h(X))
)

= exp
(

log(1 + g(X)) + log(1 + h(X))
)
,

2The reason for insinuating q into the analysis is simple: log∗ ◦ q ◦ exp = log∗ ◦ (q ◦ exp) is a composition of
two power series centered at 0 with the constant term of q ◦ exp equal to 0, and so we could (if desired) invoke
Theorem A.22 to argue that log∗ ◦ q ◦ exp converges absolutely.
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where the third equality follows from the previous exercise, and the last equality makes use of
(21). It is known that exp(z1) = exp(z2) if and only if z1 = z2 + 2πki for some k ∈ Z, and so
here we have

log
(
(1 + g(X))(1 + h(X))

)
−
[

log(1 + g(X)) + log(1 + h(X))
]
= 2πki (29)

for some integer k. That is, the two formal power series on the left-hand side differ only
(potentially) in the value of their constant term. Since g and h are formal power series with
constant term 0, supplanting the indeterminate X with 0 gives

2πki = log
(
(1 + g(0))(1 + h(0))

)
− log(1 + g(0))− log(1 + h(0))

= log
(
(1 + 0)(1 + 0)

)
− log(1 + 0)− log(1 + 0)

= log(1)− log(1) + log(1) = 0− 0− 0 = 0,

and therefore k = 0. Returning to (29), we conclude that

log
(
(1 + g(X))(1 + h(X))

)
−
[

log(1 + g(X)) + log(1 + h(X))
]
= 0,

from which (28) follows. �

Exercise A.27 (La2.3.2c). For α, β ∈ C show that

log(1 +X)α = α log(1 +X) and (1 +X)α(1 +X)β = (1 +X)α+β.

Solution. Recalling the binomial series, for any α ∈ C we have

log(1 +X)α = log
(
(1 +X)α

)
= log

(
∞∑
n=0

(
α

n

)
Xn

)
= log

(
1 +

∞∑
n=1

(
α

n

)
Xn

)

=
∞∑
n=1

[
(−1)n−1

n

(
∞∑
n=1

(
α

n

)
Xn

)n ]
=
∞∑
n=1

bn(α)Xn, (30)

where it is clear that each bn(α) is a polynomial in α.
For x ∈ (−1,∞) and α ∈ R we have log(1 + x)α = α log(1 + x) from calculus, and thus

formally (i.e. in the ring C[[X]]) we have

log(1 +X)α = α log(1 +X) (31)

for any α ∈ R. Now,

α log(1 +X) = α
∞∑
n=1

(−1)n−1Xn/n =
∞∑
n=1

α(−1)n−1

n
Xn,

and so (30) and (31) imply

log(1 +X)α =
∞∑
n=1

bn(α)Xn

such that

bn(α) =
(−1)n−1

n
α
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for all α ∈ R, n ≥ 1.
Define polynomial functions an : C→ C by

an(α) =
(−1)n−1

n
α

for all α ∈ C. The functions bn : C → C are also polynomial, and since an(α) = bn(α) for
α ∈ R, we conclude by Theorem A.19 that an ≡ bn on C for all n ≥ 1. That is, for any α ∈ C,

log(1 +X)α =
∞∑
n=1

bn(α)Xn =
∞∑
n=1

an(α)Xn =
∞∑
n=1

α(−1)n−1

n
Xn = α log(1 +X).

From the first line of (30) we see that, for any α ∈ C,

(1 +X)α = 1 + hα(X)

for some series hα(X) with zero constant term, and thus for any β ∈ C we use Exercise A.26
to obtain

log
(
(1 +X)α(1 +X)β

)
= log

(
(1 + hα(X))(1 + hβ(X))

)
= log

(
1 + hα(X)

)
+ log

(
1 + hβ(X)

)
= log(1 +X)α + log(1 +X)β

= α log(1 +X) + β log(1 +X) = (α + β) log(1 +X)

= log(1 +X)α+β.

Exponentiating then yields

(1 +X)α(1 +X)β = (1 +X)α+β + 2πki

for some k ∈ Z, which is to say the formal power series (1 +X)α(1 +X)β and (1 +X)α+β may
differ only by a constant term. Substituting 0 for the indeterminate X, however, gives

2πki = (1 + 0)α(1 + 0)β − (1 + 0)α+β = 1 · 1− 1 = 0,

so k = 0 and the proof that

(1 +X)α(1 +X)β = (1 +X)α+β

is done. �

Remark. The binomial series shows that 1z = 1 for any nonzero z ∈ C:

1z = (1 + 0)z =
∞∑
n=0

(
z

n

)
0n = 1 +

∞∑
n=1

(
z

n

)
0n = 1 + 0 = 1.

Of course 10 = 1 by definition.

Exercise A.28 (La2.3.3). Prove that

cos z =
eiz + e−iz

2
and sin z =

eiz − e−iz

2i
for all z ∈ C.
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Solution. It has already been established that

cos z =
∞∑
n=0

(−1)n
z2n

(2n!)
and exp(z) =

∞∑
n=0

zn

n!
= ez

for all z ∈ C. Hence

eiz + e−iz

2
=

1

2

[
∞∑
n=0

(iz)n

n!
+
∞∑
n=0

(−iz)n

n!

]
=
∞∑
n=0

(
in + (−i)n

2

)
zn

n!
.

If n is odd, so that n = 2k + 1 for some k ≥ 0, then

in + (−i)n = i2k+1 + (−i)2k+1 = (i2)ki+ [(−i)2]k(−i) = (−1)ki+ (−1)k(−i) = 0

and we obtain
eiz + e−iz

2
=
∞∑
n=0

(
i2n + (−i)2n

2

)
z2n

(2n)!
.

Now,

i2n + (−i)2n

2
=

(−1)n + (−1)n

2
=

{
1 = (−1)n, if n is even

−1 = (−1)n, if n is odd

whence
eiz + e−iz

2
=
∞∑
n=0

(−1)n
z2n

(2n)!
= cos z.

The derivation for sin z is done similarly. �

Exercise A.29 (La2.3.4). Show that sin z = 0 if and only if z = kπ for some k ∈ Z.

Solution. If z = kπ for some k ∈ Z, then sin(z) = 0 follows immediately. For the converse,
suppose that z ∈ C is such that sin z = 0. From the previous exercise we have

eiz − e−iz

2i
= 0,

so that eiz = e−iz. By La1.2.9 we have iz = −iz + 2πki for some k ∈ Z, which implies that
z = kπ. �
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A.3 – Analytic Functions

An infinite series of the form
∞∑
n=0

an(z − z0)n (32)

is a power series centered at z0. A function f is analytic at z0 if there exists a series (32)
that converges absolutely on Br(z0) for some r > 0 such that

f(z) =
∞∑
n=0

an(z − z0)n

for all z ∈ Br(z0). If such is the case, we say that f has a power series expansion at z0. If
U is an open set we say f is analytic on U if f is analytic at z for each z ∈ U . Finally, if S
is an arbitrary set we say f is analytic on S if there exists an open set such that S ⊆ U and
f is analytic on U .

All the results obtained thus far about power series centered at the origin can easily be
generalized to power series centered at z0. For instance we have the following, which generalizes
Theorem A.19.

Theorem A.30. Suppose f(z) =
∑
an(z − z0)n and g(z) =

∑
bn(z − z0)n converge absolutely

on Br(z0) for some r > 0. Let

A = {z ∈ Br(z0) : f(z) = g(z)} .
If z0 is a limit point of A, then f ≡ g on Br(z0).

Proof. Suppose z0 is a limit point for A. Define ϕ(z) = z + z0. Then

(f ◦ ϕ)(z) = f(z + z0) =
∑

anz
n

converges absolutely for all z ∈ Br(0), since

z ∈ Br(0) ⇔ |z| < r ⇔ |(z + z0)− z0| < r ⇔ z + z0 ∈ Br(z0),

and f(z) =
∑
an(z − z0)n is given to converge absolutely on Br(z0). Similarly we find that

(g ◦ ϕ)(z) = g(z + z0) =
∑

bnz
n

converges absolutely on Br(0).
Define

A0 = {z ∈ Br(0) : (f ◦ ϕ)(z) = (g ◦ ϕ)(z)} .

Let ε > 0. Since z0 is a limit point for A, there exists some z ∈ A such that z ∈ B′ε(z0). That
is, z ∈ Br(z0) is such that 0 < |z − z0| < ε and f(z) = g(z). Then z − z0 ∈ Br(0) and

(f ◦ ϕ)(z − z0) = f(ϕ(z − z0)) = f(z) = g(z) = g(ϕ(z − z0)) = (g ◦ ϕ)(z − z0)

show that z − z0 ∈ A0 is such that z − z0 ∈ B′ε(0). Hence B′ε(0) ∩ A0 6= ∅ for every ε > 0, and
therefore 0 is a limit point for A0.

Since f ◦ϕ and g ◦ϕ converge absolutely on Br(0) and 0 is a limit point for A0, by Theorem
A.19 we conclude that f ◦ ϕ ≡ g ◦ ϕ on Br(0).
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Now, let z ∈ Br(z0) be arbitrary. Then z − z0 ∈ Br(0), and so

f(z) = (f ◦ ϕ)(z − z0) = (g ◦ ϕ)(z − z0) = g(z).

Therefore f ≡ g on Br(z0). �

Before going further some formal results need to be established. If

f(X) =
∞∑
n=0

an(X −X0)
n and g(X) =

∞∑
n=0

bn(X −X0)
n,

then we view f and g as formal power series belonging to the ring R[[X − X0]], and define
f + g, cf, fg ∈ R[[X −X0]] (where c ∈ R) in the expected way:

(f + g)(X) =
∞∑
n=0

(an + bn)(X −X0)
n, (cf)(X) =

∞∑
n=0

can(X −X0)
n,

and

(fg)(X) =
∞∑
n=0

(
n∑
k=0

akbn−k

)
(X −X0)

n.

Also multiplicative inverses, quotients, and compositions are defined in a fashion analogous to
the corresponding definitions for elements of R[[X]].

Remark. Strictly speaking, we cannot use any fact about the arithmetic of R[[X]] to “prove”
anything about the arithmetic of R[[X − X0]] (such as by employing “translations”), since
R[[X]] and R[[X −X0]] are completely different rings! Even regarding X0 as an element of R
and instead writing X − c0 (with c0 ∈ R) leads to difficulties unless we choose c0 = 0: formally
f becomes the “composition” h ◦ ϕ with h(X) =

∑
anX

n and ϕ(X) = −c0 + X, but ϕ has
nonzero constant term!

The situation with regards to convergent power series is, of course, somewhat different since
translations via compositions with, say, ϕ(z) = z + z0 for z0 6= 0 is possible.3

Proposition A.31. Suppose that functions f and g are analytic on U , and let S = {z ∈ U :
g(z) 6= 0}. Then

1. f + g and fg are analytic on U .
2. f/g is analytic on any open V ⊆ S.

Proof. We will address only the statement concerning fg. Let z0 ∈ U . Then there exist power
series

∑
an(z − z0)n and

∑
bn(z − z0) that converge absolutely on Br(z0), and moreover

f(z) =
∑

an(z − z0)n and g(z) =
∑

bn(z − z0)n

for all z ∈ Br(z0). By definition (see above)

(fg)(z) =
∞∑
n=0

(
n∑
k=0

akbn−k

)
(z − z0)n. (33)

3Lang does not make clear how (or why) results in R[[X]] apply to the set of convergent power series and
vice-versa, nor acknowledges how the composition operation ◦ may be used differently in R[[X]] versus in the
set of convergent power series.
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Let ϕ(z) = z + z0. Defining

f0(z) := (f ◦ ϕ)(z) =
∞∑
n=0

anz
n and g0(z) := (g ◦ ϕ)(z) =

∞∑
n=0

bnz
n,

we see that f0 and g0 are power series that converge absolutely on Br(0). Thus if z ∈ Br(z0),
then z − z0 ∈ Br(0) and we have by Theorem A.16

(f0g0)(z − z0) = f0(z − z0)g0(z − z0) = f(ϕ(z − z0))g(ϕ(z − z0)) = f(z)g(z),

where f(z)g(z) is a complex number. On the other hand we have, by the formal definition of
power series multiplication,

(f0g0)(X) =
∞∑
n=0

(
n∑
k=0

akbn−k

)
Xn,

and so

(f0g0)(z − z0) =
∞∑
n=0

(
n∑
k=0

akbn−k

)
(z − z0)n.

Hence

(fg)(z) =
∞∑
n=0

(
n∑
k=0

akbn−k

)
(z − z0)n = f(z)g(z) ∈ C

for any z ∈ Br(z0).
Since the power series in (33) converges absolutely on Br(z0), and since the equality given

by (33) holds for all z ∈ Br(z0), we conclude that fg is analytic at z0. Since z0 ∈ U is arbitrary,
we further conclude that fg is analytic on U . �

Proposition A.32. Let U, V ⊆ C be open. If g : U → V is analytic on U and f : V → C is
analytic on V , then f ◦ g is analytic on U .

Exercise A.33 (La2.4.1). Find the terms of order ≤ 3 in the power series expansion at 1 of
the function

f(z) =
z2

z − 2
.


