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1
The Complex Numbers

1.1 – The Field of Complex Numbers

We give first the formal definition of a field, if only so we may give each of the field axioms a
convenient label for later reference.

Definition 1.1. A field is a triple (F,+, ·) involving a set F together with binary operations
+, · : F× F→ F satisfying the following axioms:

F1. a+ b = b+ a for any a, b ∈ F.
F2. a+ (b+ c) = (a+ b) + c for any a, b, c ∈ F.
F3. There exists some 0 ∈ F such that a+ 0 = a for any a ∈ F.
F4. For each a ∈ F there exists some −a ∈ F such that −a+ a = 0.
F5. a · (b · c) = (a · b) · c for any a, b, c ∈ F.
F6. a · (b+ c) = a · b+ a · c for any a, b, c ∈ F.
F7. a · b = b · a for all a, b ∈ F.
F8. There exists some 0 6= 1 ∈ F such that a · 1 = a for any a ∈ F.
F9. For each 0 6= a ∈ F there exists some a−1 ∈ F such that aa−1 = 1.

Let R denote the field of real numbers (R,+, ·). Formally we define the complex numbers
to be the elements of the set

R2 = {(x, y) : x, y ∈ R}

together with binary operations of addition and multiplication defined by

(x1, y1) + (x2, y2) = (x1 + x2, y1 + y2) (1.1)

and

(x1, y1) · (x2, y2) = (x1x2 − y1y2, x1y2 + x2y1), (1.2)

respectively. (Often the · in (1.2) is suppressed.) The triple (R2,+, ·) is easily shown to satisfy
all the properties of a field, and we henceforth denote this field of complex numbers by the
symbol C, often called the complex plane. In particular the complex numbers (0, 0) and
(1, 0) are the additive and multiplicative identity elements of C, respectively, thereby satisfying
Axioms F3 and F8 in Definition 1.1.
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The statement and proof of our first proposition will show how C satisfies Axiom F9. In
general, if z ∈ C is such that z 6= (0, 0), the symbol z−1 will denote the (unique) multiplicative
inverse of z; that is, z−1 denotes the (unique) complex number for which zz−1 = (1, 0).

Proposition 1.2. If z = (x, y) 6= (0, 0), then

z−1 =

(
x

x2 + y2
,− y

x2 + y2

)
.

Proof. Suppose z = (x, y) is a nonzero complex number, so in particular x2 + y2 > 0. We find
(u, v) ∈ C such that

(x, y) · (u, v) = (ux− vy, vx+ uy) = (1, 0).

This gives us a nonlinear system of equations:{
ux− vy = 1
vx + uy = 0

From the first equation we have vy = ux− 1. Multiplying the second equation by y, we obtain

vxy + uy2 = 0 ⇒ x(ux− 1) + uy2 = 0 ⇒ u =
x

x2 + y2
.

From the first equation we also have ux = vy + 1. Multiplying the second equation by x, we
obtain

vx2 + uxy = 0 ⇒ vx2 + y(vy + 1) = 0 ⇒ v = − y

x2 + y2
.

It is straightforward to check that z · (u, v) = (1, 0) using the values of u and v acquired, and
therefore z−1 = (u, v). �

Definition 1.3. Let z ∈ C and n ∈ N. Then the nth power of z is

zn =
n∏
k=1

z.

If z 6= (0, 0), then we also define z0 = (1, 0) and z−n = (z−1)n.

The set {(x, 0) : x ∈ R} is a subfield of C that is isomorphic to the field R via the canonical
correspondence x 7→ (x, 0), and so we naturally identify {(x, 0) : x ∈ R} with R itself. That is,
we view R as a subfield of C, and denote each (x, 0) ∈ C as simply x. Then we see that, for any
c ∈ R,

(c, 0) · (x, y) = (cx− 0y, cy + x0) = (cx, cy),

which together with Axiom F7 informs us that

c(x, y) = (cx, cy) = (x, y)c,

showing C to be a vector space over R. Defining i = (0, 1), so iy = (0, y) for any y ∈ R, we have

(x, y) = (x, 0) + (0, y) = x+ iy
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for all x, y ∈ R, which enables us to eschew the ordered pair notation for complex numbers
completely, and gives us the more customary representation of C as

C = {x+ iy : x, y ∈ R}.

We note in particular that, for x, y ∈ R,

x = (x, 0) = (x, 0) + (0, 0) = x+ i0 and iy = (0, y) = (0, 0) + (0, y) = 0 + iy.

The number i is the imaginary unit (whereas 1 may be called the real unit). It has the
following celebrated property:

i2 = (0, 1) · (0, 1) = (−1, 0) = −1.

It is because of this property that another symbol for i is
√
−1. Any number of the form

iy = (0, y) for y ∈ R is known as an imaginary number. A complex number (x, y) may now
be regarded as a formal sum x+ iy of a real number x and an imaginary number iy. We call x
the real part of x+ iy, written Re(x+ iy) = x; and we call y the imaginary part of x+ iy,
written Im(x+ iy) = y. Clearly z ∈ R if and only if Im(z) = 0.

The set of imaginary numbers we denote by I, so that

I = {(0, y) : y ∈ R} = {iy : y ∈ R}.

Since R ∩ I = {0}, 0 is the only number that is both real and imaginary. Also we see that z ∈ I
if and only if Re(z) = 0.

We take a closer look now at complex number arithmetic. Using (1.1) it is easy to check that

(x1 + iy1) + (x2 + iy2) = (x1 + x2) + i(y1 + y2).

Also, using Axioms F1, F2, and F6, as well as (1.2),

(x1 + iy1)(x2 + iy2) = (x1, y1)[(x2, 0) + (0, y2)]

= (x1, y1)(x2, 0) + (x1, y1)(0, y2)

= (x1x2, x2y1) + (−y1y2, x1y2)

= (x1x2 + ix2y1) + (−y1y2 + ix1y2)

= x1x2 + ix1y2 + ix2y1 + i2y1y2

which shows that in the formal sum notation x+ iy the multiplication of two complex numbers
is patterned precisely in accordance with the manner in which two binomials are multiplied:

(a+ b)(c+ d) = ac+ ad+ bc+ bd.

Exercise 1.4. Show that the field C is isomorphic to the field (M,+, ·), where

M =

{[
x y
−y x

]
: x, y ∈ R

}
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Solution. Define ϕ : C→M by

ϕ(a+ ib) =

[
a b
−b a

]
.

It must be shown that ϕ is a field isomorphism, which is to say ϕ is a bijection, and ϕ(z1) = Z1

and ϕ(z2) = Z2 imply that

ϕ(z1z2) = Z1Z2 and ϕ(z1 + z2) = Z1 + Z2.

From ϕ(a+ ib) = ϕ(c+ id) we have[
a b
−b a

]
=

[
c d
−d c

]
,

which immediately implies that a = c and b = d, so a+ ib = c+ id and ϕ is injective. That ϕ is
surjective is even more trivial, and thus ϕ is bijective.

Let z1 = a+ ib and z2 = c+ id. Then

ϕ(z1 + z2) = ϕ((a+ c) + i(b+ d)) =

[
a+ c b+ d

−(b+ d) a+ c

]
=

[
a+ c b+ d
−b− d a+ c

]
=

[
a b
−b a

]
+

[
c d
−d c

]
= ϕ(z1) + ϕ(z2),

and

ϕ(z1z2) = ϕ((ac− bd) + i(ad+ bc)) =

[
ac− bd ad+ bc

−(ad+ bc) ac− bd

]
=

[
ac− bd ad+ bc
−ad− bc ac− bd

]
=

[
ac− bd ad+ bc
−bc− ad −bd+ ac

]
=

[
a b
−b a

][
c d
−d c

]
= ϕ(z1)ϕ(z1),

and therefore ϕ is a field isomorphism. �

Exercise 1.5. Show that the field C cannot be ordered, which is to say there exists no set
P ⊆ C of “positive elements” such that: (a) P is closed under complex number addition and
multiplication; and (b) for each z ∈ C exactly one of the relations z ∈ P , z = 0, −z ∈ P holds.

Solution. We must have 1 ∈ P , since (b) implies either 1 or −1 is in P , and by (a) it follows
that 12 = 1 or (−1)2 = 1 is in P . We also must have −1 ∈ P , since (b) implies either i or −i is
in P , and by (a) it follows that i2 = −1 or (−i)2 = −1 is in P . Now, 1 ∈ P and −1 ∈ P plainly
contradicts (b). �

A sequence of complex numbers we may denote most generically by (zn). For integers m ≥ k
the symbol (zn)mn=k denotes the finite sequence zk, zk+1, . . . , zm, whereas (zn)∞n=m signifies the
infinite sequence zm, zm+1, zm+2, . . .. For any sequence (zn) we define ∆zk = zk+1 − zk for all
applicable integers k. In the course of doing complex-number arithmetic, one formula that is
sometimes quite useful is the following.
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Proposition 1.6 (Summation by Parts). If (zk) and (wk) are sequences of complex numbers,
then

n∑
k=m

zk∆wk = zn+1wn+1 − zmwm −
n∑

k=m

wk+1∆zk

for all integers n ≥ m.

We pause to introduce some notation for other important sets of numbers. The set of
nonzero complex numbers is

C∗ = C \ {0} = C \ (R ∩ I).

We define W = {0, 1, 2, 3, . . .} to be the set of whole numbers, N = {1, 2, 3, . . .} the set of
natural numbers, Z = {0,±1,±2, . . .} the set of integers, and

Q =

{
p

q
: p, q ∈ Z and q 6= 0

}
the set of rational numbers. Also we denote the set of positive, negative, and nonzero real
numbers by the symbols R+, R−, and R∗, respectively.

Proposition 1.7. For all n ∈W and z 6= 1,

1 + z + · · ·+ zn =
zn+1 − 1

z − 1
. (1.3)

Proof. Clearly the equation holds when n = 0. Let n ∈W be arbitrary and suppose that (1.3)
holds. Then

1 + z + · · ·+ zn+1 = (1 + z + · · ·+ zn) + zn+1

=
zn+1 − 1

z − 1
+ zn+1 =

zn+1 − 1

z − 1
+
zn+1(z − 1)

z − 1

=
zn+1 − 1

z − 1
+
zn+2 − zn+1

z − 1

=
zn+2 − 1

z − 1
,

and thus by induction we conclude that (1.3) holds for all n. �
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1.2 – Moduli and Conjugates

Recall that if z = x + iy for some x, y ∈ R, then the real part of z is Re(z) = x and the
imaginary part of z is Im(z) = y. We may also write Re(z) and Im(z) as Re z and Im z.

Definition 1.8. Let z = x+ iy for x, y ∈ R. The conjugate of z is

z̄ = x− iy,
and the modulus of z is

|z| =
√
x2 + y2.

The conjugate of z̄ we naturally denote by ¯̄z. The modulus of a complex number z is also
known as the absolute value of z.

The proof of the following proposition is straightforward. For instance, if z = x+ iy, then

z − z̄ = (x+ iy)− (x− iy) = x− x+ iy + iy = 2iy = 2i Im z ⇒ Im z =
z − z̄

2i
,

and
|z| =

√
x2 + y2 ≥

√
x2 = |x| = |Re z|.

Proposition 1.9. For z, w ∈ C the following hold.

1. ¯̄z = z

2. |z̄| = |z|
3. zz̄ = |z|2

4. |zw| = |z||w|
5. z + w = z̄ + w̄ and zw = z̄w̄

6. Re z = 1
2
(z + z̄) and Im z = 1

2i
(z − z̄)

7. |z| ≥ |Re z| and |z| ≥ | Im z|
8. z̄ = z if and only if z ∈ R

Simple inductive arguments will show that

n∑
k=1

zk =
n∑
k=1

zk and
n∏
k=1

zk =
n∏
k=1

zk.

Defining
z̄n := (z)n and zn := (zn),

for any n ∈ N, it is immediate that
z̄n = zn.

Proposition 1.10 (Triangle Inequality). If z, w ∈ C, then

|z + w| ≤ |z|+ |w|.
Moreover, in the case when z, w 6= 0, we have |z + w| = |z|+ |w| if and only if z = cw for some
c > 0.
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Proof. Using properties in Proposition 1.9, we have

|z + w|2 = (z + w)(z + w) = (z + w)(z̄ + w̄) = zz̄ + zw̄ + z̄w + ww̄

= zz̄ + zw̄ + zw̄ + ww̄ = zz̄ + 2 Re(zw̄) + ww̄

and

(|z|+ |w|)2 = |z|2 + 2|z||w|+ |w|2 = zz̄ + 2|zw|+ ww̄,

and so

(|z|+ |w|)2 − |z + w|2 = 2|zw| − 2 Re(zw̄) = 2
[
|zw̄| − Re(zw̄)

]
≥ 0 (1.4)

by Proposition 1.9(7). Therefore

|z + w|2 ≤ (|z|+ |w|)2,

and taking square roots yields the desired inequality.
Next, assume z, w 6= 0. Suppose |z + w| = |z|+ |w|. From (1.4) it follows that

Re(zw̄) = |zw̄| =
√

[Re(zw̄)]2 + [Im(zw̄)]2,

and thus Im(zw̄) = 0. This shows that zw̄ ∈ R, and indeed zw̄ = Re(zw̄) = |zw̄| > 0. Now,

z

w
=
zw̄

ww̄
=

zw̄

|w|2
> 0,

which is to say z/w = c for some c ∈ R+, and finally z = cw.
Conversely, if z = cw for some c ∈ R+, then

|z + w| = |cw + w| = |(c+ 1)w| = (c+ 1)|w| = c|w|+ |w| = |cw|+ |w| = |z|+ |w|

since c+ 1 ∈ R+. �

Proposition 1.11 (Parallelogram Law). For any z, w ∈ C,

|z + w|2 + |z − w|2 = 2|z|2 + 2|w|2.

Proof. We use the property zz̄ = |z|2 in Proposition 1.9 to obtain

|z + w|2 + |z − w|2 = (z + w)(z + w) + (z − w)(z − w)

= (z + w)(z1 + w) + (z − w)(z1 − w)

= zz + zw + wz + ww + zz − zw − wz + ww

= zz + ww + zz + ww = 2zz + 2ww

= 2|z|2 + 2|w|2

for any z, w ∈ C. �

Theorem 1.12 (Conjugate Zeros Theorem). Let f be a polynomial function with real
coefficients. If z is a zero for f , then z̄ is also a zero for f .
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Proof. Let
f(z) = anz

n + an−1z
n−1 + · · ·+ a1z + a0

with an, . . . , a0 ∈ R. Let w ∈ C be such that f(w) = 0, which is to say

anw
n + an−1w

n−1 + · · ·+ a1w + a0 = 0.

Now, since ai = ai for all 0 ≤ i ≤ n,

f(w) = anw
n + an−1w

n−1 + · · ·+ a1w + a0

= anwn + an−1wn−1 + · · ·+ a1w + a0

= anwn + an−1wn−1 + · · ·+ a1w + a0

= anwn + an−1wn−1 + · · ·+ a1w + a0

= f(w) = 0 = 0.

Therefore w is a zero for f . �

In the proof above note that if deg(f) < 1, so that f(z) = a0, then the only way to have
f(w) = 0 for some w ∈ C is to have a0 = 0, in which case f ≡ 0 and the conclusion of the
theorem follows trivially.

Exercise 1.13. Find the real and imaginary parts of z = (1 + i)100.

Solution. First we have (1 + i)2 = 2i. Now,

(1 + i)100 =
[
(1 + i)2

]50
= (2i)50 = 250i50 = 250(−1)25 = −250,

using appropriate laws of exponents that are understood to be applicable to complex numbers
by definition. So Re(z) = −250 and Im(z) = 0. �

Exercise 1.14. Prove that, for any z, w ∈ C,

|z| ≤ |z − w|+ |w|, |z| − |w| ≤ |z − w|, and |z| − |w| ≤ |z + w|.

Solution. Since |z + w| ≤ |z|+ |w| for any z, w ∈ C, we have

|z| = |(z − w) + w| ≤ |z − w|+ |w|,

which proves the first inequality. From this we immediately obtain

|z| − |w| ≤ |z − w|, (1.5)

which proves the second inequality. Finally, from

|z| = |(z + w) + (−w)| ≤ |z + w|+ | − w| = |z + w|+ |w|

we obtain
|z| − |w| ≤ |z + w|,

the third inequality.
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It’s worthwhile adding that

|w| = |(w − z) + z| ≤ |w − z|+ |z| ⇒ |w| − |z| ≤ |w − z| = |z − w|,

and this observation together with (1.5) implies that∣∣|z| − |w|∣∣ ≤ |z − w|,
another useful result. �

Exercise 1.15. Let α = a + bi, z = x + iy, and c ∈ (0,∞). Transform |z − α| = c into an
equation involving only x, y, a, b, and c, and describe the set of points z ∈ C that satisfy the
equation.

Solution. We have

|z − α| = |(x+ iy)− (a+ bi)| = |(x− a) + (y − b)i| =
√

(x− a)2 + (y − b)2,

and so the equation |z − α| = c becomes√
(x− a)2 + (y − b)2 = c

and hence
(x− a)2 + (y − b)2 = c2,

which has as its solution set the set of all points in R2 lying on a circle centered at (a, b) with
radius c. Correspondingly the solution set of |z − α| = c consists of all z ∈ C lying on a circle
with center α and radius c. �

We now define some special subsets of C using the modulus operation. The open ball (or
open disc) centered at z0 with radius ε > 0 is defined to be the set

Bε(z0) = {z ∈ C : |z − z0| < ε},

while the deleted neighborhood of z0 with radius ε is

B′ε(z0) = {z ∈ C : 0 < |z − z0| < ε},

which is Bε(z0) with the point z0 removed. The closed ball (or closed disc) at z0 with radius
ε is

Bε(z0) = {z ∈ C : |z − z0| ≤ ε}.
The open unit disc with center at the origin,

B = B1(0) = {z ∈ C : |z| < 1},

arises especially frequently in complex analysis, as does the closed unit disc at the origin,

B = {z ∈ C : |z| ≤ 1},
and the unit circle at the origin,

S = {z ∈ C : |z| = 1}.
Don’t miss the bus: B = B ∪ S.
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1.3 – Polar Form

Let z = x+ iy be a nonzero complex number, so that r = |z| > 0, and let o = 0 + i0. If θ is
a measure of the angle, in radians, the ray #„oz makes with R+ (i.e. the positive real axis in C),
then basic trigonometry informs us that x = r cos θ and y = r sin θ, and hence

z = (r cos θ) + i(r sin θ) = r(cos θ + i sin θ).

Defining
eit = cos t+ i sin t (1.6)

for any t ∈ R, which is known as Euler’s Formula, we may pass from the rectangular form
x+ iy of z to its polar form:

z = reiθ.

Much as the polar coordinate system may at times be more convenient to work with than the
rectangular coordinate system in the course of an analysis, so too is it often much easier to
work with the polar forms of complex numbers rather than their rectangular forms. We always
have r = |z| (so r is never negative), and the real-valued parameter θ is called the argument
of z, denoted by arg(z). Note that the argument of z is not a unique number: if θ is an angle
between #„op and R+, then so too is θ + 2nπ for any n ∈ Z.

Proposition 1.16. For any s, t ∈ R,

eis+it = eiseit.

Proof. Using established trigonometric identities, we have

eis+it = e(s+t)i = cos(s+ t) + i sin(s+ t)

= (cos s cos t− sin s sin t) + i(sin s cos t+ i cos s sin t)

= cos t(cos s+ i sin s) + sin t(i cos s− sin s)

= cos t(cos s+ i sin s) + i sin t(cos s+ i sin s)

= (cos s+ i sin s)(cos t+ i sin t) = eiseit

for any s, t ∈ R. �

A simple application of induction will show that
n∏
k=1

eitk = e
∑n
k=1 itk

for n ∈ N and tk ∈ R, and in particular

(eit)n =
n∏
k=1

eit = e
∑n
k=1 it = eint.

Proposition 1.17 (De Moivre’s Formula). For all n ∈ Z and t ∈ R,

(cos t+ i sin t)n = cosnt+ i sinnt.



11

Proof. Suppose n ∈ N. Then

(cos t+ i sin t)n = (eit)n = eint = cosnt+ i sinnt,

thereby confirming the formula for positive integers. Next, with the aid of Proposition 1.16 it is
easy to see that (eit)−1 = e−it, and so, applying Definition 1.3,

(cos t+ i sin t)−n = (eit)−n = [(eit)−1]n = (e−it)n = e−int = cos(−nt) + i sin(−nt),

thereby confirming the formula for negative integers. The formula yields the identity 1 = 1
when n = 0, finishing the proof. �

Having assigned a meaning to eit for t ∈ R, it is only natural to go further and define ez for
any z ∈ C.

Definition 1.18. For any x, y ∈ R,

ex+iy = ex(cos y + i sin y).

Euler’s Formula can be seen to be a special case of this definition for which x = 0, since
e0 = 1.

Proposition 1.19. For any x, y ∈ R, ex+iy = exeiy.

Proof. For any x, y ∈ R we obtain

ex+iy = ex(cos y + i sin y) = exeiy

using Definition 1.18. �

Propositions 1.16 and 1.19 can be used to obtain the following more general result, which is
proved again using a different technique in §4.4.

Theorem 1.20. For any z, w ∈ C, ezew = ez+w.

Proof. Let z, w ∈ C, so z = a+ ib and w = c+ id for some a, b, c, d ∈ R. Now,

ezew = ea+ibec+id = (eaeib)(eceid) = (eaec)(eibeid)

= ea+ceib+id = ea+cei(b+d) = e(a+c)+i(b+d)

= e(a+ib)+(c+id) = ez+w,

where eaec = ea+c is an established fact in real analysis. �

Exercise 1.21. Show that

|z + w| = |z|+ |w|
if and only if z or w is a nonnegative multiple of the other.
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Solution. Suppose that |z+w| = |z|+ |w|. If either z = 0 or w = 0 it follows trivially that one
number is a nonnegative multiple of the other. Assume, then, that z = a+ ib and w = c+ id
are two nonzero complex numbers. Identifying z and w with points (a, b) and (c, d) in R2,
respectively, by the Law of Cosines we have

|z − w|2 = |z|2 + |w|2 − 2|z||w| cosϕ. (1.7)

(See Figure 1, which gives a geometric motivation.) On the other hand, by the Parallelogram
Law,

2|z|2 + 2|w|2 = |z + w|2 + |z − w|2 = (|z|+ |w|)2 + |z − w|2

= |z|2 + 2|z||w|+ |w|2 + |z − w|2, (1.8)

and so

|z − w|2 = |z|2 − 2|z||w|+ |w|2.
Combining (1.7) and (1.8) yields

|z|2 − 2|z||w|+ |w|2 = |z|2 + |w|2 − 2|z||w| cosϕ,

and thus

2|z||w| cosϕ = 2|z||w|.

Since w, z 6= 0, we obtain cosϕ = 1, and therefore ϕ = 0. This implies that z and w are
expressible in polar form as z = r1e

iθ and w = r2e
iθ for some common argument θ, where

r1, r2 > 0. In particular we have

w =
r2

r1

z

for r2/r1 > 0, so that w is seen to be a nonnegative multiple of z.
The converse is straightforward to show. If, say, w = cz for some c ≥ 0, then

|z + w| = |z + cz| = |(1 + c)z| = (1 + c)|z| = |z|+ c|z| = |z|+ |w|,
as desired. �

Thus the Triangle Inequality only admits the possibility of equality in the case when two
complex numbers lie on the same ray with initial point at the origin. We can extend the result
of Exercise 1.21 as follows.

x

y

|w|

(c, d)

|z − w|

(a, b)

|z|

ϕ

Figure 1.
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Proposition 1.22. Suppose that z1, . . . , zn ∈ C. Then∣∣∣∣∣
n∑
k=1

zk

∣∣∣∣∣ =
n∑
k=1

|zk|

if and only if there exists some θ ∈ [0, 2π) and r1, . . . , rn ≥ 0 such that zk = rke
iθ for all

1 ≤ k ≤ n.

Proof. The proposition is trivially true in the case when n = 1, and it’s been shown to be true
when n = 2 in Exercise 1.21. Suppose the proposition is true for some arbitrary n ∈ N. Let
z1, . . . , zn+1 ∈ C be such that ∣∣∣∣∣

n+1∑
k=1

zk

∣∣∣∣∣ =
n+1∑
k=1

|zk|. (1.9)

Suppose that ∣∣∣∣∣
n∑
k=1

zk

∣∣∣∣∣ 6=
n∑
k=1

|zk|.

Then by the Triangle Inequality we obtain∣∣∣∣∣
n∑
k=1

zk

∣∣∣∣∣ <
n∑
k=1

|zk|,

whence ∣∣∣∣∣
n∑
k=1

zk

∣∣∣∣∣+ |zn+1| <
n+1∑
k=1

|zk| ⇒

∣∣∣∣∣
n+1∑
k=1

zk

∣∣∣∣∣ <
n+1∑
k=1

|zk|,

which contradicts (1.9). Thus it must be that∣∣∣∣∣
n∑
k=1

zk

∣∣∣∣∣ =
n∑
k=1

|zk|. (1.10)

By our inductive hypothesis it follows that there exists some θ ∈ [0, 2π) and r1, . . . , rn ≥ 0 such
that zk = rke

iθ for all 1 ≤ k ≤ n. Now, by (1.9) and (1.10),∣∣∣∣∣
n∑
k=1

zk + zn+1

∣∣∣∣∣ =

∣∣∣∣∣
n∑
k=1

zk

∣∣∣∣∣+ |zn+1| ,

and so by Exercise 1.21 we conclude that zn+1 must be a nonnegative multiple of
∑n

k=1 zk or
vice-versa. Defining r = r1 + · · ·+ rn, we have

n∑
k=1

zk =
n∑
k=1

rke
iθ = reiθ.

If reiθ = 0 then we have r1 = · · · = rn = 0, in which case if zn+1 = seiϕ then we may write
zk = 0eiϕ for all 1 ≤ k ≤ n and we are done. If zn+1 = 0, then we may write zn+1 = 0eiθ and
again we are done. Finally, if reiθ 6= 0 and zn+1 6= 0, then by Exercise 1.21 one number must be
a positive multiple of the other. That is, there exists some c > 0 such that

zn+1 = creiθ or reiθ = czn+1
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the latter implying that zn+1 = c−1reiθ. That is, we once again have zk = rke
iθ for all

1 ≤ k ≤ n+ 1, where either rn+1 = cr > 0 or rn+1 = r/c > 0.
The proof of the converse statement of the proposition is easily proven directly for any k ∈ N,

and so the proposition is seen to hold in the n+ 1 case. �

Exercise 1.23. Let α 6= 0 be a complex number. Show there there are two distinct complex
numbers whose square is α.

Solution. We can write α in polar form as reiθ, where α 6= 0 implies that r > 0. One complex
number whose square is α is β1 =

√
reiθ/2, and another is β2 =

√
rei(θ/2+π). We have

β2 =
√
reiπeiθ/2 = −

√
reiθ/2 = −β1,

and so it is clear that β1 6= β2. �

Exercise 1.24. Let α 6= 0 be a complex number, and n ∈ N. Show there exist n distinct
complex numbers z such that zn = α.

Solution. In polar form we have α = reiθ for some r > 0. Now, for each k ∈ {0, 1, . . . , n− 1}
define

zk = n
√
rei(θ/n+2πk/n).

Now, for any k we have

znk =
(
n
√
rei(θ/n+2πk/n)

)n
= rei(θ/n+2πk/n)n = reiθ+2πik = reiθe2πik = α

(
e2πi
)k

= α · 1k = α,

where the fourth equality follows from Proposition 1.16. �

Exercise 1.25. Find Re(i1/4) and Im(i1/4), taking i1/4 = reiθ for 0 < θ < π/2.

Solution. We must find z = reiθ with r > 0 and θ ∈ (0, π/2) such that z4 = i. From
|z|4 = |z4| = |i| = 1 we have |z| = 1, so that |reiθ| = |r| · |eiθ| = |r| = 1 and thus r = 1. At this
stage we have z = eiθ with

z4 =
(
eiθ
)4

= ei·4θ = cos(4θ) + i sin(4θ) = i,

which requires cos(4θ) = 0 and sin(4θ) = 1. These conditions can be satisfied if 4θ = π/2, and
hence θ = π/8. We therefore have

i1/4 = z = ei·π/8 = cos
(π

8

)
+ i sin

(π
8

)
,

which by the appropriate half-angle trigonometric identities yields

i1/4 =

√
1 + cos(π/4)

2
+ i

√
1− cos(π/4)

2
=

√
1 + 1

√
2

2
+ i

√
1− 1

√
2

2

=

√
2 +
√

2

4
+ i

√
2−
√

2

4
=

√
2 +
√

2

2
+ i

√
2−
√

2

2

Therefore

Re(i1/4) =
1

2

√
2 +
√

2 and Im(i1/4) =
1

2

√
2−
√

2.

�
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Exercise 1.26. Show that if ez1 = ez2 , then z2 = z1 + 2πki for some k ∈ Z.

Solution. Let z1 = x1 + iy1 and z2 = x2 + iy2, and suppose that ez1 = ez2 . We obtain

ex1eiy1 = ex2eiy2 ⇒ ex1−x2 = ei(y2−y1) ⇒ cos(y2 − y1) + i sin(y2 − y1) = ex1−x2 ,

whence
sin(y2 − y1) = 0 and cos(y2 − y2) = ex1−x2 .

From the first equation it follows that y2 − y1 = nπ for some n ∈ Z, whereupon the second
equation yields

ex1−x2 = cos(nπ) = ±1.

Of course ex1−x2 = −1 is impossible since x1 − x2 ∈ R, which leads us to conclude that
cos(nπ) = 1 and therefore n = 2k for some k ∈ Z (i.e. n must be even). Now,

ex1−x2 = 1 ⇒ x1 − x2 = 0 ⇒ x1 = x2,

and
y2 − y1 = nπ ⇒ y2 = y1 + nπ ⇒ y2 = y1 + 2kπ.

Finally,
z2 = x2 + iy2 = x1 + i(y1 + 2πk) = (x1 + iy1) + 2πki = z1 + 2πki

as was to be shown. �

Exercise 1.27. Prove that
n∑
k=0

cos(kθ) =
1

2
+

sin[(n+ 1/2)θ]

2 sin(θ/2)

for any θ ∈ (0, 2π).

Solution. Let 0 < θ < 2π. Letting z = cos θ + i sin θ = eiθ, from Proposition 1.7 we have

1 + eiθ + e2iθ + · · ·+ eniθ = 1 + eiθ +
(
eiθ
)2

+ · · ·+
(
eiθ
)n

=

(
eiθ
)n+1 − 1

eiθ − 1
. (1.11)

The left-hand side of (1.11) becomes

1 + (cos θ + i sin θ) + (cos 2θ + i sin 2θ) + · · ·+ (cosnθ + i sinnθ),

and hence

(1 + cos θ + cos 2θ + · · ·+ cosnθ) + i(sin θ + sin 2θ + · · ·+ sinnθ). (1.12)

As for the right-hand side of (1.11), we have(
eiθ
)n+1 − 1

eiθ − 1
=
e(n+1/2)iθ − e−iθ/2

eiθ/2 − e−iθ/2

=
cos(n+ 1/2)θ + i sin(n+ 1/2)θ − [cos(−θ/2) + i sin(−θ/2)]

[cos(θ/2) + i sin(θ/2)]− [cos(−θ/2) + i sin(−θ/2)]

=
[cos(n+ 1/2)θ − cos(θ/2)] + i [sin(n+ 1/2)θ + sin(θ/2)]

2i sin(θ/2)
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=
sin(n+ 1/2)θ + sin(θ/2)

2 sin(θ/2)
− cos(n+ 1/2)θ − cos(θ/2)

2 sin(θ/2)
i (1.13)

Equating the real part of (1.12) with the real part of (1.13) then gives

1 + cos θ + cos 2θ + · · ·+ cosnθ =
sin(n+ 1/2)θ + sin(θ/2)

2 sin(θ/2)
,

which immediately leads to the desired result. �
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1.4 – Roots of Complex Numbers

For n ∈ N, an nth root of a complex number z is some w ∈ C such that wn = z. We
shall see that every nonzero complex number has precisely n distinct nth roots. The following
example is illustrative of the n = 2 case.

Example 1.28. For any a, b ∈ R find x, y ∈ R such that (x+ iy)2 = a+ bi.

Solution. Since
(x+ iy)2 = (x2 − y2) + 2xyi,

we must have x2 − y2 = a and 2xy = b. From these equations we obtain y2 = x2 − a and
4x2y2 = b2, leading to

4x2(x2 − a) = b2

and thus
4x4 − 4ax2 − b2 = 0.

By the quadratic formula we then obtain

x2 =
4a±

√
16a2 − 4(4)(−b2)

2(4)
=
a±
√
a2 + b2

2

If x is to be a real number we must have x2 ≥ 0, so it follows that we must have

x2 =
a+
√
a2 + b2

2
,

and therefore we can let

x =

√√
a2 + b2 + a

2
.

Now, since b = 2xy and our choice for x is nonnegative, we must find a value for y that has the
same sign as b. With this in mind we use y2 = x2 − a to obtain

y = (sgn b)
√
x2 − a = (sgn b)

√
a+
√
a2 + b2

2
− a = (sgn b)

√√
a2 + b2 − a

2
.

Note that the opposite values for x and y would also be suitable. �
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1.5 – Complex-Valued Functions

We consider here complex-valued functions of a single complex-valued variable, which is to
say f : S → C for some S ⊆ C. If it happens that S ⊆ R, then of course f is a complex-valued
function of a single real variable. In either case it is convenient to write

f(z) = u(z) + iv(z),

where u : S → R and v : S → R are the real and imaginary parts of f , respectively. We define
Re f = u and Im f = v, so that

(Re f)(z) = u(z) = Re[f(z)] and (Im f)(z) = v(z) = Im[f(z)] (1.14)

For brevity the symbols Re f(z) and Im f(z) may be used instead of (Re f)(z) and (Im f)(z).
A notational device that will be used now and again is as follows. If fk : Sk → C are

functions for 1 ≤ k ≤ n, where Sk ⊆ C for each k and fj(z) = fk(z) whenever z ∈ Sj ∩ Sk, then
f1 ∪ · · · ∪ fn (also written as

⋃n
k=1 fk) is the function given by

(f1 ∪ · · · ∪ fn)(z) = fk(z)

if z ∈ Sk. In particular if t0 < t1 < · · · < tn, and fk : [tk−1, tk]→ C with fk(tk) = fk+1(tk) for
all k, then f =

⋃n
k=1 fk is the piecewise-defined function given by

f(t) =


f1(t), t ∈ [t0, t1]

...

fn(t), t ∈ [tn−1, tn].

The most important complex-valued function, and indeed arguably the most powerful
function in all of mathematics, is the exponential function exp : C→ C given by

exp(x+ iy) = ex(cos y + i sin y).

From Definition 1.18 we see that

ez = exp(z)

for any z ∈ C.
We introduce here the big-oh notation that is prevalent in the literature and will be used

here in the later chapters. Let f and g be two functions, let D = Dom(f) ∩ Dom(g), and let
z0 ∈ C be a limit point of D. We make the following definition:

f(z) = O(g(z)) as z → z0 ⇔ ∃c, δ > 0 ∀z ∈ D ∩Bδ(z0)
(
|f(z)| ≤ c|g(z)|

)
.

If there is some r > 0 such that z ∈ D whenever |z| > r, then we make the definition

f(z) = O(g(z)) as z →∞ ⇔ ∃c, ρ > 0 ∀z ∈ C \Bρ(0)
(
|f(z)| ≤ c|g(z)|

)
.

Exercise 1.29. Let f(z) = 1/z. Describe the image under f of B′1(0), C \ B and S.



19

Solution. Given z = x+ yi 6= 0, we have

f(z) =
1

z
=

1

x+ yi
· x− yi
x− yi

=
x

x2 + y2
− y

x2 + y2
i =

1

x2 + y2
(x− yi) ,

and so f can be seen to effect a reflection about the real axis

x+ yi 7→ x− yi = ρeiϕ,

followed by translation along the ray

R = {reiϕ : r > 0}

in a direction depending on whether x2 + y2 > 1 or x2 + y2 < 1.
If x2 + y2 = |z|2 < 1, so that z ∈ B′1(0), then

|f(z)| = 1

x2 + y2
|x− yi| = 1√

x2 + y2
> 1,

so f(z) ∈ C−B′1(0) and translation along R proceeds away from the origin. If x2 +y2 = |z|2 > 1,
so that z ∈ C \B′1(0), then

|f(z)| = 1

x2 + y2
|x− yi| = 1√

x2 + y2
< 1,

so f(z) ∈ B′1(0) and translation along R proceeds toward the origin. In the special case when
x2 + y2 = 1 we have z ∈ S, and then |f(z)| = 1 implies that f(z) ∈ S also and no translation
along R occurs.

Thus f generally can be regarded as performing a reflection about the real axis followed by
a radial dilation or contraction, so that

f(B′1(0)) = C \B′1(0), f(C \B′1(0)) = B′1(0),

and f(S) = S. �

Exercise 1.30. Let f(z) = 1/z̄. Describe the image under f of B′1(0), C \ B and S.

Solution. Given z = x+ yi = ρeiϕ 6= 0, we have

f(z) =
1

z̄
=

1

x− yi
· x+ yi

x+ yi
=

x

x2 + y2
+

y

x2 + y2
i =

1

x2 + y2
(x+ yi) ,

and so f(z) = z if x2 + y2 = 1 (i.e. z ∈ S), otherwise f effects a translation along the ray

R = {reiϕ : r > 0}

in a direction depending on whether x2 + y2 > 1 or x2 + y2 < 1
If x2 + y2 = |z|2 < 1, so that z ∈ B′1(0), then

|f(z)| = 1

x2 + y2
|x+ yi| = 1√

x2 + y2
> 1,
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Figure 2.

so f(z) ∈ C−B′1(0) and translation along R proceeds away from the origin. If x2 +y2 = |z|2 > 1,
so that z ∈ C \B′1(0), then

|f(z)| = 1

x2 + y2
|x+ yi| = 1√

x2 + y2
< 1,

so f(z) ∈ B′1(0) and translation along R proceeds toward the origin.
Thus f generally performs a radial dilation or contraction such that

f(B′1(0)) = C \B′1(0), f(C \B′1(0)) = B′1(0),

and f(S) = S. �

Exercise 1.31. Let f(z) = e2πiz. Describe the image under f of the set

S = {x+ yi : −1/2 ≤ x ≤ 1/2 and y ≥ b}
shown at left in Figure 2.

Solution. For any z = x+ yi we have

f(z) = e2πi(x+yi) = e2πix−2πy = e−2πye2πix = e−2πy [cos(2πx) + i sin(2πx)] .

Now, the set

Cy =
{
e−2πy [cos(2πx) + i sin(2πx)] : −1/2 ≤ x ≤ 1/2

}
forms a circle centered at the origin with radius e−2πy, and since e−2πy ≤ e−2πb for all y ≥ b, and
e−2πy → 0 as y →∞, it can be seen that

f(S) =
⋃
y≥b

Cy = B
′
e−2πb(0),

as shown at right in Figure 2. �

Exercise 1.32. Let f(z) = ez. Describe the image under f of the following sets.

(a) The set S1 = {x+ iy : x ≤ 1 and 0 ≤ y ≤ π}.
(b) The set S2 = {x+ iy : 0 ≤ y ≤ π}.
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x
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π
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y
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f

Figure 3.

Solution.
(a) For any x+ iy ∈ S1 we have

f(x+ iy) = ex+iy = exeiy = ex(cos y + i sin y),

which is a point on the upper semicircle with center 0 and radius ex; and since ex → 0 as
x→ −∞, it follows that

f(S1) = {x+ iy : y ≥ 0} ∩Be(0)− {0}.

See Figure 3.

(b) For any x+ iy ∈ S2 we have

f(x+ iy) = ex+iy = exeiy = ex(cos y + i sin y),

which is a point on the upper semicircle with center 0 and radius ex; now, since ex → 0 as
x→ −∞, and ex →∞ as x→∞, it follows that

f(S2) = {x+ iy : y ≥ 0} − {0}.

See Figure 4. �

Exercise 1.33 (Eneström’s Theorem). Suppose that

P (z) = a0 + a1z + · · ·+ anz
n,

where n ≥ 1 and a0 ≥ a1 ≥ · · · ≥ an > 0. Prove that the zeros of P lie outside B.

Solution. Suppose that P (z) = 0. It is clear that z 6= 1 since P (1) = a0 + · · ·+ an > 0, and so

P (z) = 0 ⇔ (1− z)P (z) = 0 ⇔
n∑
k=0

ak(z
k − zk+1) = 0

⇔ a0 =
n∑
k=1

(ak−1 − ak)zk + anz
n+1 (1.15)
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Suppose that |z| < 1. Then∣∣∣∣∣
n∑
k=1

(ak−1 − ak)zk + anz
n+1

∣∣∣∣∣ ≤
n∑
k=1

(ak−1 − ak)|z|k + an|z|n+1 <
n∑
k=1

(ak−1 − ak) + an = a0

since ak−1− ak ≥ 0 for 1 ≤ k ≤ n and an > 0. Hence z cannot satisfy (1.15), and it follows that
z cannot satisfy P (z) = 0. That is, if z ∈ B then z cannot be a zero for P . �

Exercise 1.34. Suppose that

P (z) = a0 + a1z + · · ·+ anz
n,

where n ≥ 1 and a0 > a1 > · · · > an > 0. Prove that the zeros of P lie outside B.

Solution. As with the previous exercise, P (z) = 0 if and only if

a0 =
n∑
k=1

(ak−1 − ak)zk + anz
n+1.

We found that this equation cannot be satisfied for z ∈ B, so suppose z ∈ S. Observe that if z
is a zero for P , then it must be that

a0 =
n∑
k=1

(ak−1 − ak) + an =
n∑
k=1

(ak−1 − ak)|z|k + an|z|n+1 =

∣∣∣∣∣
n∑
k=1

(ak−1 − ak)zk + anz
n+1

∣∣∣∣∣
since a0 > 0 and |z| = 1. By Proposition 1.22 we have∣∣∣∣∣

n∑
k=1

(ak−1 − ak)zk + anz
n+1

∣∣∣∣∣ =
n∑
k=1

(ak−1 − ak)|z|k + an|z|n+1

if and only if

w1 = (a0 − a1)z , . . . , wn = (an−1 − an)zn, wn+1 = anz
n+1

lie on a common ray in C, and since z 6= 0 and

a0 − a1, . . . , an−1 − an, an > 0,

x

y

S2

π

x

y

f

Figure 4.
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this means there exists some θ ∈ [0, 2π) such that for each 1 ≤ k ≤ n+ 1

wk = rke
iθ

for some rk > 0. Now,(
n+1∑
k=1

rk

)
eiθ =

n∑
k=1

rke
iθ + rn+1e

iθ =
n∑
k=1

(ak−1 − ak)zk + anz
n+1 = a0 > 0

implies that θ = 0, and since z ∈ S and

(a0 − a1)z = w1 = r1 ⇒ z =
r1

a0 − a1

> 0,

we conclude that z = 1. However, it is clear that 1 is not a zero for P , and we must conclude
that there exists no z ∈ S such that P (z) = 0. This observation, together with the result of the
previous exercise, shows that any zero for P must lie outside B1(0). �
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2
Topology on the Complex Plane

2.1 – Metric Spaces

Definition 2.1. A metric space is a pair (X, d), where X is a set and d : X ×X → R is a
function, called a metric on X, for which the following properties hold for all x, y, z ∈ X:

1. d(x, y) ≥ 0, with d(x, y) = 0 if and only if x = y.
2. d(x, y) = d(y, x).
3. d(x, z) ≤ d(x, y) + d(y, z).

The third property in Definition 2.1 is called the Triangle Inequality. A metric is also
known as a distance function, and the real number d(x, y) is said to be the distance between
x, y ∈ X. It is clear that if (X, d) is a metric space and S ⊆ X, then (S, d) is likewise a metric
space.

The open ball in (X, d) with center a ∈ X and radius ε > 0 is the set

Bε(a) = {x ∈ X : d(x, a) < ε}.

A set S ⊆ X is bounded if there exists some M ∈ R such that d(x, y) ≤M for every x, y ∈ S.
It is straightforward to verify that a set is bounded if and only if it is a subset of an open ball
of finite radius. In particular, a set S ⊆ R is bounded if and only if there exist a, b ∈ R such
that S ⊆ (a, b).

A topology on a metric space (X, d) is a family of subsets of X that are called open sets.
Unless said otherwise, we take the topology on (X, d) to be the set of all U ⊆ X with the
property that, for each x ∈ U , there exists some ε > 0 such that Bε(x) ⊆ U . That is, the
topology on (X, d) is assumed to be the set

Td =
{
U ⊆ X : ∀x ∈ U ∃ε > 0 (Bε(x) ⊆ U)

}
,

called the topology on X induced by d. It is always the case that ∅, X ∈ Td.
Given a subset S of a metric space (X, d), there are two common topologies on S. One is the

topology on S induced by d, Td(S), in which we take S to be the metric space (S, d). Letting

Bε(S, a) = Bε(a) ∩ S = {x ∈ S : d(x, a) < ε},



25

we have

Td(S) =
{
U ⊆ S : ∀x ∈ U ∃ε > 0

(
Bε(S, x) ⊆ U

)}
.

The other common topology on S is the subspace topology on S,

Tsub(S) = {U ⊆ S : U = V ∩ S for some V open in X},

also referred to as the subspace topology S “inherits” from X. It will never be necessary to
specify which topology on S is being used in these notes, because fortunately the two topologies
are equivalent: Td(S) = Tsub(S). Which will be used, therefore, will be dictated solely by
considerations of convenience.

Example 2.2. Recall the modulus function | · | : C → R introduced in the previous chapter.
The mapping C× C→ R given by

(z, w) 7→ |z − w| (2.1)

is easily verified to be a metric on C, which is to say (C, | · |) is a metric space if it’s understood
that the symbol | · | now denotes the function (2.1). In these notes (2.1) will occasionally be
referred to as the euclidean metric in situations when another metric is also in play.

The topology T on C induced by the euclidean metric is called the standard topology.
Clearly every open ball Bε(z) ⊆ C is itself an open set, and it is also the case that C and ∅ are
open. So see why ∅ is open, recall that ∅ ∈ T iff for every z ∈ ∅ there is some ε > 0 such that
Bε(z) ⊆ ∅, and the latter statement is vacuously true! �

The complement of a set S ⊆ X is defined to be the set

Sc = X \ S = {x ∈ X : x /∈ S}.

We define a set S to be closed if its complement Sc is open.
A limit point of a set S is a point x such that, for every ε > 0, the open ball Bε(x) contains

a point y ∈ S such that y 6= x. That is, x is a limit point of S iff B′ε(x) ∩ S 6= ∅ for all ε > 0.
An equivalent definition states that x is a limit point of S if every neighborhood of x contains
an infinite number of elements of S. We may now define the closure of S, denoted by S, to be
the union of S with all of its limit points. It is a fact that S is closed iff S = S; that is, a set is
closed if and only if it contains all of its limit points.

We say S ⊆ X is dense in X if every x ∈ X is either an element of S or a limit point of S.
That is, S is dense in X if and only if

∀x ∈ X
[
(x ∈ S) ∨

(
∀ε > 0 (B′ε(x) ∩ S 6= ∅)

)]
.

It follows easily that S is dense in X iff S = X.
A boundary point of S is a point x such that, for all ε > 0, both Bε(x) ∩ S 6= ∅ and

Bε(x) ∩ Sc 6= ∅ hold. We denote the set of boundary point of S by ∂S, called the boundary
of S. It can be shown that S = S ∪ ∂S.

We say x ∈ S is an interior point of S if there exists some ε > 0 such that Bε(x) ⊆ S. Let
S◦ denote the interior of S, which is the set of all interior points of S so that

S◦ = {x ∈ S : ∃ε > 0(Bε(x) ⊆ S)}.
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Another symbol for S◦ is Int(S). It can be shown that ∂S = S \ S◦.
Given a set S ⊆ C, let B(S) denote the set of all bounded functions f : S → C. For any

f ∈ B(S) define the uniform norm of f to be

‖f‖S = sup{|f(z)| : z ∈ S}.

Note that, since the function f is given to be bounded on S, ‖f‖S will exist as a real number
by the Completeness Axiom of R. Next, define the uniform distance function on B(S) to be
the function B(S)× B(S)→ R given by

(f, g) 7→ ‖f − g‖S. (2.2)

This is in fact a metric on B(S), which is to say (B(S), ‖ · ‖S) is a metric space if it’s understood
that the symbol ‖ · ‖S denotes the function (2.2).

In a metric space (X, d), for a set A ⊆ X and point x ∈ X, the distance between x and A
is defined to be

dist(x,A) = inf{d(x, a) : a ∈ A}.
For sets A,B ⊆ X, the distance between A and B is defined to be

dist(A,B) = inf{d(a, b) : a ∈ A, b ∈ B}.

Neither of these distances has any hope of being a metric. In the metric space (C, | · |) consider
the sets A = {0, 1} and B = {1, 2}. Clearly A 6= B, and yet dist(A,B) = 0, which violates the
first axiom of a metric in Definition 2.1.
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2.2 – Numerical Sequences and Series

Let (X, d) be a metric space. A sequence (xn) in X is convergent in X (or simply
convergent if no larger metric space containing (X, d) is under consideration) if there is some
point x ∈ X for which the following is true: for every ε > 0 there exists some n0 ∈ Z such that
d(xn, x) < ε for all n ≥ n0. If such is the case, then we say (xn) converges to x and write

lim
n→∞

xn = x.

A sequence (xn) in (X, d) is Cauchy if for every ε > 0 there exists some k ∈ Z such that
d(xm, xn) < ε for all m,n ≥ k. A metric space (X, d) is complete if every Cauchy sequence in
X is convergent in X.

Theorem 2.3. (C, | · |) is a complete metric space.

Definition 2.4. Let (an) be a sequence of real numbers. We define the limit superior of (an)
to be

lim sup
n→∞

an = inf
n

(
sup
k≥n

ak

)
,

and the limit inferior to be

lim inf
n→∞

an = sup
n

(
inf
k≥n

ak

)
.

Alternative symbols for limit superior and limit inferior are lim sup and lim inf, respectively.

The limit superior and limit inferior of every sequence (an)∞n=m of reals will always exist in
the set of extended real numbers R = [−∞,∞]. The sequence(

sup
k≥n

ak
)∞
n=m

(2.3)

can easily be shown to be monotone decreasing, so if it is bounded below it will converge to
some real number by the Monotone Convergence Theorem, and if it is not bounded below it will
converge in R to −∞. In either case the limiting value will be the limit superior of (an); that is,

lim sup
n→∞

an = lim
n→∞

(
sup
k≥n

ak

)
.

By similar reasoning we have

lim inf
n→∞

an = lim
n→∞

(
inf
k≥n

ak

)
.

Proposition 2.5. Let (an)∞n=1 and (bn)∞n=1 be sequences of nonnegative real numbers, and let

a = lim sup an and b = lim sup bn.

Then the following hold:

1. lim sup(an + bn) ≤ a+ b.
2. lim sup(anbn) ≤ ab if a 6= 0.
3. If c ≥ 0, then lim sup(can) = c lim sup an.
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4. If limn→∞ an exists in R, then a = limn→∞ an.

Proof.
Proof of Part (4). Suppose that limn→∞ an = â ∈ R. Fix ε > 0. Then there exist some N ∈ N
such that |an − â| < ε/2 for all n ≥ N , whence

â− ε/2 < an < â+ ε/2 (2.4)

for all n ≥ N and we conclude that â+ ε/2 is an upper bound for the set {an : n ≥ N}. Thus

sup
k≥N

ak ≤ â+ ε/2,

and since the set

S =

{
lim
k≥n

ak : n ∈ N
}

has at least one element s ≤ â + ε/2 it follows that every lower bound β for S must be such
that β ≤ â+ ε/2. In particular infn(S) ≤ â+ ε/2, which is to say

lim sup an = inf
n

(S) = inf
n

(
sup
k≥n

ak

)
< â+ ε,

and since ε > 0 is arbitrary we obtain

lim sup an ≤ â. (2.5)

Next, from (2.4) we have an > â− ε/2 for all n ≥ N , so

sup
k≥n

ak > â− ε/2 (2.6)

for each n ≥ N , whence we obtain (2.6) for all n ∈ N since the sequence (2.3) is monotone
decreasing for any chosen value for m. This means every â− ε/2 is a lower bound for the set S,
so that infn(S) ≥ â− ε and we have

lim sup an = inf
n

(S) = inf
n

(
sup
k≥n

ak

)
> â− ε.

Thus

lim sup an ≥ â (2.7)

since ε > 0 is arbitrary.
Combining (2.5) and (2.7), we conclude that

lim sup an = â = lim
n→∞

an

as desired. �

Theorem 2.6 (Divergence Test). If limn→∞ zn 6= 0, then the series
∑
zn diverges.
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Proof. Suppose that
∑
zn converges. If sk is the kth partial sum of

∑
zn, then there exists

some s ∈ C such that limk→∞ sk = s. We also have limk→∞ sk−1 = s. Now, observing that
zk = sk − sk−1, we obtain

lim
k→∞

zk = lim
k→∞

(sk − sk−1) = lim
k→∞

sk − lim
k→∞

sk−1 = s− s = 0.

Thus, if
∑
zn converges, then limn→∞ zn = 0. This implies that if limn→∞ zn 6= 0, then

∑
zn

diverges. �

Theorem 2.7 (Direct Comparison Test). Let (zn) be a sequence in C, and (an) a sequence
in [0,∞). Suppose there exists some n0 ∈ Z such that |zn| ≤ an for all n ≥ n0. If

∑
an converges

in R, then
∑
zn converges absolutely in C.

Remark. In the Direct Comparison Test the sequences involved may be (zn)∞n=n1
and (an)∞n=n2

,
with n1 6= n2, in which case we must have n0 ≥ max{n1, n2}. To say

∑
an converges means∑∞

n=m an converges for any m ≥ n2, and so in particular
∑∞

n=n0
an converges. The Direct

Comparison Test concludes from this that
∑∞

n=n0
zn converges absolutely, from which is follows

that
∑∞

n=m zn converges absolutely for any m ≥ n1, or simply put:
∑
zn converges absolutely.

Theorem 2.8 (Root Test). Given the series
∑
zn, let

ρ = lim sup
n→∞

n
√
|zn|.

1. If ρ ∈ [0, 1), then
∑
zn converges absolutely.

2. If ρ ∈ (1,∞], then
∑
zn diverges.

Proof. Suppose ρ ∈ [0, 1). Then there exists some ε > 0 such that ρ = 1 − 2ε, and so the
sequence (

sup
k≥n

k
√
|zk|
)∞
n=0

is monotone decreasing to the value 1− 2ε. Thus there exists some N ∈ N such that

1− 2ε ≤ sup
k≥n

k
√
|zk| < 1− ε

for all n ≥ N , and so in particular we have |zk|1/k < 1− ε for all k ≥ N . Hence

|zk| < (1− ε)k

for all k ≥ N . Now,
∑

(1− ε)k is a convergent geometric series since 0 < 1− ε < 1, so by the
Direct Comparison Test

∑
|zn| also converges.

Next, suppose ρ ∈ (1,∞]. Then there exists some α > 0 such that ρ > 1 + 2α, and so for all
n we have

sup
k≥n

k
√
|zk| > 1 + 2α.

From this it follows that for every n there exists some k ≥ n such that |zk|1/k > 1 + α, whence

|zk| > (1 + α)k
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obtains, and we conclude that |zn| > 1 for infinitely many values of n. This implies that
limn→∞ zn 6= 0, and so

∑
zn diverges by the Divergence Test. �

Theorem 2.9 (Ratio Test). Given the series
∑
zn for which there exists some N ∈ N such

that zn 6= 0 for all n ≥ N , let

ρ = lim sup
n→∞

∣∣∣∣zn+1

zn

∣∣∣∣ and ρ̂ = lim inf
n→∞

∣∣∣∣zn+1

zn

∣∣∣∣ .
1. If ρ ∈ [0, 1), then

∑
zn converges absolutely.

2. If ρ̂ ∈ (1,∞], then
∑
zn diverges.

3. If there exists some n0 such that |zn+1/zn| ≥ 1 for all n ≥ n0, then
∑
zn diverges.

Exercise 2.10 (L1.4.1). Show that limn→∞ z
n = 0 if |z| < 1.

Solution. From basic analysis it is known that limn→∞ x
n = 0 for any x ∈ R such that |x| < 1.

That is,
∀ε > 0 ∃N ∈ N ∀n > N(|xn| < ε),

where of course |xn| = |x|n for all n > 0.
Let ε > 0. Since |z| < 1, there exists some N ∈ N such that ||z|n| < ε whenever n > N ,

where ∣∣|z|n∣∣ =
∣∣|z|∣∣n = |z|n.

Thus for any n > N we have |zn| = |z|n < ε, which shows that

∀ε > 0 ∃N ∈ N ∀n > N(|zn| < ε)

and therefore limn→∞ z
n = 0. �

Exercise 2.11 (L1.4.2). Show that limn→∞ z
n does not exist if |z| > 1.

Solution. Let z ∈ C such that |z| > 1. Let w ∈ C. Using the fact from basic analysis that

lim
n→∞

xn = +∞

for any x > 1, we find that for any N ∈ N there exists some n > N such that |z|n > 1 + |w|.
Since by the Triangle Inequality we have

|z|n > 1 + |w| ⇒ |zn| > 1 + |w| ⇒ |zn − w + w| − |w| > 1

⇒
(
|zn − w|+ |w|

)
− |w| > 1 ⇒ |zn − w| > 1,

it follows that for any N ∈ N there exists some n > N such that |zn − w| > 1. This shows that
limn→∞ z

n 6= w, and since w ∈ C is arbitrary we conclude that limn→∞ z
n does not exist. �

Exercise 2.12 (L1.4.3). Show that if |z| < 1, then
∞∑
k=0

zk =
1

1− z
. (2.8)
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Solution. By convention it is understood that 1 is the first term in the series (2.7), even in the
case when z = 0. That is, we take 00 to be 1 whenever it arises in a series.

Clearly if z = 0 we have
∞∑
k=0

zk =
∞∑
k=0

0k = 1 =
1

1− 0
=

1

1− z
.

Suppose 0 < |z| < 1, and set

c =

∣∣∣∣ z

z − 1

∣∣∣∣
so that c > 0. Let ε > 0 be arbitrary. Since |z|n → 0 as n→∞, there exists some N ∈ N such
that |z|n < ε/c for all n > N . By Proposition 1.7

n∑
k=0

zk =
zn+1 − 1

z − 1

for all n ∈W, and so for any n > N we have∣∣∣∣∣
n∑
k=0

zk − 1

1− z

∣∣∣∣∣=
∣∣∣∣zn+1 − 1

z − 1
− 1

1− z

∣∣∣∣= ∣∣∣∣zn+1 − 1

z − 1
+

1

z − 1

∣∣∣∣
=

∣∣∣∣ zn+1

z − 1

∣∣∣∣= |z|n∣∣∣∣ z

z − 1

∣∣∣∣= |z|nc < ε

c
· c = ε.

Therefore

lim
n→∞

n∑
k=0

zk =
1

1− z
,

which is equivalent to (2.8). �

Exercise 2.13 (L1.4.4). Define the function f by

f(z) = lim
n→∞

1

1 + n2z
.

Show that

f(z) =

{
1, if z = 0

0, if z 6= 0

Solution. This can be done by a simple application of limit laws by rewriting 1/(1 + n2z) as

1/n2

1/n2 + z
,

but instead we will employ an εδ-argument.
It is clear that f(0) = 1, so suppose that z 6= 0. Let ε > 0. Choose N ∈ N such that

N >

√
1

|z|

(
1 +

1

ε

)
.
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For any integer n > N we have

n2 > N2 >
1

|z|

(
1 +

1

ε

)
,

whence n2|z| − 1 > 1/ε. Now,∣∣n2|z| − 1
∣∣ > 1

ε
⇒ |n2z + 1| > 1

ε
⇒

∣∣∣∣ 1

1 + n2z

∣∣∣∣ < ε,

which shows that

f(z) = lim
n→∞

1

1 + n2z
= 1

if z 6= 0. �
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2.3 – Limits and Continuity

Definition 2.14. Let (X, d) and (Y, ρ) be metric spaces, with D ⊆ X, f : D → Y , and c a
limit point of D. Given y ∈ Y , we say f has limit y at c, written

lim
x→c

f(x) = y,

if for all ε > 0 there exists some δ > 0 such that, for any x ∈ D,

0 < d(x, c) < δ ⇒ ρ
(
f(x), y

)
< ε.

In the metric space (C, | · |), for a function f : D ⊆ C→ C, limit point z0 of D, and complex
number w, the definition indicates that

lim
z→z0

f(z) = w

if and only if for all ε > 0 there exists some δ > 0 such that, for any z ∈ D,

0 < |z − z0| < δ ⇒ |f(z)− w| < ε.

The following laws of limits, expressed for the metric space (C, | · |), are proven using
arguments that are nearly identical to those made to prove the corresponding laws in §2.3 of
the Calculus Notes.

Theorem 2.15 (Laws of Limits). For any z0, a, b, c ∈ C, if

lim
z→z0

f(z) = a and lim
z→z0

g(z) = b,

then

1. lim
z→z0

c = c

2. lim
z→z0

cf(z) = ca = c lim
z→z0

f(z)

3. lim
z→z0

[f(z)± g(z)] = a± b = lim
z→z0

f(z)± lim
z→z0

g(z)

4. lim
z→z0

[f(z)g(z)] = ab = lim
z→z0

f(z) · lim
z→z0

g(z)

5. Provided that b 6= 0,

lim
z→z0

f(z)

g(z)
=
a

b
=

lim
z→z0

f(z)

lim
z→z0

g(z)
.

6. For any integer n > 0,

lim
z→z0

[f(z)]n = an =

[
lim
z→z0

f(z)

]n
.

While the existence of limz→z0 [f(z) + g(z)] does not necessarily imply the existence of
limz→z0 f(x) or limz→z0 g(x), we do have the following result in the complex realm.

http://faculty.bucks.edu/erickson/math242/Calculus.pdf
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Proposition 2.16. Let f : S → C be given by f(z) = u(z) + iv(z), where u, v : S → R. If

lim
z→z0

f(z) = a+ ib.

then
lim
z→z0

u(z) = a and lim
z→z0

v(z) = b.

Proof. Suppose that limz→z0 f(z) = a+ ib. Let ε > 0. Then there exists some δ > 0 such that,
for all z ∈ S such that 0 < |z − z0| < δ, we have |f(z)− (a+ ib)| < ε. That is,∣∣[u(z)− a] + i[v(z)− b]

∣∣ < ε,

whence √
[u(z)− a]2 + [v(z)− b]2 < ε.

From this it readily follows that |u(z)−a| < ε and also |v(z)−b| < ε. Therefore limz→z0 u(z) = a
and limz→z0 v(z) = b. �

Recalling (1.14), from Proposition 2.16 we see that

Re

(
lim
z→z0

f(z)

)
= lim

z→z0
(Re f)(z) = lim

z→z0
Re[f(z)] (2.9)

and

Im

(
lim
z→z0

f(z)

)
= lim

z→z0
(Im f)(z) = lim

z→z0
Im[f(z)]. (2.10)

Definition 2.17. Let (X, d) and (Y, ρ) be metric spaces, and let D ⊆ X. A function f : D → Y
is continuous at x0 ∈ D if for every ε > 0 there exists some δ > 0 such that, for all x ∈ D,

d(x, x0) < δ ⇒ ρ
(
f(x), f(x0)

)
< ε.

If f is continuous at every point in a set S ⊆ D, then f is said to be continuous on S. A
continuous function is a function that is continuous on its domain.

Clearly in order for a function f to be continuous at a point z0, it is necessary (but not
sufficient) that z0 lie in the domain of f . Also, it is always true that a function is continuous at
any isolated point in its domain.

Definition 2.18. Let (X, d) and (Y, ρ) be metric spaces, and let D ⊆ X. A function f : D → Y
is uniformly continuous on D if for every ε > 0 there exists some δ > 0 such that, for all
x1, x2 ∈ D,

d(x1, x2) < δ ⇒ ρ
(
f(x1), f(x2)

)
< ε.

If S ⊆ D, then f is said to be uniformly continuous on S if f |S is uniformly continuous
on S.

Theorem 2.19. Suppose f : (X, d)→ (Y, ρ). Then f is continuous on X if and only if f−1(V )
is open in X whenever V is open in Y .

Theorem 2.20. Suppose f : (X, d)→ (Y, ρ) and a ∈ X. Then f is continuous at a if and only
if lim f(xn) = f(a) for every sequence (xn) in X such that limxn = a.
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Proof. Suppose f is continuous at a. Let (xn) be a sequence in X such that limxn = a. Fix
ε > 0. There exists some δ > 0 such that, for all x ∈ X,

d(x, a) < δ ⇒ ρ
(
f(x), f(a)

)
< ε.

Since xn → x, there is some k ∈ N such that d(xn, x) < δ for all n ≥ k. Now, for all n ≥ k we
have ρ(f(xn), f(a)) < ε, and therefore lim f(xn) = f(a).

Conversely, suppose f is not continuous at a. Then there exists some ε > 0 such that, for
each δ > 0, there is some x ∈ X for which d(x, a) < δ and yet ρ(f(x), f(a)) ≥ ε. Thus, for each
n ∈ N, there is some xn ∈ X for which d(xn, a) < 1/n and yet ρ(f(xn), f(a)) ≥ ε. The resultant
sequence (xn) in X is such that limxn = a and yet lim f(xn) 6= a. �

Theorem 2.21. Let (X, dX), (Y, dY ), (Z, dZ) be metric spaces, let U ⊆ X and V ⊆ Y , and let
f : U → Y and g : V → Z such that f(U) ∩ V 6= ∅. If f is continuous at c and g is continuous
at f(c), then g ◦ f is continuous at c.

Proof. Suppose f is continuous at c and g is continuous at f(c). Fix ε > 0. There exists some
δ′ > 0 such that, for all y ∈ V ,

dY (y, f(c)) < δ′ ⇒ dZ(g(y), g(f(c))) < ε.

In turn, there exists some δ > 0 such that, for all x ∈ U ,

dX(x, c) < δ ⇒ dY (f(x), f(c)) < δ′.

Let x ∈ Dom(g ◦ f) such that dX(x, c) < δ. Then we have dY (f(x), f(c)) < δ′, and since
x ∈ Dom(g ◦ f) implies f(x) ∈ Dom(g) = V , it follows that dZ(g(f(x)), g(f(c))) < ε. We
conclude that for every ε > 0 there exists some δ > 0 such that, for all x ∈ Dom(g ◦ f),

dX(x, c) < δ ⇒ dZ
(
(g ◦ f)(x), (g ◦ f)(c)

)
< ε.

Therefore g ◦ f is continuous at c. �

Proposition 2.22. Let limz→z0 g(z) = w and let f be continuous at w. If w is an interior point
of Dom(f), then

lim
z→z0

(f ◦ g)(z) = f(w).

Proof. Suppose w is an interior point of Dom(f), so Br(w) ⊆ Dom(f) for some r > 0. Let
ε > 0. Since f is continuous at w there exists some 0 < γ < r such that

|z − w| < γ ⇒ |f(z)− f(w)| < ε.

Additionally, since limz→z0 g(z) = w there can be found some δ > 0 such that, for all z ∈ Dom(g),

0 < |z − z0| < δ ⇒ |g(z)− w| < γ,

and hence
|(f ◦ g)(z)− f(w)| = |f(g(z))− f(w)| < ε.

We have shown that for every ε > 0 there exists some δ > 0 such that, for all z ∈ Dom(g),

0 < |z − z0| < δ ⇒ |(f ◦ g)(z)− f(w)| < ε.
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The proof is done. �

The conclusion of Proposition 2.22 can be written more compellingly as

lim
z→z0

f(g(z)) = f

(
lim
z→z0

g(z)

)
.

The magnitude function | · | : C → R is clearly continuous throughout C. If we apply
Proposition 2.22 to the case when f = | · | we obtain

lim
z→z0
|g(z)| =

∣∣∣∣ limz→z0
g(z)

∣∣∣∣
as a general result whenever limz→z0 g(z) exists in C.

Theorem 2.23. Let S ⊆ C and z0 ∈ S. Then f : S → C is continuous at z0 if and only if
Re f and Im f are continuous at z0.

Proof. Suppose that f is continuous at z0, and fix ε > 0. Then there exists some δ > 0 such
that |f(z)− f(z0)| < ε for all z ∈ S for which |z − z0| < δ. Thus if z ∈ S ∩Bδ(z0) we have∣∣[Re f(z) + i Im f(z)]− [Re f(z0) + i Im f(z0)]

∣∣ < ε,

whence √
[Re f(z)− Re f(z0)]2 + [Im f(z)− Im f(z0)]2 < ε

obtains and we conclude that∣∣Re f(z)− Re f(z0)
∣∣ < ε and

∣∣ Im f(z)− Im f(z0)
∣∣ < ε

Therefore Re f and Im f are continuous at z0.
Conversely, suppose that Re f and Im f are continuous at z0. Let ε > 0. There exist δ1, δ2 > 0

such that, for any (x, y) ∈ R,

|z − z0| < δ1 ⇒
∣∣Re f(z)− Re f(z0)

∣∣ < ε/2

and
|z − z0| < δ2 ⇒

∣∣ Im f(z)− Im f(z0)
∣∣ < ε/2.

Let δ = min{δ1, δ2}, and suppose z ∈ S such that |z − z0| < δ. Then

|f(z)− f(z0)| =
∣∣[Re f(z) + i Im f(z)]− [Re f(z0) + i Im f(z0)]

∣∣
=
∣∣[Re f(z)− Re f(z0)] + i[Im f(z)− Im f(z0)]

∣∣
≤
∣∣Re f(z)− Re f(z0)

∣∣+
∣∣ Im f(z)− Im f(z0)

∣∣
< ε/2 + ε/2 = ε,

where in general |x+ iy| ≤ |x|+ |y| by the Triangle Inequality. Hence f is continuous at z0. �

Exercise 2.24 (L1.4.5). For |z| 6= 1 show that the limit

f(z) = lim
n→∞

zn − 1

zn + 1

exists. Is it possible to define f(z) when |z| = 1 in such a way that f is continuous on C?
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Solution. When |z| < 1 we have zn → 0 as n→∞, and so

lim
n→∞

zn − 1

zn + 1
=

limn→∞(zn − 1)

limn→∞(zn + 1)
=

0− 1

0 + 1
= −1.

When |z| > 1 we have |1/z| = 1/|z| < 1, so that 1/zn = (1/z)n → 0 as n→∞, and thus

lim
n→∞

zn − 1

zn + 1
= lim

n→∞

1− 1/zn

1 + 1/zn
=

limn→∞(1− 1/zn)

limn→∞(1 + 1/zn)
=

1− 0

1 + 0
= 1.

Hence

f(z) =

{
−1, if |z| < 1

1, if |z| > 1

which makes it clear that f has no continuous extension to C. �

Exercise 2.25 (L1.4.6). Let

f(z) = lim
n→∞

zn

1 + zn
.

Determine the domain of f , and give the explicit values of f(z) for z ∈ Dom(f).

Solution. Clearly if |z| < 1 we have

f(z) = lim
n→∞

zn

1 + zn
=

0

1 + 0
= 0.

If |z| > 1 we have

f(z) = lim
n→∞

zn

1 + zn
= lim

n→∞

1

1/zn + 1
=

1

0 + 1
= 1.

If z = 1 we have

f(1) = lim
n→∞

1n

1 + 1n
= lim

n→∞

1

2
=

1

2
.

For no other z ∈ C is f(z) defined. This can be verified directly in the cases when
z = π/2, π, 3π/2. Suppose z 6= 1, π/2, π, 3π/2 is such that |z| = 1, so that z = eiθ for some
θ ∈ (0, 2π)− {π/2, π, 3π/2}. Suppose f(z) = α for some α ∈ C. Then

lim
n→∞

zn

1 + zn
= lim

n→∞

1

z−n + 1
= lim

n→∞

1

e−i(nθ) + 1
= α,

and so
1

α
= lim

n→∞

(
e−i(nθ) + 1

)
= lim

n→∞

[
cos(nθ)− i sin(nθ) + 1

]
.

Thus,
∀ε > 0 ∃N ∈ N ∀n > N

( ∣∣[ cos(nθ)− i sin(nθ)
]
− (1/α− 1)

∣∣ < ε
)
.

However, if we choose ε = 1/4, we find that for any N ∈ N there exists some n > N for which∣∣[ cos(nθ)− i sin(nθ)
]
− (1/α− 1)

∣∣ ≥ 1/4.

To see this, consider that there exists some p, q ∈ Z for which

p+ 1/4

q
π ≤ θ <

p+ 1/2

q
π,
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and now if we let n = q, 2q, 3q, . . . we find that nθ revisits each of the various quadrants (0, π/2),
(π/2, π), (π, 3π/2), and (3π/2, 2π) an infinite number of times. This places cos(nθ)− i sin(nθ)
in each of the four quadrants of S ⊆ C an infinite number of times, and since S has radius 1 it
follows that cos(nθ)− i sin(nθ) will be a distance greater than 1/4 from 1/α− 1 for infinitely
many n ∈ N.

Therefore Dom(f) = (C \ S) ∪ {1}, with values of f(z) given above. �
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2.4 – Connectedness

The notion of connectedness will here be dealt with mostly in the setting of metric spaces,
though there will be occasional consideration of a topological subspace rather than the equivalent
metric subspace, since the former is oftentimes simpler to analyze.

Definition 2.26. A metric space (X, d) is connected if there do not exist nonempty open sets
U, V ⊆ X such that U ∩ V = ∅ and U ∪ V = X. A set S ⊆ X is connected if the metric space
(S, d) is connected. A region is an open connected set.

We say (X, d) is disconnected if it is not connected; that is, (X, d) is disconnected if there
exist nonempty disjoint open sets U, V ⊆ X such that U ∪ V = X, in which case we say that U
and V disconnect X.

Given a metric space (X, d), since the subspace topology on a set S ⊆ X is the same as the
topology on S induced by the metric d, we may say that S is a connected set if and only if S
is a connected subspace of X. That is, S is a connected set if and only if there do not exist
nonempty disjoint sets U, V open in S such that U ∪ V = S.

Theorem 2.27. Let (X, d) be a metric space.

1. Let U, V ⊆ X be disjoint open sets. If C ⊆ X is connected and C ⊆ U ∪ V , then either
C ⊆ U or C ⊆ V .

2. If F is a family of connected subsets of X having a point in common, then ∪F is connected.

Proof.
Proof of (1). Suppose C ⊆ X is connected and C ⊆ U ∪ V . Let A = C ∩ U and B = C ∩ V ,
so A and B are open in the subspace topology on C, and hence are open in the metric space
(C, d). Also

A ∪B = C ∩ (U ∪ V ) = C and A ∩B = C ∩ U ∩ V = ∅.

Since C is connected, either A = ∅ or B = ∅ (otherwise A and B disconnect C). Therefore
either C ⊆ V or C ⊆ U .

Proof of (2). Suppose F is a family of connected subsets of X having a point p in common.
Let A,B ⊆ ∪F be disjoint sets, open in ∪F , with A ∪ B = ∪F . Thus C ⊆ A ∪ B for each
C ∈ F , and since C is connected, by Part (1) either C ⊆ A or C ⊆ B (but not both). Now,
p ∈ ∩F ⊆ A ∪ B, so either p ∈ A or p ∈ B. If p ∈ A, then since p ∈ C for all C ∈ F and
A ∩ B = ∅, we find that no C ∈ F can be a subset of B, and thus C ⊆ A for all C ∈ F . It
follows that ∪F ⊆ A, and since A ∪B = ∪F , we obtain B = ∅. If p ∈ B, a similar argument
concludes that ∪F ⊆ B and A = ∅. Therefore A and B do not disconnect ∪F , and since A
and B are arbitrary disjoint sets that are open in ∪F and have union ∪F , we conclude that
∪F is connected. �

Remark. Suppose (X, d) is a metric space and S ⊆ Y ⊆ X. Then S is a connected subset
of X if and only if S is a connected subset of Y . This stems from the fact that the subspace
topology that S inherits from Y is the same as the subspace topology S inherits from X.
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We take as a fact from elementary analysis that intervals in R are connected. Thus in
particular the interval [0, 1] is connected, which we make use of in an upcoming proof.

Definition 2.28. A metric space (X, d) is path-connected if for any x0, x1 ∈ X there exists
a continuous function f : [0, 1] → X such that f(0) = x0 and f(1) = x1. A set S ⊆ X is
path-connected if the metric space (S, d) is path-connected.

Proposition 2.29. If a metric space (X, d) is path-connected, then it is connected.

Proof. Suppose that (X, d) is path-connected. Suppose that (X, d) is not connected. Then
there exist nonempty open sets U1, U2 ⊆ X such that U1∩U2 = ∅ and U1∪U2 = X. Let x1 ∈ U1

and x2 ∈ U2. Then there exists a continuous function f : [0, 1]→ X such that f(0) = x1 and
f(1) = x2. By Theorem 2.19 the sets f−1(U1) and f−1(U2) are open in [0, 1], and since they are
disjoint and f−1(U1) ∪ f−1(U2) = [0, 1], it follows that [0, 1] is not connected—a contradiction.
Therefore (X, d) is connected. �

Given z, w ∈ C, the closed line segment (or simply line segment) joining z and w is the
set of complex numbers

[z, w] =
{

(1− t)z + tw : t ∈ [0, 1]
}
.

Clearly [z, w] = [w, z], although in Chapter 3 we will take [z, w] and [w, z] to represent two
different “orientations” of the line segment.

Given an ordered set of complex numbers (z0, . . . , zn), the polygonal curve with vertices
(z0, . . . , zn) is the set

[z0, . . . , zn] =
n⋃
k=1

[zk−1, zk].

A line segment is the simplest nonconstant polygonal curve possible.

Definition 2.30. A set S ⊆ C is polygonally connected if each pair of points in S is joined
by a polygonal curve that lies in S.

Polygonal connectedness is a special kind of path-connectedness since, as we will see presently,
any polygonal curve P joining points z, w ∈ C has corresponding to it a continuous function
f : [0, 1] → C such that f(0) = z, f(1) = w, and f([0, 1]) = P . Thus, in general, polygonal
connectedness implies path-connectedness, and path-connectedness implies connectedness.

A set S ⊆ C is convex if [z, w] ⊆ S for all z, w ∈ S. This immediately implies that a
convex set is polygonally connected, and hence path-connected, and therefore is connected by
Proposition 2.29. Any open or closed ball in C is convex and hence connected.

A set S ⊆ C is starlike if there exists some c ∈ S such that [c, z] ⊆ S for all z ∈ S. The
point c is called the star center. Clearly any convex set is also starlike, with any point in the
set qualifying as a star center.

Proposition 2.31. If S ⊆ C is starlike, then S is connected.
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Proof. Suppose S ⊆ C is starlike, and let c ∈ S be the star center. Let z, w ∈ S. Then
[c, z], [c, w] ⊆ S, and hence the polygonal curve [z, c, w] lies in S. Define f : [0, 1]→ S by

f(t) =

{
(1− 2t)z + 2tc, t ∈ [0, 1/2]

(2− 2t)c+ (2t− 1)w, t ∈ [1/2, 1].

Then f is a continuous function with f(0) = z and f(1) = w. Since z, w ∈ S are arbitrary, it
follows that S is path-connected, and therefore S is connected by Proposition 2.29. �

The function f defined in the proof above gives an indication of how any polygonal curve
joining points z, w ∈ C may be cast as the range of a continuous function [0, 1]→ C. Given a
polygonal curve P = [z0, z1, z2, z3] with four vertices, we may define f : [0, 1]→ P by

f(t) =


(1− 3t)z0 + 3tz1, t ∈ [0, 1/3]

(2− 3t)z1 + (3t− 1)z2, t ∈ [1/3, 2/3]

(3− 3t)z2 + (3t− 2)z3, t ∈ [2/3, 1],

which is a continuous function with f(0) = z0, f(1) = z3, and f([0, 1]) = P .

Theorem 2.32. Let Ω ⊆ C be open. Then Ω is connected if and only if it is polygonally
connected.

Proof. Suppose Ω is connected. Fix a ∈ Ω, define Ω1 to be the set of all z ∈ Ω for which
there exists a polygonal curve joining a and z, and define Ω2 = Ω \ Ω1. Fix ζ ∈ Ω1, so there
exist points z1, . . . , zn ∈ Ω such that the polygonal path [a, z1, . . . , zn, ζ] lies in Ω. Let r > 0
be such that Br(ζ) ⊆ Ω. Since Br(ζ) is convex, [ζ, z] ⊆ Br(ζ) for any z ∈ Br(ζ), and then
[a, z1, . . . , zn, ζ, z] is a polygonal path joining a and z that lies in Ω. Hence z ∈ Ω1, whence
Br(ζ) ⊆ Ω1 and we conclude that Ω1 is an open set.

Now let ζ ∈ Ω2, so there does not exist a polygonal curve joining a and ζ. Again let r > 0
be such that Br(ζ) ⊆ Ω. Fix z ∈ Br(ζ). If there were a polygonal path P ⊆ Ω joining a with
z, then P ∪ [z, ζ] would be a polygonal path in Ω joining a and ζ, which is impossible. Thus
z ∈ Ω2, whence Br(ζ) ⊆ Ω2 and we conclude that Ω2 is open.

We now find that Ω1 and Ω2 are disjoint open sets with union Ω. The set Ω1 cannot be empty,
since there exists r > 0 such that Br(a) ⊆ Ω, and then Br(a) ⊆ Ω1 since Br(a) is polygonally
connected. Therefore, because Ω is connected by hypothesis, we must conclude that Ω2 = ∅,
and so Ω1 = Ω. This shows that there is a polygonal curve joining a and z for any z ∈ Ω, and
since a ∈ Ω is arbitrary, it follows that Ω is polygonally connected.

For the converse, suppose Ω is not connected. Then Ω is not path-connected by Proposition
2.29, and there exist z0, z1 ∈ Ω such that there is no continuous function f : [0, 1] → Ω for
which f(0) = z0 and f(1) = z1. This implies there can be no polygonal curve joining z0 and z1,
since any such curve could readily be characterized as the range of a piecewise-linear continuous
function [0, 1]→ Ω. Therefore Ω is not polygonally connected, and we have shown that polygonal
connectedness implies connectedness. �

Definition 2.33. A component of a metric space (X, d) is a nonempty connected set C ⊆ X
that is not a proper subset of any other connected set in X. A component of a set S ⊆ X is a
component of the metric space (S, d).
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It is in the sense of Definition 2.33 that a component of (X, d) is described as being a
“maximal connected subset of X.” We may equivalently define a component of a set S ⊆ X to
be a component of the subspace S.

Theorem 2.34. Let C be a component of (X, d). If S ⊆ X is connected and S ∩ C 6= ∅, then
S ⊆ C.

Proof. Suppose S ⊆ X is connected and S ∩C 6= ∅. Then F = {C, S} is a family of connected
subsets of X with a point in common, so C ∪ S is connected by Theorem 2.27(2). Now, since
C ⊆ C ∪ S and C is a maximal connected subset of X, we have C = C ∪ S, and therefore
S ⊆ C. �

Proposition 2.35. If Ω ⊆ C is open, then the components of Ω are open in C.

Proof. Suppose Ω ⊆ C is open. Let C be a component of Ω, and let z0 ∈ C. Let r > 0 be such
that Br(z0) ⊆ Ω. Since Br(z0) is connected and Br(z0) ∩ C 6= ∅, by Theorem 2.34 it follows
that Br(z0) ⊆ C. Therefore C is open in C. �

Two sets A,B ⊆ X are separated if A ∩ B = A ∩ B = ∅. If a metric space (X, d) is the
union of two nonempty separated sets A and B, then we say that A and B separate X. Sets
A and B are separated by neighborhoods if there are open sets U, V ⊆ X with A ⊆ U ,
B ⊆ V , and U ∩ V = ∅.

Exercise 2.36. Show that a metric space (X, d) can be separated if and only if it can be
disconnected.

Solution. Suppose X can be separated. Then there exist nonempty sets A,B ⊆ X which
separate X, which is to say A ∩ B = A ∩ B = ∅ and X = A ∪ B. Now, A ∩ B = ∅ implies
A ⊆ B

c
. On the other hand

x ∈ Bc ⇒ x /∈ B ⇒ x /∈ B ⇒ x ∈ A,

since X = A ∪B, so B
c ⊆ A and we have A = B

c
. A similar argument will show that B = A

c
,

and thus A and B are open sets in X. Therefore A and B disconnect X.
Now suppose X can be disconnected. Then there exist nonempty sets U, V ⊆ X which

disconnect X, which is to say U and V are open, U ∩V = ∅, and X = U ∪V . Let x ∈ V . Then
x /∈ U is immediate, and since V is open there exists some ε > 0 such that Bε(x) ⊆ V . Thus
U ∩Bε(x) = ∅, which shows that x is not a limit point of x and hence x /∈ U . So U ∩ V = ∅,
and a similar argument will show that U ∩ V = ∅ as well. It is now clear that U and V are
separated sets, and therefore U and V separate X. �

One consequence of the exercise above is that if A and B are separated sets in a metric
space (X, d), then S = A ∪B is a disconnected set in (X, d). The converse of this statement is
not true in general, however, since to say S = A ∪B is disconnected does not necessarily imply
that A and B disconnect S. Consider the sets A = (0, 1) ∪ (2, 4) and B = (3, 7) in R.
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2.5 – Compactness

A cover of a set S in a metric space (X, d) is a collection A of subsets of X such that
S ⊆ ∪A. If all the members of A are open sets, then A is an open cover of S. A subcover of
A is a subcollection of A that is also a cover of S. That is, a collection of sets B is a subcover
of A if and only if B ⊆ A and S ⊆ ∪B. If a subcover has a finite number of members belonging
to it, then it is called a finite subcover.

Definition 2.37. Let (X, d) be a metric space. A set K ⊆ X is compact if every open cover
of K has a finite subcover. A set S ⊆ X is precompact if S is compact.

It is immediate from the definition that every finite set in (X, d) is compact, and so it
is only interesting to develop properties of infinite compact sets. Also, in the definition for
precompactness it is understood that S must be a subset of X, since that is a condition in the
definition for compactness.

Proposition 2.38. If (X, d) is a metric space and K is a compact subset of X, then K is
closed.

Theorem 2.39. Let (X, d) be a metric space, and let K ⊆ X be an infinite set. The following
statements are equivalent.

1. K is compact.
2. Every infinite subset of K has a limit point in K.
3. Every sequence in K has a subsequence that is convergent in K.

Proof.
(2) → (3). Suppose that every infinite subset of K has a limit point in K. Let (xn) be a
sequence in K. If S = {xn : n ∈ N} is finite, then there exists a subsequence of (xn) that is
constant and therefore trivially converges to a point in K. Assume S is infinite. Then S has a
limit point x ∈ K, so that for each k ∈ N there exists some xnk ∈ S such that xnk ∈ B′1/k(x).

This allows for the creation of a subsequence (xnk) for which

|xnk − x| <
1

k

for all k (we need only take care that ni < nj whenever i < j). By construction it is clear that
xnk → z as k →∞, and therefore (xn) is seen to have a subsequence that converges to a point
in K. �

It is known from elementary analysis that a set of real numbers is compact if and only if it
is closed and bounded. The same is true for sets of complex numbers.

Theorem 2.40. A set of complex numbers is compact if and only if it is closed and bounded.
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Proof. Suppose that K ⊆ C is compact. If K is finite then it follows trivially that K is closed
and bounded, and so assume that K is infinite.

Suppose K is unbounded. Then for any fixed x0 ∈ K the collection A = {Bn(x0) : n ∈ N}
is an open cover of K with no finite subcover, implying that K is not compact. Therefore K
compact implies K is bounded.

Suppose K is not closed. Then K 6= K, and there exists some x0 /∈ K such that x0 is a limit
point of K. For each n ∈ N let Bn = B1/n(x0) and

An = Bn \Bn+2 =

{
x :

1

n+ 2
< |x− x0| <

1

n

}
.

Setting A0 = C \ B2, define A = {An : n ≥ 0}. If x ∈ K is such that x /∈ A0, then
0 < |x− x0| ≤ 1/2 and there must be some m ≥ 1 for which

1

m+ 2
<

1

m+ 1
≤ |x− x0| <

1

m
,

and hence x ∈ Am. This shows that A is an open cover for K. However, given any finite
subcollection B = {An1 , . . . , Ank} we can find some x ∈ K ∩ Bnk+2(x0), and since x /∈ ∪B
we must conclude that there is no finite subcover and hence K is not compact. Therefore K
compact implies K is closed. �

Theorem 2.41. Let (X, d) and (Y, ρ) be metric spaces. If K ⊆ X compact and f : K → Y
continuous, then f(X) is compact.

Theorem 2.42 (Extreme Value Theorem). Let (X, d) be a metric space. If K ⊆ X is
compact and f : K → R is continuous, then f attains both a maximum and a minimum on K.

Proof. By Theorem 2.41 the set f(K) ⊆ R is compact, and thus it is closed and bounded.
Since f(K) is a set in R with an upper bound, by the Completeness Axiom it must have a least
upper bound and so sup[f(K)] = a for some a ∈ R.

For any ε > 0 there is some x ∈ f(K) with a− ε < x < a, which is to say B′ε(a)∩ f(K) 6= ∅
and hence a is a limit point of f(K). Since f(K) is closed we conclude that a ∈ f(K). That is,
there is some z ∈ S such that f(z) = a.

Now, for any w ∈ S we have f(w) ∈ f(K), and so f(w) ≤ a = f(z). Therefore f attains a
maximum on K. A similar argument will show that f also attains a minimum on K. �

Proposition 2.43. If S ⊆ C is closed and v ∈ C, then there exists some w ∈ S such that
dist(S, v) = |w − v|.

Proof. Suppose that S ⊆ C is closed and v ∈ C. Let r = 2 dist(S, v), E = Br(v), and
S ′ = S ∩ E. Then S ′ is a (nonempty) closed and bounded set, and therefore is compact.

Define the function f : S ′ → R by f(z) = −|z − v|. Since f is continuous on S ′ and S ′ is
compact, by the Extreme Value Theorem f attains a maximum on S ′. Thus, there is some
w ∈ S ′ such that f(z) ≤ f(w) for all z ∈ S ′. That is, for all z ∈ S ′ we have |z − v| ≥ |w − v|,
and so

dist(S ′, v) = inf{|z − v| : z ∈ S ′} = |w − v|
for w ∈ S.
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It remains to show that dist(S ′, v) = dist(S, v). Since S ′ ⊆ S it is clear that dist(S ′, v) ≥
dist(S, v). Let 0 < ε < r/2. Then there exists some z0 ∈ S such that

|z0 − v| < dist(S, v) + ε,

and since
dist(S, v) + ε =

r

2
+ ε <

r

2
+
r

2
= r

it follows that z0 ∈ E and hence z0 ∈ S ′. Now,

dist(S ′, v) = inf{|z − v| : z ∈ S ′} ≤ |z0 − v| < dist(S, v) + ε,

and since ε is arbitrarily small it must be that dist(S ′, v) ≤ dist(S, v), and so dist(S ′, v) =
dist(S, v).

Therefore dist(S, v) = |w − v| for w ∈ S. �

Lemma 2.44. For any S,Σ ⊆ C, the function f : Σ→ R given by f(z) = dist(S, z) for each
z ∈ Σ is continuous.

Proof. Fix z0 ∈ Σ. Let ε > 0 be arbitrary. Choose δ = ε/4, and suppose z ∈ Σ is such that
|z − z0| < δ. We have

dist(S, z0) = inf{|z0 − s| : s ∈ S} ∈ R

since 0 is a lower bound for {|z0 − s| : s ∈ S}, and so there exists some s0 ∈ S such that

dist(S, z0) ≤ |z0 − s0| < dist(S, z0) + ε/4.

Now,
|z − s0| ≤ |z − z0|+ |z0 − s0| < ε/4 + [dist(S, z0) + ε/4] = dist(S, z0) + ε/2,

and so
dist(S, z) = inf{|z − s| : s ∈ S} ≤ |z − s0| ≤ dist(S, z0) + ε/2. (2.11)

Next, for any fixed s ∈ S we have

dist(S, z0) ≤ |z0 − s| ≤ |z0 − z|+ |z − s| < |z − s|+ ε/4,

which implies that

dist(S, z0)− ε/4 < |z − s|

for all s ∈ S and so dist(S, z0)− ε/4 is a lower bound for {|z − s| : s ∈ S}. Since dist(S, z) is
the greatest lower bound for {|z − s| : s ∈ S}, we conclude that

dist(S, z0)− ε/4 ≤ dist(S, z). (2.12)

Combining (2.11) and (2.12) yields

− ε/4 ≤ dist(S, z)− dist(S, z0) ≤ ε/2,

whence
|f(z)− f(z0)| = | dist(S, z)− dist(S, z0)| ≤ ε/2 < ε.

Therefore f is continuous at z0. Since z0 ∈ Σ is arbitrary it follows that f is continuous on
its domain Σ. �
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Theorem 2.45. If K ⊆ C is compact and S ⊆ C is closed, then there exist z0 ∈ K and w0 ∈ S
such that

dist(K,S) = |z0 − w0|.

Proof. Suppose that K is compact and S is closed. Define f : K → R by f(z) = dist(S, z)
for each z ∈ K. By Lemma 2.44 f is continuous, and so the function −f : K → R is likewise
continuous. By the Extreme Value Theorem −f attains a maximum on K, which is to say there
exists some z0 ∈ K such that

− dist(S, z0) = −f(z0) ≥ −f(z) = dist(S, z)

for all z ∈ K, and so dist(S, z0) ≤ dist(S, z) for all z ∈ K. By Theorem 2.43 there exists some
w0 ∈ S such that dist(S, z0) = |z0 − w0|, and so

|z0 − w0| ≤ dist(S, z)

for all z ∈ K.
Define

A = {|z − w| : z ∈ K,w ∈ S}.

For any z ∈ K and w ∈ S we have

|z0 − w0| ≤ dist(S, z) = inf{|z − ŵ| : ŵ ∈ S} ≤ |z − w|,

and so |z0 − w0| is a lower bound for A. Moreover |z0 − w0| ∈ A implies that any lower bound
β for A must be such that β ≤ |z0 − w0|, and therefore |z0 − w0| must be the greatest lower
bound for A. That is,

|z0 − w0| = inf(A) = dist(K,S),

and the proof is done. �

Proposition 2.46. Let (X, d) be a metric space, and let S ⊆ X. Then S is precompact if and
only if every sequence in S has a subsequence that is convergent in X.

Proof. Suppose that S is precompact. Let (xn) be a sequence in S. Then (xn) is a sequence in
the compact set S, and hence by Theorem 2.39 has a subsequence (xnk) that converges to some
x ∈ S. But S ⊆ X, so (xn) has a subsequence that is convergent in X.

For the converse, suppose that every sequence in S has a subsequence that is convergent in
X. Let (xn)n∈N be a sequence in S, and let I = {n ∈ N : xn ∈ S}. If I is an infinite set, then
(xn)n∈I is a subsequence that lies in S, and it in turn must have a subsequence (xn)n∈J , where
J ⊆ I, that converges to some x ∈ X. In fact, since (xn)n∈J lies in S it follows that x must be
a limit point for S, and so x ∈ S. Therefore (xn)n∈N has a subsequence that converges to some
x ∈ S if I is infinite.

Suppose that I is finite. Then all but finitely many terms in (xn)n∈N lie in S \ S, the set of
limit points of S that do not lie in S. By passing to a subsequence if necessary, we can assume
that all terms lie in S \ S. Since each xn is a limit point for S, for each n ∈ N there exists some
sn ∈ S such that sn ∈ B′1/n(xn). Now, (sn)n∈N is a sequence in S such that

d(xn, sn) <
1

n
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for each n, and it has a subsequence (snj)j∈N that converges to some point x ∈ X that must
necessarily be a limit point for S, and hence x ∈ S. Consider the sequence (xnj)j∈N. Let ε > 0
be arbitrary. Let k ∈ N be such that 1/nk < ε/2 and

d(snj , x) <
ε

2
for all j ≥ k. Suppose that j ≥ k. Then nj ≥ nk so that 1/nj < ε/2, and we obtain

d(xnj , x) ≤ d(xnj , snj) + d(snj , x) <
1

nj
+
ε

2
<
ε

2
+
ε

2
= ε.

Therefore (xn)n∈N has a subsequence that converges to some x ∈ S if I is finite. Since every
sequence in S converges to a point in S, by Theorem 2.39 we conclude that S is compact, and
therefore S is precompact. �

Exercise 2.47. Show that if Ω ⊆ C is open and Br(z0) ⊆ Ω, then there exists some δ > 0 such
that Br+δ(z0) ⊆ Ω.

Solution. Let K = Br(z0) and S = C \ Ω, so K is compact and S is closed. By Theorem 2.45
there exists z1 ∈ K and w1 ∈ S such that dist(K,S) = |z1−w1|. However, since K ⊆ Ω implies
K ∩ S = ∅, it follows that z1 6= w1, and so dist(K,S) = 2δ for some δ > 0.

Let z ∈ Br+δ(z0) \ K, so z = z0 + (r + ε)eit for some t ∈ [0, 2π) and 0 < ε < δ. Let
w = z0 + reit. Then

|z − w| =
∣∣εeit∣∣ = ε < δ < dist(K,S).

Since w ∈ K and |z − w| < dist(K,S), we conclude that z /∈ S and therefore z ∈ Ω. Now we
see that Br+δ(z0) \K ⊆ Ω as well as K ⊆ Ω, and so Br+δ(z0) ⊆ Ω obtains as desired. �
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2.6 – Sequences and Series of Functions

Definition 2.48. Let S ⊆ C, and suppose (fn) is a sequence of functions S → C such that, for
each z ∈ S, the sequence (fn(z)) is convergent. Defining f : S → C by

f(z) = lim
n→∞

fn(z)

for each z ∈ S, we say (fn) converges pointwise to f on S, and write fn → f or lim fn = f .

Definition 2.49. Let S ⊆ C. A sequence of functions (fn : S → C) is uniformly convergent
(or converges uniformly) on S if there exists a function f : S → C for which the following
holds: for every ε > 0, there exists some k ∈ Z such that

|fn(z)− f(z)| < ε

for all z ∈ S and n ≥ k. We then say (fn) converges uniformly to f on S, and write
fn−→u f or u-lim fn = f . We say (fn) is uniformly convergent on A ⊆ S if (fn|A) is
uniformly convergent on A.

Given a sequence of functions (fn : S → C)n∈N, define sn =
∑n

k=1 fk for each n ∈ N. To say∑
fn converges pointwise to a function f on S means the sequence of partial sums (sn)n∈N

converges pointwise to f on S, and to say
∑
fn is uniformly convergent on S means (sn)n∈N

is uniformly convergent on S. Finally, we say
∑
fn is absolutely convergent on S if

∑
|fn|

converges pointwise on S.
Recall (2.2), the definition of the uniform metric ‖ · ‖S on B(S) that specifies a real-valued

distance between any two bounded functions f, g : S → C. We may certainly apply ‖ · ‖S to the
set F(S) of all functions S → C, bounded or otherwise, though ‖f − g‖S will not necessarily
always be defined as a real number (in which case (F(S), ‖ · ‖S) fails to be a metric space). It
should be clear that, given a sequence (fn) in F(S), then (fn) converges uniformly to f on S
iff for every ε > 0 there is some k ∈ Z such that ‖fn − f‖S < ε for all n ≥ k. Thus, given a
sequence (fn) in the metric space (B(S), ‖ · ‖), we conclude that (fn) is convergent in B(S) iff
there exists some f ∈ B(S) such that (fn) is uniformly convergent to f on S.

Definition 2.50. Let S ⊆ C. A sequence of functions (fn : S → C) is uniformly Cauchy
on S if, for every ε > 0, there exists some k ∈ Z such that

|fm(z)− fn(z)| < ε

for all z ∈ S and m,n ≥ k. We say (fn) is uniformly Cauchy on A ⊆ S if (fn|A) is uniformly
Cauchy on A.

It can be easily shown that a sequence (fn : S → C) is uniformly Cauchy on S iff for every
ε > 0 there is some k ∈ Z such that ‖fm − fn‖S < ε for all m,n ≥ k.

Proposition 2.51. Suppose (fn) and (gn) are sequences of functions that converge uniformly
to f and g on S ⊆ C, respectively.

1. For any α ∈ C, (αfn) converges uniformly to αf on S.
2. The sequence (fn + gn) converges uniformly to f + g on S.
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3. If (fn) and (gn) are sequences of bounded functions on S, then (fngn) converges uniformly to
fg on S.

4. If f = u+ iv and fn = un + ivn for all n, then un−→u u and vn−→u v.

Theorem 2.52. Let (fn) be a sequence of functions S → C. If (fn) is uniformly Cauchy on S,
then it is uniformly convergent on S.

Proof. Suppose that (fn) is uniformly Cauchy on S. For any z ∈ S the following holds: for
each ε > 0 there exists some k such that |fm(z) − fn(z)| < ε for all m,n ≥ k. Thus (fn(z))
is a Cauchy sequence in C, and since (C, | · |) is a complete metric space by Theorem 2.3, we
conclude that there exists some wz ∈ C such that fn(z)→ wz. Define f : S → C by f(z) = wz;
that is,

f(z) = lim
n→∞

fn(z) (2.13)

for all z ∈ S. We will show that (fn) converges uniformly to f on S.
Fix ε > 0 Choose k such that

|fm(z)− fn(z)| < ε

2
for all z ∈ S and m,n ≥ k. Fix z ∈ S and n ≥ k. Since fm(z)→ f(z), there exists some m ≥ k
such that |fm(z)− f(z)| < ε/2. Now,

|fn(z)− f(z)| ≤ |fn(z)− fm(z)|+ |fm(z)− f(z)| < ε

2
+
ε

2
= ε,

and therefore fn−→u f on S. �

Remark. In the proof of Theorem 2.52 it can be seen that, if (fn) is uniformly Cauchy on S,
then it specifically converges uniformly on S to the function f : S → C given by (2.13), which
is the pointwise limit of (fn).

Theorem 2.53 (Weierstrass M-Test). Let (Mn) be a sequence in [0,∞) such that
∑
Mn

converges. If (fn) is a sequence of functions on S such that ‖fn‖S ≤Mn for all n, then
∑
fn is

uniformly and absolutely convergent on S.

Theorem 2.54. Let (fn) be a sequence of continuous functions S → C. If (fn) converges
uniformly to f : S → C, then f is continuous on S.

Theorem 2.55. Suppose (fn) converges uniformly on S ⊆ C and z0 is a limit point of S. If
limz→z0 fn(z) exists in C for each n, then

lim
z→z0

lim
n→∞

fn(z) = lim
n→∞

lim
z→z0

fn(z).

Exercise 2.56. Consider the series
∞∑
k=1

zk−1

(1− zk)(1− zk+1)
. (2.14)

(a) Show the series converges uniformly to 1/(1− z)2 on Bc(0) for any c ∈ (0, 1).
(b) Show the series converges uniformly to 1/[z(1− z)2)] on C \Bd(0) for any d ∈ (1,∞).
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Solution.
(a) Let c ∈ (0, 1). It must be shown that

∀ε > 0 ∃N ∈ N ∀n > N ∀z ∈ Bc(0)

(∣∣∣∣∣
n∑
k=1

zk−1

(1− zk)(1− zk+1)
− 1

(1− z)2

∣∣∣∣∣ < ε

)
.

Let ε > 0 be arbitrary. Proposition 1.7 gives
n∑
k=1

zk−1

(1− zk)(1− zk+1)
=

n∑
k=1

zk−1

(1− z)2(1 + z + · · ·+ zk−1)(1 + z + · · ·+ zk)
,

and so∣∣∣∣∣
n∑
k=1

zk−1

(1− zk)(1− zk+1)
− 1

(1− z)2

∣∣∣∣∣
=

1

|1− z|2

∣∣∣∣∣
n∑
k=1

zk−1

(1 + · · ·+ zk−1)(1 + · · ·+ zk)
− 1

∣∣∣∣∣ . (2.15)

Partial fraction decomposition of the first three terms of the summation on the right-hand side
yields 1/(1 + z),

z

(1 + z)(1 + z + z2)
= − 1

1 + z
+

1 + z

1 + z + z2
,

z2

(1 + z + z2)(1 + z + z2 + z3)
= − 1 + z

1 + z + z2
+

1 + z + z2

1 + z + z2 + z3
.

From this we conjecture that

zk−1

(1 + z + · · ·+ zk−1)(1 + z + · · ·+ zk)
= −1 + z + · · ·+ zk−2

1 + z + · · ·+ zk−1
+

1 + z + · · ·+ zk−1

1 + z + · · ·+ zk
. (2.16)

Letting w = 1 + z + · · ·+ zk−2, we manipulate the right-hand side of (2.16):

w + zk−1

w + zk−1 + zk
− w

w + zk−1
=

(w + zk−1)2 − w(w + zk−1 + zk)

(w + zk−1)(w + zk−1 + zk)

=
wzk−1 − wzk + z2k−2

(w + zk−1)(w + zk−1 + zk)

=
(zk−1 + zk + · · ·+ z2k−3)− (zk + zk+1 + · · ·+ z2k−2) + z2k−2

(w + zk−1)(w + zk−1 + zk)

=
zk−1

(w + zk−1)(w + zk−1 + zk)
.

The last expression matches the left-hand side of (2.16), thereby confirming the conjecture and
making it clear that the summation on the right-hand side of (2.15) telescopes to yield∣∣∣∣∣

n∑
k=1

zk−1

(1− zk)(1− zk+1)
− 1

(1− z)2

∣∣∣∣∣ =
1

|1− z|2

∣∣∣∣1 + z + · · ·+ zn−1

1 + z + · · ·+ zn
− 1

∣∣∣∣
=

1

|1− z|2

∣∣∣∣ zn

1 + z + · · ·+ zn

∣∣∣∣ . (2.17)
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But, ∣∣∣∣ zn

1 + z + · · ·+ zn

∣∣∣∣ =
|z|n

|1 + z + · · ·+ zn|
=
|1− z||z|n

|1− zn+1|
,

and so from (2.17) we obtain∣∣∣∣∣
n∑
k=1

zk−1

(1− zk)(1− zk+1)
− 1

(1− z)2

∣∣∣∣∣ =
1

|1− z|2
· |1− z||z|

n

|1− zn+1|
=

|z|n

|1− z||1− zn+1|
(2.18)

Let

α = sup

{
1

|1− z|
: z ∈ Bc(0)

}
,

which is a positive real number by the Extreme Value Theorem since Bc(0) is compact and
f : Bc(0)→ R given by f(z) = 1/|1− z| is continuous. Because 0 ≤ c < 1, there exists some
N ∈ N such that

cn <
1

α/ε+ c

for all n > N . Fix n > N and z ∈ Bc(0). If z = 0 both the series (2.14) and 1/(1− z)2 equal 1
and there is nothing left to prove, so we may assume that z 6= 0. Since 0 < |z| ≤ c we obtain

|z|n < 1

α/ε+ |z|
⇔ 1

|z|n
>
α

ε
+ |z| ⇔ 1

|z−n| − |z|
<
ε

α
⇔ 1

|z−n − z|
<
ε

α
,

and so
|z|n

|1− zn+1|
=

∣∣∣∣ zn

1− zn+1

∣∣∣∣ =

∣∣∣∣ 1

z−n − z

∣∣∣∣ =
1

|z−n − z|
<
ε

α
. (2.19)

Now, observing that
1

|1− z|
≤ α,

from (2.19) comes
1

|1− z|
· |z|n

|1− zn+1|
< ε,

and hence by (2.18) we conclude that∣∣∣∣∣
n∑
k=1

zk−1

(1− zk)(1− zk+1)
− 1

(1− z)2

∣∣∣∣∣ < ε

and the proof that (2.15) converges uniformly to 1/(1− z)2 on Bc(0) is done.

(b) Next, let d ∈ (1,∞). It must be shown that

∀ε > 0 ∃N ∈ N ∀n > N ∀z ∈ C \Bd(0)

(∣∣∣∣∣
n∑
k=1

zk−1

(1− zk)(1− zk+1)
− 1

z(1− z)2

∣∣∣∣∣ < ε

)
.

Let ε > 0 be arbitrary. Choose N ∈ N such that 1/(dN+1 − 1) < εd(d − 1). Let n > N and
z ∈ C \Bd(0) be arbitrary. Since |z| ≥ d > 1,

1

|zn+1 − 1|
≤ 1

|z|n+1 − 1
≤ 1

dn+1 − 1
< εd(d− 1) ≤ ε|z|(|z| − 1) ≤ ε|z||z − 1|,



52

and hence
1

|z||z − 1||zn+1 − 1|
< ε (2.20)

Now, employing the same manipulations that led to (2.15), from∣∣∣∣∣
n∑
k=1

zk−1

(1− zk)(1− zk+1)
− 1

z(1− z)2

∣∣∣∣∣
we obtain

1

|1− z|2

∣∣∣∣∣
n∑
k=1

zk−1

(1 + · · ·+ zk−1)(1 + · · ·+ zk)
− 1

z

∣∣∣∣∣ .
Again the summation telescopes, yielding

1

|1− z|2

∣∣∣∣1 + z + · · ·+ zn−1

1 + z + · · ·+ zn
− 1

z

∣∣∣∣ .
However,

1

|1− z|2

∣∣∣∣1 + z + · · ·+ zn−1

1 + z + · · ·+ zn
− 1

z

∣∣∣∣ =

∣∣∣∣ 1

z(z − 1)2(1 + z + · · ·+ zn)

∣∣∣∣
=

∣∣∣∣ 1

z(z − 1)(zn+1 − 1)

∣∣∣∣ =
1

|z||z − 1||zn+1 − 1|
,

and so recalling (2.20) we conclude that∣∣∣∣∣
n∑
k=1

zk−1

(1− zk)(1− zk+1)
− 1

z(1− z)2

∣∣∣∣∣ < ε

and therefore (2.15) converges uniformly to 1/[z(1− z)2)] on C \Bd(0). �
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3
Differentiation and Integration

3.1 – Complex Differentiation

First we define the derivative of a complex-valued function of a single real variable,
ϕ : I ⊆ R→ C, where I is an interval, to be given by

ϕ′(t0) = lim
t→t0

ϕ(t)− ϕ(t0)

t− t0
for each t0 ∈ I, provided the limit exists in C. If u, v : I → R are such that ϕ(t) = u(t) + iv(t)
for all t ∈ I, then it is easy to show that ϕ is differentiable at t if and only if both u and v are
differentiable at t, in which case

ϕ′(t) = u′(t) + iv′(t). (3.1)

Thus if u and v are continuously differentiable on I, then so too is ϕ.

Example 3.1. For t ∈ R+ and z = x+ iy ∈ C we define

tz = ez ln t,

which can be seen to agree with the definition of ts for s ∈ R in calculus. (A more general
definition of wz for w any nonzero complex number is given in §6.1.) Letting ϕ : R+ → C be
given by ϕ(t) = tz, we find ϕ′(t). With Definition 1.18, Proposition 1.19, and differentiation
rules from calculus, we have

ϕ′(t) =
d

dt

(
ez ln t

)
=

d

dt

[
ex ln t cos(y ln t) + iex ln t sin(y ln t)

]
=

d

dt

[
tx cos(y ln t)

]
+ i

d

dt

[
tx sin(y ln t)

]
= xtx−1

[
cos(y ln t) + i sin(y ln t)

]
+ iytx−1

[
cos(y ln t) + i sin(y ln t)

]
= xtx−1eiy ln t + iytx−1eiy ln t = ze(x−1) ln teiy ln t = ze(x−1) ln t+iy ln t

= ze(z−1) ln t = ztz−1.
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That is,
d

dt
(tz) = ztz−1,

which is consonant with the power rule of differentiation from calculus. �

Now we consider complex-valued functions of a single complex variable, our chief focus. Let
Ω ⊆ C be open and f : Ω → C. Then f is complex-differentiable (or holomorphic) at
z0 ∈ Ω if

f ′(z0) = lim
z→z0

f(z)− f(z0)

z − z0

exists in C. If f is complex-differentiable at every point in Ω, then f is said to be analytic
on Ω. Given an arbitrary set S ⊆ C, we say f is analytic on S if f is analytic on some open
Ω ⊇ S. Thus f is analytic at a point z0 if and only if it is analytic on some open neighborhood
of z0. Finally, a function f : C→ C that is analytic on C is also known as an entire function.

Theorem 3.2. Let Ω ⊆ C be open. If f : Ω→ C is complex-differentiable at z0 ∈ Ω, then f is
continuous at z0.

Theorem 3.3 (Rules of Differentiation). Let Ω ⊆ C be open, and let f, g : Ω → C be
complex-differentiable at z0 ∈ Ω.

1. Constant Multiple Rule: For any α ∈ C, αf is complex-differentiable at z0 with (αf)′(z0) =
αf ′(z0).

2. Sum Rule: f + g is complex-differentiable at z0, with

(f + g)′(z0) = f ′(z0) + g′(z0).

3. Product Rule: fg is complex-differentiable at z0, with

(fg)′(z0) = f ′(z0)g(z0) + f(z0)g′(z0).

4. Quotient Rule: If g(z0) 6= 0, then f/g is complex-differentiable at z0 with

(f/g)′(z0) =
f ′(z0)g(z0)− f(z0)g′(z0)

g2(z0)
.

Remark. In the statement of the Quotient Rule note that if g(z0) 6= 0, then since g is continuous
at z0 by Theorem 3.2 it follows that g(z) 6= 0 for all z ∈ Br(z0) for some sufficiently small r > 0.
Thus the function f/g is defined on an open set containing z0, namely Br(z0), as required by
the definition of complex-differentiability.

Proposition 3.4. Let Ω ⊆ C be open. A function f : Ω → C is complex-differentiable at z0

with f ′(z0) = λ if and only if there exists some ε : Ω → C that is continuous at z0 such that
ε(z0) = 0 and

f(z) = f(z0) + (z − z0)[λ+ ε(z)]

for all z ∈ Ω.
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Proof. Suppose f : Ω→ C is complex-differentiable at z0 with f ′(z0) = λ. Define ε : Ω→ C by

ε(z) =


f(z)− f(z0)

z − z0

− λ, if z 6= z0

0, if z = z0

Fix z ∈ Ω. If z = z0, then

f(z) = f(z0) = f(z0) + 0(λ+ 0) = f(z0) + (z0 − z0)[λ+ ε(z0)]

= f(z0) + (z − z0)[λ+ ε(z)];

and if z 6= z0, then

f(z) = f(z0) + [λ(z − z0) + (f(z)− f(z0))− λ(z − z0)]

= f(z0) + (z − z0)

(
λ+

f(z)− f(z0)

z − z0

− λ
)

= f(z0) + (z − z0)[λ+ ε(z)].

The converse is equally straightforward to verify, but we will have no need for it in subsequent
developments. �

Theorem 3.5 (Chain Rule). If f is analytic on Ω and g is analytic on f(Ω), then g ◦ f is
analytic on Ω and

(g ◦ f)′(z) = g′(f(z))f ′(z)

for all z ∈ Ω.

Proof. Suppose f is analytic on Ω. Suppose g is analytic on f(Ω), so that g is analytic on
some open set S containing f(Ω). Fix z0 ∈ Ω. Then f is differentiable (and hence continuous)
at z0, and g is differentiable at f(z0) ∈ S.

Define the function ρ : S → C by

ρ(y) =


g(y)− g(f(z0))

y − f(z0)
− g′(f(z0)), if y 6= f(z0)

0, if y = f(z0)

By the differentiability of g at f(z0),

lim
y→f(z0)

ρ(y) = lim
y→f(z0)

[
g(y)− g(f(z0))

y − f(z0)
− g′(f(z0))

]
= lim

y→f(z0)

g(y)− g(f(z0))

y − f(z0)
− lim

y→f(z0)
g′(f(z0))

= g′(f(z0))− g′(f(z0)) = 0 = ρ(f(z0)),

which shows that ρ is continuous at f(z0).
Since f(z) → f(z0) as z → z0, f(z0) is in the interior of Dom(ρ), and ρ is continuous at

f(z0), by Proposition 2.22 we obtain

lim
z→z0

ρ(f(z)) = ρ

(
lim
z→z0

f(z)

)
= ρ(f(z0)) = 0.
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Now, for any z ∈ Ω such that f(z) 6= f(z0), we find that

ρ(f(z)) =
g(f(z))− g(f(z0))

f(z)− f(z0)
− g′(f(z0))

and hence
g(f(z))− g(f(z0)) = [g′(f(z0)) + ρ(f(z))][f(z)− f(z0)]. (3.2)

Since (3.2) also holds for z ∈ Ω such that f(z) = f(z0), we conclude that it holds for all z ∈ Ω
and so

(g ◦ f)′(z0) = lim
z→z0

(g ◦ f)(z)− (g ◦ f)(z0)

z − z0

= lim
z→z0

g(f(z))− g(f(z0))

z − z0

= lim
z→z0

[g′(f(z0)) + ρ(f(z))][f(z)− f(z0)]

z − z0

= lim
z→z0

[g′(f(z0)) + ρ(f(z))] · lim
z→z0

f(z)− f(z0)

z − z0

= [g′(f(z0)) + 0] · f ′(z0) = g′(f(z0))f ′(z0),

which completes the proof. �

Theorem 3.6. Let Ω and Ω′ be open sets, with f : Ω→ Ω′ continuous and g : Ω′ → Ω analytic.
Suppose g′(z) 6= 0 for all z ∈ Ω′. If g(f(z)) = z for all z ∈ Ω, then f is analytic on Ω and
f ′ = 1/(g′ ◦ f).

Proof. Suppose that g(f(z)) = z for all z ∈ Ω. Then

f(z1) = f(z2) ⇒ g(f(z1)) = g(f(z2)) ⇒ z1 = z2,

and thus f is injective. Fix z0 ∈ Ω, and let ε > 0. Since g is complex-differentiable at f(z0) ∈ Ω′,
we have

g′(f(z0)) = lim
z→f(z0)

g(z)− g(f(z0))

z − f(z0)
= lim

z→f(z0)

g(z)− z0

z − f(z0)
∈ C,

noting that g(f(z0)) = z0. Thus, since g′(f(z0)) 6= 0, by Theorem 2.15(5) we obtain

lim
z→f(z0)

z − f(z0)

g(z)− z0

= lim
z→z0

1

g(z)− z0

z − f(z0)

=
1

g′(f(z0))
,

and so there exists some δ′ > 0 such that

0 < |z − f(z0)| < δ′ ⇒
∣∣∣∣z − f(z0)

g(z)− z0

− 1

g′(f(z0))

∣∣∣∣ < ε.

Now, since f is continuous and injective on Ω, there exists some δ > 0 such that

0 < |z − z0| < δ ⇒ 0 < |f(z)− f(z0)| < δ′.

Hence 0 < |z − z0| < δ implies that∣∣∣∣f(z)− f(z0)

z − z0

− 1

g′(f(z0))

∣∣∣∣ =

∣∣∣∣f(z)− f(z0)

g(f(z))− z0

− 1

g′(f(z0))

∣∣∣∣ < ε,
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and so

lim
z→z0

f(z)− f(z0)

z − z0

=
1

g′(f(z0))
.

That is, f ′(z0) exists, with

f ′(z0) =
1

(g′ ◦ f)(z0)
.

Since z0 ∈ Ω is arbitrary, we conclude that f is analytic on Ω and f ′ = 1/(g′ ◦ f). �



58

3.2 – The Cauchy-Riemann Equations

Recall from calculus that if U ⊆ R2 is open, then the partial derivatives fx and fy of
f : U → R at (x, y) ∈ U are given by

fx(x, y) = lim
h→0

f(x+ h, y)− f(x, y)

h
(3.3)

and

fy(x, y) = lim
h→0

f(x, y + h)− f(x, y)

h
, (3.4)

provided the limits exist. Moreover, f is said to be differentiable at (x, y) if

lim
(h,k)→(0,0)

f(x+ h, y + k)− f(x, y)− hfx(x, y)− kfy(x, y)√
h2 + k2

= 0.

Similar notions exist for a function u : Ω ⊆ C→ R, where Ω is open. It is natural to view
u as being, like f above, a real-valued function of two independent variables x = Re z and
y = Im z, so that it makes sense to speak of partial derivatives of u as well as the differentiability
of u. At x+ iy ∈ Ω we define the partial derivatives of u by

ux(x+ iy) = lim
h→0

u((x+ h) + iy)− u(x+ iy)

h
(3.5)

and

uy(x+ iy) = lim
h→0

u(x+ i(y + h))− u(x+ iy)

h
, (3.6)

and we say u is real-differentiable at x+ iy if

lim
(h,k)→(0,0)

u((x+ h) + i(y + k))− u(x+ iy)− hux(x+ iy)− kuy(x+ iy)√
h2 + k2

= 0.

These formulas are quite cumbersome, and so henceforth it will be common practice to represent
x+ iy by (x, y).

Remark. Analogous to the elementary analysis setting, a function u : Ω ⊆ C → R is real-
differentiable on Ω if ux and uy exist and are continuous on Ω. Also see Exercise 3.8.

Theorem 3.7. Let Ω ⊆ C be an open set, and let f : Ω→ C be given by

f(x+ iy) = u(x, y) + iv(x, y)

for functions u, v : Ω→ R. Then f is complex-differentiable at x+ iy ∈ Ω if and only if u, v are
real-differentiable at (x, y) = x+ iy and

ux(x, y) = vy(x, y), uy(x, y) = −vx(x, y) (3.7)

both hold, in which case

f ′(x+ iy) = ux(x, y)− iuy(x, y).



59

Proof. Suppose that f is complex-differentiable at z = x+ iy ∈ Ω. Thus

f ′(x+ iy) = f ′(z) = lim
h→0

f(z + h)− f(z)

h
= a+ ib

for some a, b ∈ R. Setting h = r + is, we obtain

a+ ib = lim
r+is→0

f((x+ r) + i(y + s))− f(x+ iy)

r + is
,

and thus

a+ ib = lim
r+is→0

[
u(x+ r, y + s) + iv(x+ r, y + s)

]
−
[
u(x, y) + iv(x, y)

]
r + is

= lim
r+is→0

[
u(x+ r, y + s)− u(x, y)

r + is
+ i

v(x+ r, y + s)− v(x, y)

r + is

]
.

Hence

lim
r+is→0

[
u(x+ r, y + s)− u(x, y)

r + is
+ i

v(x+ r, y + s)− v(x, y)

r + is
− (a+ ib)

]
= 0,

and with a little algebra it follows that

lim
r+is→0

[(
u(x+ r, y + s)− u(x, y)− ar + bs

)
+
(
v(x+ r, y + s)− v(x, y)− br − as

)
i

r + is

]
= 0

From this we conclude that for any ε > 0 there exists some δ > 0 such that 0 < |r + is| < δ
implies∣∣∣∣∣

(
u(x+ r, y + s)− u(x, y)− ar + bs

)
+
(
v(x+ r, y + s)− v(x, y)− br − as

)
i

r + is

∣∣∣∣∣< ε.

That is, whenever 0 <
√
r2 + s2 < δ we have∣∣u(x+ r, y + s)− u(x, y)− ar + bs

∣∣
√
r2 + s2

,

∣∣v(x+ r, y + s)− v(x, y)− br − as
∣∣

√
r2 + s2

< ε

This shows that

lim
(r,s)→(0,0)

u(x+ r, y + s)− u(x, y)− ar + bs√
r2 + s2

= 0 (3.8)

and

lim
(r,s)→(0,0)

v(x+ r, y + s)− v(x, y)− br − as√
r2 + s2

= 0, (3.9)

and so u and v are real-differentiable at (x, y).
Now, from (3.8) it follows that

ux(x, y) = a and uy(x, y) = −b,
and from (3.9) it follows that

vx(x, y) = b and vy(x, y) = a,

and so it is clear that

ux(x, y) = vy(x, y) and uy(x, y) = −vx(x, y)
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as claimed, and also

f ′(x+ iy) = a+ ib = ux(x, y)− iuy(x, y).

For the converse, suppose that u and v are real-differentiable at (x, y) ∈ Ω such that (3.7)
hold. We have

lim
(r,s)→(0,0)

u(x+ r, y + s)− u(x, y)− ux(x, y)r − uy(x, y)s√
r2 + s2

= 0 (3.10)

and

lim
(r,s)→(0,0)

v(x+ r, y + s)− v(x, y)− vx(x, y)r − vy(x, y)s√
r2 + s2

= 0. (3.11)

Let ε > 0. By (3.10) there exists some δ1 > 0 such that 0 <
√
r2 + s2 < δ1 implies∣∣∣∣u(x+ r, y + s)− u(x, y)− ux(x, y)r − uy(x, y)s√

r2 + s2

∣∣∣∣ < ε

2
,

and by (3.11) there exists some δ2 > 0 such that 0 <
√
r2 + s2 < δ2 implies∣∣∣∣v(x+ r, y + s)− v(x, y)− vx(x, y)r − vy(x, y)s√

r2 + s2

∣∣∣∣ < ε

2
.

Choose δ = min{δ1, δ2}, and suppose h = r + is ∈ C is such that 0 < |h| < δ. Then

0 < |h| = |r + is| =
√
r2 + s2 < δ ≤ δ1, δ2,

and so∣∣u(x+ r, y + s)− u(x, y)− ux(x, y)r − uy(x, y)s
∣∣

|r + is|

+

∣∣v(x+ r, y + s)− v(x, y)− vx(x, y)r − vy(x, y)s
∣∣

|r + is|
< ε.

Suppressing (x, y), we obtain∣∣∣∣u(x+ r, y + s)− u− uxr − uys
r + is

+ i
v(x+ r, y + s)− v − vxr − vys

r + is

∣∣∣∣ < ε

by the Triangle Inequality. Replacing −vx(x, y) and vy(x, y) with uy(x, y) and ux(x, y), respec-
tively, then yields∣∣∣∣u(x+ r, y + s)− u− uxr − uys

r + is
+ i

v(x+ r, y + s)− v + uyr − uxs
r + is

∣∣∣∣ < ε,

and thus∣∣∣∣(u(x+ r, y + s)− u
r + is

+ i
v(x+ r, y + s)− v

r + is

)
−
(
uxr + uys

r + is
+ i

uxs− uyr
r + is

)∣∣∣∣ < ε. (3.12)

Now, since
uxr + uys

r + is
+ i

uxs− uyr
r + is

=
(ux − iuy)(r + is)

r + is
= ux − iuy,
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from (3.12) we arrive at∣∣∣∣∣
[
u(x+ r, y + s)− u(x, y)

r + is
+ i

v(x+ r, y + s)− v(x, y)

r + is

]
−
[
ux(x, y)− iuy(x, y)

]∣∣∣∣∣ < ε,

or equivalently ∣∣∣∣∣f((x+ iy) + h)− f(x+ iy)

h
−
[
ux(x, y)− iuy(x, y)

]∣∣∣∣∣ < ε.

That is,

f ′(x+ iy) = lim
h→0

f((x+ iy) + h)− f(x+ iy)

h
= ux(x, y)− iuy(x, y),

which shows that f is complex-differentiable at x+ iy ∈ Ω. �

In general we see that if f(x+ iy) = u(x, y) + iv(x, y) is complex-differentiable on open set
Ω ⊆ C, then

ux = vy and uy = −vx
on Ω. These are known as the Cauchy-Riemann equations.

Exercise 3.8 (AN1.4). Let U ⊆ R2 be open, and let g : U → R be such that gx and gy exist
at (x0, y0) ∈ U . Suppose that gx exists in an open neighborhood V of (x0, y0) and is continuous
at (x0, y0). Show that g is real-differentiable at (x0, y0).

Solution. We can assume V ⊆ U . Since V is open and (x0, y0) ∈ V , there exists some ε > 0
sufficiently small such that (x0 + h, y0 + k) ∈ V for all h, k ∈ [−ε, ε].

For each −ε ≤ h, k ≤ ε let Ihk be the line segment with endpoints (x0, y0 + k) and
(x0 + h, y0 + k), so Ihk ⊆ V ⊆ U . Also let Jhk be the closed interval in R with endpoints
x0 and x0 + h. The existence of gx on Ihk implies that g( · , y0 + k) : Jhk → R is continuous on
Jhk and differentiable (with respect to x) on Int(Jhk). Hence by the Mean Value Theorem there
exists some chk between x0 and x0 + h such that

gx(chk, y0 + k) =
g(x0 + h, y0 + k)− g(x0, y0 + k)

h
.

Letting
S = {(x0 + h, y0 + k) : −ε ≤ h, k ≤ ε},

by the Axiom of Choice we can choose some chk value for each h, k ∈ [−ε, ε] so as construct a
function chk : S → R. Clearly chk → x0 as h→ 0.

Now,

L = lim
(h,k)→(0,0)

g(x0 + h, y0 + k)− g(x0, y0)− gx(x0, y0)h− gy(x0, y0)k√
h2 + k2

= lim
(h,k)→(0,0)

gx(chk, y0 + k)h+ g(x0, y0 + k)− g(x0, y0)− gx(x0, y0)h− gy(x0, y0)k√
h2 + k2

= lim
(h,k)→(0,0)

(
[gx(chk, y0 + k)− gx(x0, y0)]h√

h2 + k2
+
g(x0, y0 + k)− g(x0, y0)− gy(x0, y0)k√

h2 + k2

)
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The existence of gy at (x0, y0) implies that

lim
k→0

g(x0, y0 + k)− g(x0, y0)− gy(x0, y0)k

k
= 0,

which immediately implies that

lim
(h,k)→(0,0)

g(x0, y0 + k)− g(x0, y0)− gy(x0, y0)k√
h2 + k2

= 0. (3.13)

Since chk → x0 and y0 + k → y0 as (h, k)→ (0, 0), the continuity of gx at (x0, y0) implies that
gx(chk, y0 + k)→ gx(x0, y0) as (h, k)→ (0, 0), and thus

lim
(h,k)→(0,0)

[gx(chk, y0 + k)− gx(x0, y0)]h√
h2 + k2

= 0. (3.14)

The limits (3.13) and (3.14) taken together lead us to conclude that L = 0 and therefore g is
real-differentiable at (x0, y0). �

Exercise 3.9 (AN1.5). Let f(z) = z̄ for all z ∈ C. Show that f is everywhere continuous but
nowhere differentiable.

Solution. We have
f(x+ iy) = u(x, y) + iv(x, y) = x− iy

for all x+ iy ∈ C, so u(x, y) = x and v(x, y) = −y on C. Let x, y ∈ R be arbitrary. Certainly u
and v are continuous at (x, y), so that f is continuous at x+ iy by Theorem 2.23. On the other
hand

ux(x, y) = 1 6= −1 = vy(x, y),

and therefore f is not complex-differentiable at x+ iy by Theorem 3.6. �

Exercise 3.10 (AN1.7). Let u : C→ R be given by u(x, y) =
√
|xy|. Show that ux(0, 0) and

uy(0, 0) exist, but u is not real-differentiable at (0, 0).

Solution. We have

ux(0, 0) = lim
h→0

u(h, 0)− u(0, 0)

h
= lim

h→0

0− 0

h
= 0

and

uy(0, 0) = lim
h→0

u(0, h)− u(0, 0)

h
= lim

h→0

0− 0

h
= 0,

so ux(0, 0) and uy(0, 0) exist. Now,

lim
(h,k)→(0,0)

u(h, k)− u(0, 0)− ux(0, 0)h− uy(0, 0)k√
h2 + k2

= lim
(h,k)→(0,0)

√
|hk|

h2 + k2
. (3.15)

For any (h, k) 6= (0, 0) such that h = k we have√
|hk|

h2 + k2
=

√
h2

h2 + h2
=
|h|√
2|h|

=
1√
2
.

This makes clear that the limit (3.15) cannot equal zero, and therefore u is not real-differentiable
at (0, 0). �
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Exercise 3.11 (AN1.16). Show that f(z) = eRe(z) is nowhere complex-differentiable.

Solution. For any x+ iy ∈ C we have f(x+ iy) = ex, which is to say

f(x+ iy) = u(x, y) + iv(x, y)

with u(x, y) = ex and v(x, y) = 0. Now, since

ux(x, y) = ex 6= 0 = vy(x, y),

for any (x, y) ∈ R2, it follows by Theorem 3.6 that f is not complex-differentiable at any
x+ iy ∈ C. �

Proposition 3.12. The exponential function exp : C→ C is analytic everywhere, with

exp′(z) = exp(z)

for all z ∈ C.

Proof. By definition we have

exp(x+ iy) = u(x, y) + iv(x, y)

with
u(x, y) = ex cos y and v(x, y) = ex sin y.

Let z = x+iy be arbitrary. It is clear that ux, uy, vx, and vy exist and are continuous everywhere,
and thus by Exercise 3.8 both u and v are real-differentiable at (x, y). Now, since

ux(x, y) = ex cos y = vy(x, y) and uy(x, y) = −ex sin y = −vx(x, y),

it follows by Theorem 3.6 that exp is complex-differentiable at x+ iy, and

exp′(x+ iy) = ux(x, y)− iuy(x, y) = ex cos y − i(−ex sin y)

= ex cos y + iex sin y = exp(x+ iy).

Therefore exp is analytic on C, and exp′(z) = exp(z) for all z ∈ C. �

Example 3.13. We determine here the derivative of the function z 7→ eαz, where α ∈ C is
a constant. Let f(z) = αz, which is clearly an entire function with f ′(z) = α; and also let
g(z) = ez, which is entire with g′(z) = ez by Proposition 3.12. By the Chain Rule g ◦ f is entire,
with

(g ◦ f)′(z) = g′(f(z))f ′(z) = αef(z) = αeαz

for any z ∈ C. Since (g ◦ f)(z) = eαz, we see that (eαz)′ = αeαz. �

Let Ω ⊆ C be an open set. A function u : Ω → R is harmonic on Ω if the first- and
second-order partial derivatives of u are continuous on Ω, and

uxx(x+ iy) + uyy(x+ iy) = 0

for all x+ iy ∈ Ω. The equation uxx + uyy = 0 is known as Laplace’s Equation.
We need now the following classical result, proven in §10.9 of the Elementary Analysis Notes.

http://faculty.bucks.edu/erickson/elementaryanalysis/analysis.pdf


64

Proposition 3.14 (Leibniz’s Rule). Let u : [a, b]× [c, d] ⊆ R2 → R be continuous, and define
ϕ : [a, b]→ R by

ϕ(x) =

ˆ d

c

u(x, y)dy.

Then ϕ is continuous. If in addition ux exists and is continuous on [a, b] × [c, d], then ϕ is
continuously differentiable with

ϕ′(x) =

ˆ d

c

ux(x, y)dy.

The rectangle [a, b]× [c, d] may be taken to be a subset of C rather than R2, so that

[a, b]× [c, d] =
{
x+ iy : x ∈ [a, b] and y ∈ [c, d]

}
.

Only slight changes to the proof are needed, such as substituting (3.5) for the usual definition
of ux given in calculus. Of course there is another “version” of the rule that interchanges the
roles of the two variables x and y. If ψ : [c, d]→ R is given by

ψ(y) =

ˆ b

a

u(x, y)dx

and uy is continuous on [a, b]× [c, d], then ψ is continuously differentiable with

ψ′(y) =

ˆ b

a

uy(x, y)dx.

Theorem 3.15. Let Ω = Br(z0) for some r ∈ (0,∞]. If u : Ω → R is a harmonic function,
then there is a harmonic function v : Ω→ R such that f = u+ iv is analytic on Ω.

Proof. Suppose u : Ω→ R is a harmonic function. Setting z0 = x0 + iy0, define v : Ω→ R by

v(x, y) =

ˆ y

y0

ux(x, t)dt−
ˆ x

x0

uy(s, y0)ds (3.16)

for all (x, y) ∈ Ω. Note that both integrals on the right-hand side of (3.16) are defined for all
(x, y) ∈ Ω on account of Ω being a disc. Fix (x, y) ∈ Ω. Since ux is continuous on Ω, by the
Fundamental Theorem of Calculus (FTC) we have vy(x, y) = ux(x, y), and hence ux = vy.

To show that uy = −vx, first assume that x 6= x0 and y 6= y0, so

R = [x0 ∧ x, x0 ∨ x]× [y0 ∧ y, y0 ∨ y]

is a closed rectangle in Ω. Now, uxx is continuous on Ω, and so Leibniz’s Rule, the FTC, and
the fact that uxx = −uyy yields

vx(x, y) =
∂

∂x

ˆ y

y0

ux(x, t)dt−
∂

∂x

ˆ x

x0

uy(s, y0)ds

=

ˆ y

y0

uxx(x, t)dt− uy(x, y0) = −
ˆ y

y0

uyy(x, t)dt− uy(x, y0)

= −
[
uy(x, y)− uy(x, y0)

]
− uy(x, y0) = −uy(x, y)

as desired.
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If we now let y = y0, we have

v(x, y0) = −
ˆ x

x0

uy(s, y0)ds

for all x such that (x, y0) ∈ Ω (including x = x0), whence

vx(x, y0) = −uy(x, y0)

by the FTC. In particular vx(x0, y0) = −uy(x0, y0).
Finally, fix (x0, y) for y 6= y0. For definiteness we can assume y > y0. Let δ > 0 be such that

[x0 − δ, x0 + δ]× [y0, y] ⊆ Ω.

Applying Leibniz’s Rule,

d

dx

ˆ y

y0

ux(x, t)dt =

ˆ y

y0

uxx(x, t)dt = −
ˆ y

y0

uyy(x, t)dt = uy(x, y0)− uy(x, y)

for any x ∈ [x0 − δ, x0 + δ], and thus vx(x, y) = −uy(x, y) for x ∈ [x0 − δ, x0 + δ]. In particular
vx(x0, y) = −uy(x0, y), and since the argument is much the same if y < y0, we conclude that
uy = −vx on Ω.

Next, since vx = −uy, vy = ux, and the first- and second-order partial derivatives of u exist
and are continuous, we obtain

vxx = −uyx = −uxy = −vyy

using Clairaut’s Theorem in §10.8 of the Elementary Analysis Notes, and so vxx + vyy = 0. This
shows that v is harmonic on Ω, and the analyticity of f = u+ iv on Ω follows immediately from
Theorem 3.7 together with the remark preceding it. �

The function v in the theorem is called the harmonic conjugate of u on Ω. Thus the
theorem states that every harmonic function on an open disc has a harmonic conjugate on the
disc.

http://faculty.bucks.edu/erickson/elementaryanalysis/analysis.pdf
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3.3 – Complex Riemann Integration

The Riemann integral of ϕ : [a, b]→ C is defined to beˆ b

a

ϕ =

ˆ b

a

Reϕ+ i

ˆ b

a

Imϕ, (3.17)

provided the integrals on the right-hand side exist in R, in which case we say ϕ is Riemann
integrable on [a, b]. The set of all Riemann integrable complex-valued functions on [a, b], which
includes real-valued functions, is denoted by R[a, b]. It is immediate that ϕ ∈ R[a, b] if and
only if Reϕ, Imϕ ∈ R[a, b]. Nearly all properties of the integral (3.17) derive directly from
established properties of the Riemann integral of real-valued functions.

Theorem 3.16. Let ϕ, ψ : [a, b]→ C be such that ϕ, ψ ∈ R[a, b].

1. We have ˆ a

b

ϕ = −
ˆ b

a

ϕ and

ˆ a

a

ϕ = 0. (3.18)

2. αϕ+ βψ ∈ R[a, b] for all α, β ∈ C, withˆ b

a

(αϕ+ βψ) = α

ˆ b

a

ϕ+ β

ˆ b

a

ψ. (3.19)

3. ϕψ ∈ R[a, b] and ϕn ∈ R[a, b] for n ∈ N.
4. If c ∈ (a, b), then ˆ b

a

ϕ =

ˆ c

a

ϕ+

ˆ b

c

ϕ.

5. |ϕ| ∈ R[a, b] with ∣∣∣∣ˆ b

a

ϕ

∣∣∣∣ ≤ ˆ b

a

|ϕ|. (3.20)

Proof.
Proof of Part (1). By definition

´ a
b
f = −

´ b
a
f and

´ a
a
f = 0 if f is a real-valued integrable

function on [a, b], from which the properties in (3.18) easily follow.

Proof of Part (2). Fix α = r + is ∈ C. Since r, s ∈ R and Reϕ, Imϕ ∈ R[a, b] are real-valued
functions, from calculus it follows that rReϕ− sReϕ and r Imϕ+ sReϕ are in R[a, b], and
thus

αϕ = (rReϕ− sReϕ) + i(r Imϕ+ s Imϕ) ∈ R[a, b].

Now, ˆ b

a

αϕ =

ˆ b

a

[
(rReϕ− s Imϕ) + i(r Imϕ+ sReϕ)

]
=

ˆ b

a

(rReϕ− s Imϕ) + i

ˆ b

a

(r Imϕ+ sReϕ)

= r

ˆ b

a

Reϕ− s
ˆ b

a

Imϕ+ ir

ˆ b

a

Imϕ+ is

ˆ b

a

Reϕ
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= r

(ˆ b

a

Reϕ+ i

ˆ b

a

Imϕ

)
+ is

(ˆ b

a

Reϕ+ i

ˆ b

a

Imϕ

)
= r

ˆ b

a

ϕ+ is

ˆ b

a

ϕ = (r + is)

ˆ b

a

ϕ = α

ˆ b

a

ϕ.

Next, since Reψ, Imψ ∈ R[a, b], from calculus we have Reϕ+ Reψ, Imϕ+ Imψ ∈ R[a, b],
and so

ϕ+ ψ = (Reϕ+ Reψ) + i(Imϕ+ Imψ) ∈ R[a, b].

Now,
ˆ b

a

(ϕ+ ψ) =

ˆ b

a

(Reϕ+ Reψ) + i

ˆ b

a

(Imϕ+ Imψ)

=

ˆ b

a

Reϕ+

ˆ b

a

Reψ + i

ˆ b

a

Imϕ+ i

ˆ b

a

Imψ

=

ˆ b

a

ϕ+

ˆ b

a

ψ.

The two linearity results now established combine to give (3.19) for any α, β ∈ C.

Proof of Part (3). Let F = {Reϕ, Imϕ,Reψ, Imψ}, so F ⊆ R[a, b], and from calculus
fg ∈ R[a, b] for any f, g ∈ F . By Part (2) it follows that

∑m
k=1 αkfkgk ∈ R[a, b] for any αk ∈ C

and fk, gk ∈ F , where m ∈ N. Hence

ϕψ = (Reϕ)(Reψ)− (Imϕ)(Reψ) + i(Reϕ)(Imψ) + i(Imϕ)(Imψ) ∈ R[a, b],

from which ϕn ∈ R[a, b] follows by induction.

Proof of Part (4). For any c ∈ (a, b) we have, using the corresponding property from calculus,
ˆ b

a

ϕ =

ˆ b

a

Reϕ+ i

ˆ b

a

Imϕ =

(ˆ c

a

Reϕ+

ˆ b

c

Reϕ

)
+ i

(ˆ c

a

Imϕ+

ˆ b

c

Imϕ

)
=

(ˆ c

a

Reϕ+ i

ˆ c

a

Imϕ

)
+

(ˆ b

c

Reϕ+ i

ˆ b

c

Imϕ

)
,

and therefore ˆ b

a

ϕ =

ˆ c

a

ϕ+

ˆ b

c

ϕ.

Proof of Part (5). Let u = Reϕ and v = Imϕ. Since u and v are real-valued functions
such that u, v ∈ R[a, b], from elementary analysis it follows that u2, v2 ∈ R[a, b], whence
|ϕ|2 = u2 + v2 ∈ R[a, b], and finally |ϕ| ∈ R[a, b] since the square root function is continuous.

Now, if
´ b
a
ϕ = 0, then (3.20) follows trivially. Suppose

´ b
a
ϕ 6= 0, and define

λ =

∣∣∣∣ˆ b

a

ϕ

∣∣∣∣
/ˆ b

a

ϕ,
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so λ ∈ C with |λ| = 1. Then ˆ b

a

λϕ = λ

ˆ b

a

ϕ =

∣∣∣∣ˆ b

a

ϕ

∣∣∣∣ ∈ R,

and so by (3.17), ∣∣∣∣ˆ b

a

ϕ

∣∣∣∣ = Re

(ˆ b

a

λϕ

)
=

ˆ b

a

Re(λϕ) ≤
ˆ b

a

|λϕ| =
ˆ b

a

|ϕ| (3.21)

as desired. The inequality in (3.21) obtains from the general property Re(z) ≤ |z|, and the
result in elementary analysis that states that if f, g ∈ R[a, b] are real-valued functions such that

f ≤ g on [a, b], then
´ b
a
f ≤
´ b
a
g. �

Theorem 3.17 (Fundamental Theorem of Calculus). If ϕ : [a, b]→ C is continuous, then
Φ : [a, b]→ C given by

Φ(t) =

ˆ t

a

ϕ

is differentiable with Φ′(t) = ϕ(t). Moreover if F is any antiderivative of ϕ on [a, b], thenˆ b

a

ϕ = F (b)− F (a).

Proof. Suppose ϕ : [a, b] → C is continuous, so that u = Reϕ and v = Imϕ are likewise
continuous on [a, b] by Theorem 2.23. The Fundamental Theorem of Calculus for real-valued
functions implies that

U(t) =

ˆ t

a

u and V (t) =

ˆ t

a

v

are differentiable with U ′(t) = u(t) and V ′(t) = v(t). Now,

Φ(t) =

ˆ t

a

ϕ =

ˆ t

a

u+ i

ˆ t

a

v = U(t) + iV (t),

and so we see that Φ is differentiable with Φ′(t) = ϕ(t).
The proof of the second statement follows just as easily using the corresponding result from

calculus. �

If f : [a, b]→ R is differentiable, f ′ ∈ R[a, b], and g is a continuous real-valued function on
f([a, b]), then we have the following change of variable formula from elementary analysis:ˆ b

a

g(f(t))f ′(t)dt =

ˆ f(b)

f(a)

g(x)dx.

There is a similar result for Riemann integrals of complex-valued functions.

Theorem 3.18 (Change of Variable). If f : [a, b]→ R is differentiable, f ′ ∈ R[a, b], and ϕ
is a continuous complex-valued function on f([a, b]), thenˆ b

a

ϕ(f(t))f ′(t)dt =

ˆ f(b)

f(a)

ϕ(x)dx.
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Proof. Let u = Reϕ and v = Imϕ. By Theorem 2.23, the continuity of ϕ : f([a, b]) → C
implies the continuity of u, v : f([a, b]) → R. Applying the change of variable formula from
elementary analysis, we immediately obtainˆ b

a

ϕ(f(t))f ′(t)dt =

ˆ b

a

u(f(t))f ′(t)dt+ i

ˆ b

a

v(f(t))f ′(t)dt

=

ˆ f(b)

f(a)

u(x)dx+ i

ˆ f(b)

f(a)

v(x)dx

=

ˆ f(b)

f(a)

ϕ(x)dx,

as desired. �
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3.4 – Parametrizations and Path Integrals

Definition 3.19. Let I ⊆ R be an interval. A curve in C is a continuous mapping γ : I → C.
The trace of γ is γ∗ = γ(I). For S ⊆ C, a curve in S is a curve γ such that γ∗ ⊆ S.

Any set Γ ⊆ C for which there exists a continuous γ : I → C such that γ∗ = Γ is also called
a curve, and then we say γ is a parametrization of Γ.

A curve γ : I → C is smooth if the derivative γ′ exists and is continuous on I, and also
γ′(t) 6= 0 for all t ∈ I. In particular, if I = [a, b], this means the one-sided derivatives

γ′+(a) := lim
h→0+

γ(a+ h)− γ(a)

h
and γ′−(b) := lim

h→0−

γ(b+ h)− γ(b)

h

exist in C. A curve γ : I → C is piecewise-smooth if there exists a partition of I such that
γ is smooth on each subinterval of the partition. Again considering the case when I = [a, b],
which means there exist

a := t0 < t1 < · · · < tn−1 < tn := b

such that γ : [tk−1, tk]→ C is smooth for 1 ≤ k ≤ n. A path is a piecewise-smooth curve.
Two smooth curves γ : I → C and ξ : J → C are equivalent, written γ ∼ ξ, if there exists

a continuously differentiable increasing bijection s : J → I such that ξ = γ ◦ s. Two paths
γ : [a, b]→ C and ξ : [c, d]→ C are equivalent if there exist

a := τ0 < τ1 < · · · < τn−1 < τn := b and c := t0 < t1 < · · · < tn−1 < tn := d

such that γ|[τk−1,τk] and ξ|[tk−1,tk] are smooth with γ|[τk−1,τk] ∼ ξ|[tk−1,tk] for each 1 ≤ k ≤ n. It’s
straightforward to show that ∼ is an equivalence relation, and so we may define the equivalence
class of all paths equivalent to a given path γ0:

[γ0] = {γ : γ ∼ γ0}.

Any set Γ ⊆ C for which there exists some smooth (resp. piecewise-smooth) curve γ such
that γ∗ = Γ is called a smooth (resp. piecewise-smooth) curve. It is natural to identify
the set of points Γ with the equivalence class [γ].

If γ : [a, b]→ C is a path, we define the path γ : [a, b]→ C by

γ(t) = γ(a+ b− t).

Thus γ generates the same curve (viewed as a point set) in C as γ, but with the opposite
orientation: we proceed from γ(b) to γ(a) instead of from γ(a) to γ(b).

Definition 3.20. Let γ : [a, b] → C be a path that is smooth on [t0, t1], . . . , [tn−1, tn] for
a = t0 < t1 < · · · < tn−1 < tn = b, and let f be continuous on γ∗. The path integral of f on
γ is ˆ

γ

f =
n∑
k=1

ˆ tk

tk−1

f(γ(t))γ′(t) dt. (3.22)
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In particular if γ is smooth on [a, b] thenˆ
γ

f =

ˆ b

a

f(γ(t))γ′(t) dt. (3.23)

In the definition, if we let γk = γ|[tk−1,tk] for each 1 ≤ k ≤ n, then we straightaway obtainˆ
γ

f =
n∑
k=1

ˆ
γk

f

in the case when γ is smooth on [t0, t1], . . . , [tn−1, tn].
Letting (3.23) be the definition for the path integral of f on γ in the case when γ is piecewise-

smooth—but not smooth—on [a, b] would lead to a snag: namely, how to handle γ′(tk), seeing
as each tk would lie in the interior of the interval of integration. After all, γ′(tk) may not exist
as a two-sided derivative. There would be workarounds, such as setting γ′(tk) = 0 for each k, or
venturing into the badlands of improper integrals. On the other hand, for each integralˆ tk

tk−1

f(γ(t))γ′(t) dt

in (3.22) the resolution is clear and natural: we take γ′(tk−1) = γ′+(tk−1) and γ′(tk) = γ′−(tk).
This is the motivation for the wording of Definition 3.20.

A curve γ : [a, b]→ C is closed if γ(a) = γ(b). If γ is a closed path it is customary to use
the symbol

¸
γ

instead of
´
γ
. The symbol

›
γ

is reserved for when γ is a closed rectangular path

with sides parallel to the real and imaginary axes of C. (Note: a path can have rectangular
trace and yet not be closed!) Other notations for

´
γ
f for any path γ areˆ

γ

f =

ˆ
γ

f dz =

ˆ
γ

f(z)dz,

and we define ˆ
γ

f |dz| =
ˆ b

a

f(γ(t))|γ′(t)|dt

if γ : [a, b] → C is smooth (passing to a sum as in Definition 3.20 if γ is piecewise-smooth),
which is integration along a path with respect to “arc length.”

Theorem 3.21. Let γ : [a, b]→ C be a path, and let f be continuous on γ∗. If ξ ∼ γ, thenˆ
ξ

f =

ˆ
γ

f.

Proof. Suppose ξ ∼ γ, so there exist

a := τ0 < τ1 < · · · < τn−1 < τn := b and c := t0 < t1 < · · · < tn−1 < tn := d

such that γk = γ|[τk−1,τk] and ξk = ξ|[tk−1,tk] are smooth with γk ∼ ξk for each k. Thus,
for each k, we have ξk = γk ◦ sk for some continuously differentiable increasing bijection
sk : [tk−1, tk]→ [τk−1, τk]. By Definition 3.20, Theorem 3.16(4), and Theorem 3.19,ˆ

ξ

f =
n∑
k=1

ˆ tk

tk−1

f(ξk(t))ξ
′
k(t)dt =

n∑
k=1

ˆ tk

tk−1

f
(
(γk ◦ sk)(t)

)
(γk ◦ sk)′(t)dt
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=
n∑
k=1

ˆ tk

tk−1

f(γk(sk(t)))γ
′
k(sk(t))s

′
k(t)dt =

n∑
k=1

ˆ tk

tk−1

(
(f ◦ γk)γ′k

)
(sk(t))s

′
k(t)dt

=
n∑
k=1

ˆ s(tk)

sk(tk−1)

(
(f ◦ γk)γ′k

)
(τ)dτ =

n∑
k=1

ˆ τk

τk−1

f(γk(τ))γ′k(τ)dτ =

ˆ
γ

f,

as desired. �

Definition 3.22. The length of a path γ : [a, b]→ C is defined to be

L(γ) =

ˆ b

a

|γ′(t)|dt.

If γ ∼ ξ, then by an argument similar to the proof of Theorem 3.21 it can be shown that
L(γ) = L(ξ), and thus we may define the length of a smooth curve C to be the length of any
path γ such that γ∗ = C.

Theorem 3.23. If γ : [a, b]→ C is a path and f is continuous on γ∗, then∣∣∣∣ˆ
γ

f

∣∣∣∣ ≤ L(γ) sup
z∈γ∗
|f(z)|.

Theorem 3.24 (Fundamental Theorem of Path Integrals). Suppose that f : Ω → C is
continuous, and there exist a function F such that F ′ = f on Ω. If γ : [a, b]→ Ω is a path, thenˆ

γ

f = F (γ(b))− F (γ(a)).

Proof. Suppose that γ : [a, b]→ C is a path. Assume that γ is continuously differentiable on
[a, b]. Now, applying first the Chain Rule and then the Fundamental Theorem of Calculus, we
obtain ˆ

γ

f =

ˆ b

a

f(γ(t))γ′(t)dt =

ˆ b

a

F ′(γ(t))γ′(t)dt

=

ˆ b

a

(F ◦ γ)′(t)dt = (F ◦ γ)(b)− (F ◦ γ)(a)

= F (γ(b))− F (γ(a)),

as desired.
If γ is piecewise continuously differentiable, then we need only apply the above argument to

each subinterval of [a, b] on which γ is continuously differentiable and add the results. �

Example 3.25. In Example 3.13 it was found that (eαz)′ = αeαz for any α ∈ C. Thus for any
α ∈ C∗ a primitive for f(z) = eαz is F (z) = α−1eαz. For any r > 0 let γ : [0, r]→ C be given
by γ(t) = t. Thenˆ r

0

eαtdt =

ˆ r

0

f(γ(t))γ′(t)dt =

ˆ
γ

f = F (γ(r))− F (γ(0)) = F (r)− F (0) =
eαr − 1

α

by the Fundamental Theorem of Path Integrals. �
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Theorem 3.26. Let Ω ⊆ C be a connected open set, and suppose f is analytic on Ω. If f ′ ≡ 0
on Ω, then f is constant on Ω.

Proof. Fix z0 ∈ Ω, and let z ∈ Ω be arbitrary. Since Ω is open and connected, it is also
polygonally connected, and hence there exists a polygonal path γ : [a, b] → C such that
γ(a) = z0 and γ(b) = z. Clearly f ′ is continuous and has primitive f on Ω, so by the
Fundamental Theorem of Path Integrals

0 =

ˆ
γ

0 =

ˆ
γ

f ′ = f(γ(b))− f(γ(a)) = f(z)− f(z0),

which implies that f(z) = f(z0). Therefore f ≡ f(z0) on Ω. �

Proposition 3.27. If γ : [a, b]→ C is a path and f is continuous on γ∗, thenˆ
γ

f = −
ˆ
γ

f.

Proof. By the Chain Rule

γ′(t) = γ′(a+ b− t) · (a+ b− t)′ = −γ′(a+ b− t),
and so ˆ

γ

f =

ˆ b

a

f(γ(t))γ′(t)dt = −
ˆ b

a

f(γ(a+ b− t))γ′(a+ b− t)dt.

If we let ϕ(t) = a+ b− t, then ϕ′(t) = −1 and we may writeˆ
γ

f =

ˆ b

a

(
(f ◦ γ)γ′

)
(ϕ(t))ϕ′(t)dt.

Since ϕ : [a, b]→ [a, b] is a strictly decreasing bijection, and (f ◦ γ)γ′ and ϕ′ are integrable on
[a, b] owing to both being piecewise continuous on [a, b], by Theorem 3.19 it follows thatˆ

γ

f =

ˆ ϕ(b)

ϕ(a)

(
(f ◦ γ)γ′

)
(τ)dτ =

ˆ a

b

f(γ(τ))γ′(τ)dτ = −
ˆ b

a

f(γ(τ))γ′(τ)dτ = −
ˆ
γ

f

as was to be shown. �

Suppose that γ1 : [a1, b1]→ C and γ2 : [a2, b2]→ C are paths such that γ1(b1) = γ2(a2). The
concatenation of γ1 and γ2 is the path γ1 ∗ γ2 : [0, 1]→ C given by

(γ1 ∗ γ2)(t) =

{
γ1

(
(1− 2t)a1 + 2tb1

)
, if t ∈ [0, 1

2
]

γ2

(
(2− 2t)a2 + (2t− 1)b2

)
, if t ∈ [1, 1

2
]

Thus
(γ1 ∗ γ2)|[0,1/2] = γ1 ◦ h1 with h1(t) = (1− 2t)a1 + 2tb1

and
(γ1 ∗ γ2)|[1/2,1] = γ2 ◦ h2 with h2(t) = (2− 2t)a2 + (2t− 1)b2.

By Definition 3.20, if f is continuous on (γ1 ∗ γ2)∗ thenˆ
γ1∗γ2

f =

ˆ
γ1◦h1

f +

ˆ
γ2◦h2

f.
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Now, since f is continuous on γ∗1 and γ∗2 , h1 and h2 are continuously differentiable increasing
bijections, and h1(0) = a1, h1(1/2) = b1, h2(1/2) = a2, and h2(1) = b2, by Theorem 3.21 we
have ˆ

γ1◦h1
f =

ˆ
γ1

f and

ˆ
γ2◦h2

f =

ˆ
γ2

f.

This proves the following.

Proposition 3.28. If γ1 : [a1, b1]→ C and γ2 : [a2, b2]→ C are paths such that γ1(b1) = γ2(a2),
and f is continuous on (γ1 ∗ γ2)∗, thenˆ

γ1∗γ2
f =

ˆ
γ1

f +

ˆ
γ2

f.

Proposition 3.29. Let γ1 : [a1, b1]→ C and γ2 : [a2, b2]→ C be two paths such that γ1(a1) =
γ2(a2) and γ1(b1) = γ2(b2). If f is continuous on γ∗1 ∪ γ∗2 , thenˆ

γ1∗γ2
f = 0 iff

ˆ
γ1

f =

ˆ
γ2

f.

Proof. Suppose that ˆ
γ1∗γ2

f = 0.

Since γ2 : [a2, b2] → C is a path such that γ1(b1) = γ2(a2), by Propositions 3.27 and 3.28 we
have ˆ

γ1∗γ2
f =

ˆ
γ1

f +

ˆ
γ2

f =

ˆ
γ1

f −
ˆ
γ2

f,

and therefore ˆ
γ1

f =

ˆ
γ2

f.

The converse is proven merely by reversing the order of the foregoing manipulations, and so
we are done. �

In §2.4 we defined the closed line segment joining z, w ∈ C to be the set of complex numbers

[z, w] =
{

(1− t)z + tw : t ∈ [0, 1]
}
.

The same symbol [z, w] will also be used to denote a path: specifically, the path given by

t 7→ (1− t)z + tw (3.24)

for 0 ≤ t ≤ 1. Context will make clear which interpretation of [z, w]—that of a set or a path—is
intended. In the path integral symbol ˆ

[z,w]

f

the path interpretation is understood.
More generally for z1, . . . , zn ∈ C we defineˆ

[z1,...,zn]

f =
n−1∑
k=1

ˆ
[zk,zk+1]

f.
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Thus, given a triangle ∆ = [z1, z2, z3, z1] we have˛
∆

f =

ˆ
[z1,z2]

f +

ˆ
[z2,z3]

f +

ˆ
[z3,z1]

f.

Proposition 3.30. Let z, w ∈ C. If f is continuous on [z, w], thenˆ
[z,w]

f = −
ˆ

[w,z]

f.

Proof. Suppose f is continuous on [z, w]. Let γ1 : [0, 1]→ C represent the path [z, w] as defined
by (3.24), and let γ2 : [0, 1]→ C represent the path [w, z], so

γ2(t) = (1− t)w + tz

for all 0 ≤ t ≤ 1. Since

γ1(t) = γ1(1− t) = [1− (1− t)]z + (1− t)w = (1− t)w + tz = γ2(t)

for all t ∈ [0, 1], we see that γ2 = γ1, and thusˆ
[z,w]

f =

ˆ
γ1

f = −
ˆ
γ1

f = −
ˆ
γ2

f = −
ˆ

[w,z]

f

by Proposition 3.27. �

Theorem 3.31 (Path Integral Change of Variable). For any α ∈ C∗,ˆ
γ/α

f(αz)dz =
1

α

ˆ
γ

f(w)dw. (3.25)

Proof. Fix α ∈ C∗. For γ : [a, b]→ C define γ̂ = γ/α, and also let f̂(z) = f(αz). Now,ˆ
γ

f(w)dw =

ˆ b

a

f(γ(t))γ′(t)dt =

ˆ b

a

f(αγ̂(t))αγ̂′(t)dt

= α

ˆ b

a

f̂(γ̂(t))γ̂′(t)dt = α

ˆ
γ̂

f̂(z)dz = α

ˆ
γ/α

f(αz)dz,

since γ = αγ̂. �

Remark. For the integral at left in (3.25), the substitution in practice is carried by setting
w = αz, so that (formally) we have dz = (1/α)dw. This nearly gives the integral at right in
(3.25), with the only adjustment left to be made is to scale the parametrization γ/α up by a
factor of α to offset the loss of α in the argument of f .

Example 3.32. Assuming α ∈ C∗, for the integralˆ
Cr(0)

f(αz)dz
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we may make the substitution w = αz, whereupon Theorem 3.31 implies thatˆ
Cr(0)

f(αz)dz =
1

α

ˆ
αCr(0)

f(w)dw.

If Cr(0) in the integral at left represents parametrization γ : [0, 2π]→ C given by γ(t) = reit,
then αCr(0) represents the parametrization γ̂ : [0, 2π]→ C given by γ̂(t) = αγ(t) = rαeit for
t ∈ [0, 2π]. In polar form we have α = |α|eit0 for some t0 ∈ R, and so

γ̂(t) = |α|rei(t+t0).

Letting s(t) = t− t0, define ξ : [0, 2π]→ C by ξ = γ̂ ◦ s, so that

ξ(t) = γ̂(s(t)) = γ̂(t− t0) = |α|reit

for each t ∈ [0, 2π]. Since ξ ∼ γ̂, Theorem 3.21 implies thatˆ
αCr(0)

f(w)dw =

ˆ
γ̂

f(w)dw =

ˆ
ξ

f(w)dw =

ˆ
C|α|r(0)

f(w)dw,

and therefore ˆ
Cr(0)

f(αz)dz =
1

α

ˆ
C|α|r(0)

f(w)dw. (3.26)

�
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3.5 – Preservation Properties

Under certain circumstances a limit or derivative operation may pass to the inside of, say, an
integral without change, and so is “preserved.” In this section we develop several such results
for integrals of complex-valued functions, including path integrals. The starting point is always
some analogous result for integrals of a real-valued function that has been proven in elementary
analysis.

First, if U ⊆ R2 is open, we define the partial derivatives of a complex-valued function
f : U → C at (x, y) ∈ U , fx(x, y) and fy(x, y), to be given by the same limits in (3.3) and (3.4).
Other symbols for fx are ∂xf and ∂f/∂x.

We now come to our first preservation property of this section, which states that the partial
differentiation operator ∂x is preserved by the functions Re, Im : C→ R. There is of course a
corresponding result for ∂y.

Proposition 3.33. Let U ⊆ R2 be open. If f : U → C is such that fx(x, y) exists for some
(x, y) ∈ U , then (Re f)x(x, y) and (Im f)x(x, y) also exist, and

(Re f)x(x, y) = Re(fx(x, y)) and (Im f)x(x, y) = Im(fx(x, y)).

Therefore (Re f)x = Re(fx) and (Im f)x = Im(fx).

Proof. Suppose fx(x, y) exists for some (x, y) ∈ U . For Re f : U → R we have, by (3.3) and
(2.9),

(Re f)x(x, y) = lim
h→0

(Re f)(x+ h, y)− (Re f)(x, y)

h
= lim

h→0
Re

(
f(x+ h, y)− f(x, y)

h

)
= Re

(
lim
h→0

f(x+ h, y)− f(x, y)

h

)
= Re(fx(x, y)).

A similar argument is carried out for (Im f)x(x, y). �

With the foregoing definitions and proposition in place, we now present a complex-analytic
version of Leibniz’s Rule, recalling the real-analytic version that is Proposition 3.14.

Theorem 3.34 (Leibniz’s Rule). Let f : [a, b]× [c, d] ⊆ R2 → C be continuous, and define
ϕ : [a, b]→ C by

ϕ(x) =

ˆ d

c

f(x, y)dy.

Then ϕ is continuous. If in addition fx exists and is continuous on [a, b] × [c, d], then ϕ is
continuously differentiable with

ϕ′(x) =

ˆ d

c

fx(x, y)dy.

Proof. Set R = [a, b]× [c, d]. By definition,

ϕ(x) =

ˆ d

c

(Re f)(x, y)dy + i

ˆ d

c

(Im f)(x, y)dy
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for each x ∈ [a, b]. Define u, v : [a, b]→ R by

u(x) =

ˆ d

c

(Re f)(x, y)dy and v(x) =

ˆ d

c

(Im f)(x, y)dy,

so that ϕ = u + iv. Both Re f : R → R and Im f : R → R are continuous by Theorem 2.23,
whereupon Proposition 3.14 implies that u and v are continuous, and thus so too is ϕ.

Now suppose fx exists and is continuous on R. By Theorem 2.23 both Re(fx) and Im(fx) are
continuous, and thus so are (Re f)x and (Im f)x by Proposition 3.33. It follows by Proposition
3.14 that u and v are continuously differentiable with

u′(x) =

ˆ d

c

(Re f)x(x, y)dy and v′(x) =

ˆ d

c

(Im f)x(x, y)dy.

Since ϕ′ = u′ + iv′ on [a, b], we find that ϕ is continuously differentiable as well, and for each
x ∈ [a, b] we have

ϕ′(x) =

ˆ d

c

(Re f)x(x, y)dy + i

ˆ d

c

(Im f)x(x, y)dy

=

ˆ d

c

[
(Re f)x(x, y) + i(Im f)x(x, y)

]
dy

=

ˆ d

c

[
Re(fx)(x, y) + i Im(fx)(x, y)

]
dy

=

ˆ d

c

fx(x, y)dy,

making use of Proposition 3.33 once more. �

Theorem 3.35. Let (ϕn) be a sequence of functions [a, b]→ C such that ϕn ∈ R[a, b] for all n.
If (ϕn) converges uniformly to ϕ on [a, b], then ϕ ∈ R[a, b] and

lim
n→∞

ˆ b

a

ϕn =

ˆ b

a

lim
n→∞

ϕn =

ˆ b

a

ϕ.

Proof. We take as given the corresponding theorem for real-valued functions. Suppose that
(ϕn) converges uniformly to ϕ on [a, b]. Since each ϕn is a complex-valued function on [a, b],
there exist functions un, vn : [a, b] → R such that ϕn = un + ivn. Recalling equation (3.17),
ϕn ∈ R[a, b] implies that un, vn ∈ R[a, b], and by Proposition 2.51(4) the sequences (un) and
(vn) converge uniformly to Reϕ and Imϕ on [a, b], respectively. Therefore

lim
n→∞

ˆ b

a

un =

ˆ b

a

Reϕ and lim
n→∞

ˆ b

a

vn =

ˆ b

a

Imϕ,

and thus

lim
n→∞

ˆ b

a

ϕn = lim
n→∞

(ˆ b

a

un + i

ˆ b

a

vn

)
= lim

n→∞

ˆ b

a

un + i lim
n→∞

ˆ b

a

vn

=

ˆ b

a

Reϕ+ i

ˆ b

a

Imϕ =

ˆ b

a

ϕ,

as desired. �
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Corollary 3.36. Let (ϕn)n≥n0 be a sequence of functions [a, b]→ C such that ϕn ∈ R[a, b] for
all n ≥ n0. If the series

∑
ϕn is uniformly convergent on [a, b], then

∑
ϕn ∈ R[a, b] and

ˆ b

a

∞∑
n=n0

ϕn =
∞∑

n=n0

ˆ b

a

ϕn.

Proof. Suppose the series
∑
ϕn is uniformly convergent on [a, b]. This means that the sequence

of partial sums (σn) converges uniformly to a function σ on [a, b], and since

σn =
n∑

k=n0

ϕk ∈ R[a, b]

for all n ≥ n0 by Theorem 3.16, Theorem 3.35 implies that

lim
n→∞

ˆ b

a

σn =

ˆ b

a

lim
n→∞

σn =

ˆ b

a

σ. (3.27)

Of course σ(t) =
∑
ϕn(t) for all a ≤ t ≤ b, which is to say σ =

∑
ϕn and so

∞∑
n=n0

ˆ b

a

ϕn = lim
n→∞

(
n∑

k=n0

ˆ b

a

ϕk

)
= lim

n→∞

(ˆ b

a

n∑
k=n0

ϕk

)
=

ˆ b

a

∞∑
n=n0

ϕn,

where the last equality follows from (3.27) to complete the proof. �

Proposition 3.37. Let γ : [a, b]→ C be a path, and let (fn) be a sequence of functions γ∗ → C
such that fn ◦ γ ∈ R[a, b] for all n. If (fn) converges uniformly to f on γ∗, then f ◦ γ ∈ R[a, b]
and

lim
n→∞

ˆ
γ

fn =

ˆ
γ

lim
n→∞

fn =

ˆ
γ

f.

Proof. Assume that γ is continuously differentiable on [a, b]. Suppose (fn) converges uniformly
to f on γ∗. Since γ is continuous on [a, b], it is easy to show that (fn ◦ γ) is a sequence of
functions [a, b]→ C that converges uniformly to f ◦ γ on [a, b], where each fn ◦ γ is bounded on
account of being integrable. Now, the continuity of γ′ on [a, b] implies that γ′ is bounded and
integrable on [a, b], so that (fn ◦ γ)γ′ ∈ R[a, b] for all n, and

(fn ◦ γ)γ′−→u (f ◦ γ)γ′,

by Proposition 2.51(3). Therefore (f ◦ γ)γ′ ∈ R[a, b] by Theorem 3.35, and

lim
n→∞

ˆ
γ

fn = lim
n→∞

ˆ b

a

(fn ◦ γ)γ′ =

ˆ b

a

lim
n→∞

(fn ◦ γ)γ′ =

ˆ b

a

(f ◦ γ)γ′ =

ˆ
γ

f

as was to be shown.
If γ is piecewise continuously differentiable on [a, b], then we need only apply the above

argument to each closed subinterval of [a, b] on which γ is continuously differentiable, and then
invoke Theorem 3.16 to obtain the desired result. �
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Corollary 3.38. Let γ : [a, b] → C be a path, and let (fn)n≥n0 be a sequence of functions
γ∗ → C such that fn ◦ γ ∈ R[a, b] for all n. If the series σ =

∑
fn is uniformly convergent on

γ∗, then σ ◦ γ ∈ R[a, b] and ˆ
γ

∞∑
n=n0

fn =
∞∑

n=n0

ˆ
γ

fn.

Proof. Assume γ is continuously differentiable on [a, b]. Suppose the series
∑
fn is uniformly

convergent on [a, b], meaning the sequence of partial sums (σn) converges uniformly to a function
σ on [a, b], and since

σn =
n∑

k=n0

fk ∈ R[a, b]

for all n ≥ n0, Proposition 3.37 implies that

lim
n→∞

ˆ
γ

σn =

ˆ
γ

lim
n→∞

σn =

ˆ
γ

σ. (3.28)

Since σ(t) =
∑
fn(t) for all a ≤ t ≤ b, we obtain
∞∑

n=n0

ˆ
γ

fn = lim
n→∞

(
n∑

k=n0

ˆ
γ

fk

)
= lim

n→∞

(ˆ
γ

n∑
k=n0

fk

)
=

ˆ
γ

∞∑
n=n0

fn,

where the last equality follows from (3.28). �
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3.6 – Triangles and Primitives

We define the convex hull of a set S ⊆ C to be the set.1

Conv(A) =
⋂
{C : A ⊆ C and C is convex} .

Theorem 3.39 (Goursat’s Theorem). Suppose f : Ω → C is analytic and ∆ is a triangle.
If Conv(∆) ⊆ Ω, then ˛

∆

f = 0.

Proof. For ∆ = [z1, z2, z3, z1], let a, b, and c be the midpoints of [z1, z2], [z2, z3], and [z3, z1],
respectively. As shown in Figure 5 we obtain four triangles,

T1 = [z1, a, c, z1], T2 = [z2, b, a, z2], T3 = [z3, c, b, z3], M = [a, b, c, a],

and using Proposition 3.27 we find that˛
∆

f =

(ˆ
[z1,a]

f +

ˆ
[a,z2]

f +

ˆ
[z2,b]

f +

ˆ
[b,z3]

f +

ˆ
[z3,c]

f +

ˆ
[c,z1]

f

)
+

(ˆ
[a,b]

f +

ˆ
[b,a]

f +

ˆ
[b,c]

f +

ˆ
[c,b]

f +

ˆ
[c,a]

f +

ˆ
[a,c]

f

)
=

(ˆ
[z1,a]

f +

ˆ
[a,c]

f +

ˆ
[c,z1]

f

)
+

(ˆ
[z2,b]

f +

ˆ
[b,a]

f +

ˆ
[a,z2]

f

)
+

(ˆ
[z3,c]

f +

ˆ
[c,b]

f +

ˆ
[b,z3]

f

)
+

(ˆ
[a,b]

f +

ˆ
[b,c]

f +

ˆ
[c,a]

f

)
=

˛
T1

f +

˛
T2

f +

˛
T3

f +

˛
M

f

Letting ∆1 ∈ {T1, T2, T3,M} be such that∣∣∣∣˛
∆1

f

∣∣∣∣ = max

{∣∣∣∣˛
T1

f

∣∣∣∣ , ∣∣∣∣˛
T2

f

∣∣∣∣ , ∣∣∣∣˛
T3

f

∣∣∣∣ , ∣∣∣∣˛
M

f

∣∣∣∣} ,
1See §10.1 of the Linear Algebra Notes for a more thorough discussion of convex sets in general.

z1

z2

b

z3

c

a

Figure 5.

http://faculty.bucks.edu/erickson/math260/260chap10.pdf
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we have

Conv(∆1) ⊆ Conv(∆),

∣∣∣∣˛
∆

f

∣∣∣∣ ≤ 4

∣∣∣∣˛
∆1

f

∣∣∣∣ , and L(∆1) = 2−1L(∆),

with the last observation hailing from elementary geometry.
Let ∆0 = ∆. The procedure we applied to ∆0 we may next apply to ∆1. Proceeding

inductively, if we let n ∈ N be arbitrary and suppose that

Conv(∆n) ⊆ Conv(∆n−1),

∣∣∣∣˛
∆n−1

f

∣∣∣∣ ≤ 4

∣∣∣∣˛
∆n

f

∣∣∣∣ , and L(∆n) = 2−nL(∆n−1), (3.29)

it is routine to show—by the same procedure as above—that (3.29) holds if we substitute n+ 1
for n, and therefore (3.29) must hold for all N. Hence∣∣∣∣˛

∆0

f

∣∣∣∣ ≤ 4n
∣∣∣∣˛

∆n

f

∣∣∣∣ (3.30)

for all n ∈ N.
Since each Conv(∆n) is a compact set and Conv(∆n+1) ⊆ Conv(∆n) for all n ∈ N, there

exists some z0 ∈ Ω such that

z0 ∈
∞⋂
n=1

Conv(∆n).

Now, f is analytic at z0, so there exists some λ ∈ C and ε : Ω→ C that is continuous at z0 such
that ε(z0) = 0 and

f(z) = f(z0) + (z − z0)[λ+ ε(z)]

for all z ∈ Ω. Fix n ∈ N. If we designate ∆0 = [w0, w1, w2, w0], then˛
∆n

f =

˛
∆n

[
f(z0) + (z − z0)(λ+ ε(z))

]
dz

=

˛
∆n

[f(z0)− z0λ]dz + λ

˛
∆n

z dz +

˛
∆n

(z − z0)ε(z)dz

= [f(z0)− z0λ](w0 − w0) + λ
(

1
2
w2

0 − 1
2
w2

0

)
+

˛
∆n

(z − z0)ε(z)dz

=

˛
∆n

(z − z0)ε(z)dz,

and so by Theorem 3.23∣∣∣∣˛
∆n

f

∣∣∣∣ =

∣∣∣∣˛
∆n

(z − z0)ε(z)dz

∣∣∣∣ ≤ L(∆n) sup
z∈∆n

(
|z − z0||ε(z)|

)
.

Given z0 ∈ Conv(∆n), for any z ∈ ∆n we have

|z − z0| < L(∆n)

since the distance between any two points in a triangular region is less than the length of the
region’s boundary. Also

L(∆n) ≤ 2−nL(∆0)
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follows from the equality in (3.29). Thus∣∣∣∣˛
∆n

f

∣∣∣∣ ≤ [L(∆n)
]2

sup
z∈∆n

|ε(z)| ≤ 4−n
[
L(∆0)

]2
sup
z∈∆n

|ε(z)|,

and recalling (3.30) we obtain

0 ≤
∣∣∣∣˛

∆0

f

∣∣∣∣ ≤ 4n
∣∣∣∣˛

∆n

f

∣∣∣∣ ≤ [L(∆0)
]2

sup
z∈∆n

|ε(z)|.

for all n ∈ N.
From

∆n ⊆ BL(∆n)(z0) := Bn

we have

sup
z∈∆n

|ε(z)| ≤ sup
z∈Bn
|ε(z)|,

and since L(∆n)→ 0 as n→∞ it is clear that

lim
n→∞

sup
z∈Bn
|ε(z)| = |ε(z0)| = 0

and hence

lim
n→∞

sup
z∈∆n

|ε(z)| = 0

by the Squeeze Theorem. Therefore ∣∣∣∣˛
∆0

f

∣∣∣∣ = 0

by another application of the Squeeze Theorem. �

Theorem 3.40 (Cauchy’s Theorem for Starlike Regions). If Ω is a starlike region and f
is analytic on Ω, then f has a primitive on Ω.

Proof. Suppose that Ω is a starlike region with star center z0, and let f be analytic on Ω. For
every z ∈ Ω we have [z0, z] ⊆ Ω, and since f is analytic on Ω it follows that f is continuous on
[z0, z] and therefore ˆ

[z0,z]

f =

ˆ 1

0

f
(
(1− t)z0 + z

)
(z − z0)dt

exists in C. Define F : Ω→ C by

F (z) =

ˆ
[z0,z]

f.

Fix w ∈ Ω, and let r > 0 be sufficiently small such that Br(w) ⊆ Ω. For all z ∈ B′r(w) we have

F (z)− F (w)

z − w
=

1

z − w

(ˆ
[z0,z]

f −
ˆ

[z0,w]

f

)
.

By Goursat’s Theorem ˆ
[z,z0]

f +

ˆ
[z0,w]

f +

ˆ
[w,z]

f =

˛
[z,z0,w,z]

f = 0, (3.31)
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so ˆ
[z0,z]

f −
ˆ

[z0,w]

f =

ˆ
[w,z]

f

by Proposition 3.27, whence

F (z)− F (w)

z − w
=

1

z − w

ˆ
[w,z]

f

and therefore

F ′(w) = lim
z→w

F (z)− F (w)

z − w
= lim

z→w

1

z − w

ˆ
[w,z]

f

= lim
z→w

1

z − w

ˆ 1

0

f
(
(1− t)w + tz

)
(z − w)dt = lim

z→w

ˆ 1

0

f
(
(1− t)w + tz

)
dt

Let 0 < ε < r. Since f is continuous at w there exists some δ > 0 such that 0 < |z − w| < δ
implies ∣∣f((1− t)w + tz

)
− f(w)

∣∣ < ε

for all 0 ≤ t ≤ 1, and then we obtain∣∣∣∣ ˆ 1

0

f
(
(1− t)w + tz

)
dt− f(w)

∣∣∣∣ =

∣∣∣∣ˆ 1

0

[
f
(
(1− t)w + tz

)
− f(w)

]
dt

∣∣∣∣
≤
ˆ 1

0

∣∣f((1− t)w + tz
)
− f(w)

∣∣dt ≤ ˆ 1

0

ε dt = ε.

We have now shown that

F ′(w) = lim
z→w

ˆ 1

0

f
(
(1− t)w + tz

)
dt = f(w),

and since w ∈ Ω is arbitrary it follows that F ′ = f on Ω. That is, F is a primitive for f on
Ω. �

Theorem 3.41. If f : Ω→ C is continuous and
´
γ
f = 0 for every closed path γ in Ω, then f

has a primitive on Ω.

Exercise 3.42 (AN2.1.1). Evaluate ˆ
[−i,1+2i]

Im(z)dz

Solution. The relevant path is γ : [0, 1]→ C given by

γ(t) = (1− t)(−i) + t(1 + 2i) = t+ (3t− 1)i.

Now ˆ
[−i,1+2i]

Im(z)dz =

ˆ 1

0

Im(γ(t))γ′(t)dt =

ˆ 1

0

Im
(
t+ (3t− 1)t

)
(1 + 3i)dt

=

ˆ 1

0

(3t− 1)(1 + 3i)dt = (1 + 3i)

[
3

2
t2 − t

]1

0

=
1

2
+

3

2
i.

�
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Exercise 3.43 (AN2.1.2). Evaluate ˆ
γ

z̄dz,

where γ is the path on the parabola {x+ ix2 : x ∈ R} from 1 + i to 2 + 4i.

Solution. The relevant path is γ : [1, 2]→ C given by

γ(t) = t+ it2.

Now ˆ
γ

z̄dz =

ˆ 2

1

γ(t)γ′(t)dt =

ˆ 2

1

(t− it2)(1 + 2it)dt

=

ˆ 2

1

(2t3 + t+ it2)dt =

[
1

2
t4 +

1

2
t2 +

i

3
t3
]2

1

= 9 +
7

3
i

�

Exercise 3.44 (AN2.1.3). Evaluate ˆ
[z1,z2,z3]

f(z)dz,

where z1 = −i, 2 + 5i, z3 = 5i, and f(x+ iy) = x2 + iy.

Solution. We havê

[z1,z2,z3]

f =

ˆ
[z1,z2]

f +

ˆ
[z2,z3]

f =

ˆ
[−i,2+5i]

f +

ˆ
[2+5i,5i]

f.

Defining γ1, γ2 : [0, 1]→ C by

γ1(t) = (1− t)(−i) + t(2 + 5i) = 2t+ (6t− 1)i

and
γ2(t) = (1− t)(2 + 5i) + t(5i) = (2− 2t) + 5i,

we calculateˆ
[−i,2+5i]

f =

ˆ 1

0

f(γ1(t))γ′1(t)dt =

ˆ 1

0

[(2t)2 + i(6t− 1)](2 + 6i)dt

= (2 + 6i)

ˆ 1

0

(4t2 + 6it− i)dt = (2 + 6i)

[
4

3
t3 + 3it2 − it

]1

0

= −28

3
+ 12i.

and ˆ
[2+5i,5i]

f =

ˆ 1

0

f(γ2(t))γ′2(t)dt =

ˆ 1

0

[(2− 2t)2 + 5i](−2)dt

= −2

ˆ 1

0

(4− 8t+ 4t2 + 5i)dt = −2

[
4t− 4t2 +

4

3
t3 + 5it

]1

0

= −8

3
− 10i.

Therefore ˆ
[z1,z2,z3]

f(z)dz =

(
−28

3
+ 12i

)
+

(
−8

3
− 10i

)
= −12 + 2i
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is the value of the integral. �

Example 3.45. Let Γ be a rectangle with center at the origin and vertex zk in the kth quadrant
for 1 ≤ k ≤ 4. Evaluate “

Γ

1

z
dz

for both possible orientations of Γ, assuming the standard parameterization in each case.

Solution. First suppose Γ has the positive (i.e. counterclockwise) orientation. The standard
parameterization is [z1, z2, z3, z4, z1], and it’s convenient to write Γ = [z1, z2, z3, z4, z1]. Letting
ξ1 = [z1, z2], ξ2 = [z2, z3], ξ3 = [z3, z4], and ξ4 = [z4, z1], by definition“

Γ

1

z
dz =

ˆ
ξ1

1

z
dz +

ˆ
ξ2

1

z
dz +

ˆ
ξ3

1

z
dz +

ˆ
ξ4

1

z
dz. (3.32)

For each k we have zk = reiτk for some r > 0 and 0 < τ1 < τ2 < τ3 < τ4 < 2π, with τ1 ∈ (0, π/2)
in particular. Let C be the circle of radius r that circumscribes Γ. We may parameterize C
with the function γ : [0, 2π]→ C given by

γ(t) = rei(t+τ1),

which is a closed path with positive orientation that begins and ends at z1. Now, define

γ1 = γ|[0,τ2−τ1], γ2 = γ|[τ2−τ1,τ3−τ1], γ3 = γ|[τ3−τ1,τ4−τ1], and γ4 = γ|[τ4−τ1,2π]

(see Figure 6). Then by Definition 3.20˛
γ

1

z
dz =

ˆ
γ1

1

z
dz +

ˆ
γ2

1

z
dz +

ˆ
γ3

1

z
dz +

ˆ
γ4

1

z
dz (3.33)

since z 7→ 1/z is continuous on C = γ∗.

0

z1z2

z3 z4

ξ1

ξ2

ξ3

ξ4

γ1

γ2

γ3

γ4

Figure 6.
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Define Ω = {z : Im(z) > 0}. Since Ω is a starlike region in C and 1/z is analytic on Ω, by
Theorem 3.40 1/z has a primitive on Ω. Now, ξ1 ∗ γ1 is a closed path in Ω, so˛

ξ1∗γ1

1

z
dz = 0

by the Fundamental Theorem of Path Integrals. Similar arguments will show that˛
ξk∗γk

1

z
dz = 0

for all 1 ≤ k ≤ 4. Since ξk and γk have the same initial and terminal points, and 1/z is
continuous on ξ∗k ∪ γ∗k, by Proposition 3.29ˆ

ξk

1

z
dz =

ˆ
γk

1

z
dz (3.34)

for each k. Combining equations (3.32), (3.33), and (3.34) yields

“
Γ

1

z
dz =

4∑
k=1

ˆ
ξk

1

z
dz =

4∑
k=1

ˆ
γk

1

z
dz =

˛
γ

1

z
dz.

Therefore“
Γ

1

z
dz =

ˆ 2π

0

1

γ(t)
γ′(t)dt =

ˆ 2π

0

[
rei(t+τ1)

]′
rei(t+τ1)

dt =

ˆ 2π

0

irei(t+τ1)

rei(t+τ1)
dt =

ˆ 2π

0

i dt = 2πi.

If Γ has the negative (clockwise) orientation, then [z4, z3, z2, z1, z4] is the standard parame-
terization. If we let Γ = [z4, z3, z2, z1, z4], then by Proposition 3.27,“

Γ

1

z
dz =

ˆ
[z4,z3]

1

z
dz +

ˆ
[z3,z2]

1

z
dz +

ˆ
[z2,z1]

1

z
dz +

ˆ
[z1,z4]

1

z
dz

= −
ˆ

[z3,z4]

1

z
dz −

ˆ
[z2,z3]

1

z
dz −

ˆ
[z1,z2]

1

z
dz −

ˆ
[z4,z1]

1

z
dz

= −
(ˆ

ξ1

1

z
dz +

ˆ
ξ2

1

z
dz +

ˆ
ξ3

1

z
dz +

ˆ
ξ4

1

z
dz

)
= −
“

Γ

1

z
dz = −2πi.

�

Exercise 3.46 (AN2.1.5a). Let f be analytic on a convex open set Ω. Show that if Re f ′ > 0,
Re f ′ < 0, Im f ′ > 0, or Im f ′ < 0 on Ω, then f is injective on Ω.

Solution. Suppose that Re f ′ > 0 on Ω. As will be established in the next section, the
analyticity of f on Ω implies that f ′ is also analytic—and in particular continuous—on Ω. Fix
z1, z2 ∈ Ω. Since f is a primitive for f ′ on Ω, by the Fundamental Theorem for Path Integrals
we have ˆ

γ

f ′ = f(γ(b))− f(γ(a))
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for any path γ : [a, b]→ Ω, so if we define γ : [0, 1]→ Ω by γ(t) = (1− t)z1 + tz2, then since
γ∗ = [z1, z2] and Ω is convex, it follows that γ is a path in Ω and henceˆ

γ

f ′ = f(γ(1))− f(γ(0)) = f(z2)− f(z1).

On the other handˆ
γ

f ′ =

ˆ 1

0

f ′(γ(t))γ′(t)dt =

ˆ 1

0

f ′
(
(1− t)z1 + tz2

)
(z2 − z1)dt,

and so ˆ 1

0

f ′
(
(1− t)z1 + tz2

)
dt =

f(z2)− f(z1)

z2 − z1

.

Applying the definition in (3.17) next yieldsˆ 1

0

Re f ′
(
(1− t)z1 + tz2

)
dt+ i

ˆ 1

0

Im f ′
(
(1− t)z1 + tz2

)
dt =

f(z2)− f(z1)

z2 − z1

, (3.35)

whence we obtain

Re

(
f(z2)− f(z1)

z2 − z1

)
=

ˆ 1

0

Re f ′
(
(1− t)z1 + tz2

)
dt =

ˆ 1

0

(
(Re f ′) ◦ γ

)
(t)dt.

Now, ((Re f ′) ◦ γ)(t) > 0 for all t ∈ [0, 1], which implies that the rightmost integral is greater
than zero and thus

Re

(
f(z2)− f(z1)

z2 − z1

)
> 0.

This immediately implies that f(z2) 6= f(z1), and therefore f is injective on Ω.
If Re f ′ < 0 on Ω, then a nearly identical argument leads to

Re

(
f(z2)− f(z1)

z2 − z1

)
< 0

for any z1, z2 ∈ Ω, which again shows that f is injective on Ω.
If Im f ′ > 0 on Ω, the same argument as above leads to equation (3.35), whereupon we

obtain

Im

(
f(z2)− f(z1)

z2 − z1

)
=

ˆ 1

0

Im f ′
(
(1− t)z1 + tz2

)
dt =

ˆ 1

0

(
(Im f ′) ◦ γ

)
(t)dt.

Now, since (Im f ′) ◦ γ > 0 on [0, 1], the rightmost integral must be positive and thus

Im

(
f(z2)− f(z1)

z2 − z1

)
> 0.

Clearly f(z2) 6= f(z1), and so f is injective on Ω. The argument is nearly identical if Im f ′ < 0
on Ω. �

Exercise 3.47 (AN2.1.5b). Show that the conclusion of the proposition in Exercise 3.46 does
not necessarily hold in the case when Ω is a starlike region.
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Solution. Consider the function f(z) = z + 1/z, which is analytic on C∗. For all z 6= 0 we have

f ′(z) = 1− 1

z2
,

which in polar form gives

f ′(reiθ) = 1− 1

(reiθ)2
= 1− e−2iθ

r2
= 1− 1

r2

[
cos(−2θ) + i sin(−2θ)

]
=

(
1− cos 2θ

r2

)
+

(
sin 2θ

r2

)
i.

Hence we have

Re f ′(reiθ) = 1− cos 2θ

r2
.

Now,

Re f ′(reiθ) > 0 ⇔ 1− cos 2θ

r2
> 0 ⇔ r2 > cos 2θ,

the solution set for which is the shaded region shown at left in Figure 7. Let

z1 = 2, z2 = −2 +
3

2
i, z3 = −2 + 2i, z4 = 3, z5 = −2− 2i, z6 = −2− 3

2
i.

Let Ω be the open region enclosed by the polygonal path [z1, z2, z3, z4, z5, z6, z1], shown at right
in Figure 7. It can be seen that Ω is a starlike open set, f is analytic on Ω, and Re f ′ > 0 on Ω.
However f is not injective on Ω, for we have −i, i ∈ Ω, and

f(i) = i+
1

i
= i− i = 0 = −i+ i = −i− 1

−i
= f(−i).

Similar analyses can be carried out in the cases when Re f ′ < 0, Im f ′ > 0 and Im f ′ < 0 on a
starlike region. �

x

y

3
2

−3
2

i

−i

x

y

i

Ω

Figure 7.
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Exercise 3.48 (AN2.1.5c). Let f be analytic on Ω, and let z0 ∈ Ω. Show that if f ′(z0) 6= 0,
then there exists some r > 0 such that f is injective on Br(z0).

Solution. The analyticity of f on Ω implies the analyticity, and hence continuity, of f ′ on Ω,
and then by Theorem 2.23 it follows that Re f ′ and Im f ′ are also continuous on Ω.

Suppose that f ′(z0) 6= 0. Then either Re f ′(z0) 6= 0 or Im f ′(z0) 6= 0. Assume first that
Re f ′(z0) 6= 0. Since Re f ′ is continuous at z0 there must exist some r > 0 such that either
Re f ′ > 0 or Re f ′ < 0 on Br(z0), depending on whether Re f ′(z0) is positive or negative. In
either event, since Br(z0) is convex we conclude by Exercise 3.46 that f is injective on Br(z0).

Now assume that Im f ′(z0) 6= 0. Since Im f ′ is continuous at z0 there must exist some r > 0
such that either Im f ′ > 0 or Im f ′ < 0 on Br(z0), depending on whether Im f ′(z0) is positive or
negative. Either way, we conclude by Exercise 3.46 that f is injective on Br(z0). �

The following theorem extends Theorems 3.39 and 3.40 to the case when a function f : Ω→ C
is analytic except at a single point z0 ∈ Ω. Continuity on all of Ω is still required. A further
extension to the case when a continuous function f : Ω→ C is analyic on Ω except at a finite
number of points z1, . . . , zn ∈ Ω is possible.

Theorem 3.49 (Extended Cauchy Theorem). Let f : Ω → C be continuous on Ω and
analytic on Ω \ {z0}.
1. If ∆ is a triangle such that Conv(∆) ⊆ Ω, then

´
∆
f = 0.

2. If Ω is a starlike region, then f has a primitive on Ω.
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4
Analytic Functions

4.1 – Complex Power Series

Definition 4.1. Given a power series
∑
an(z− z0)n, let ρ = lim sup n

√
|an|. Define the radius

of convergence r of
∑
an(z − z0)n to be given by

r =


1/ρ, if 0 < ρ <∞
0, if ρ =∞
∞, if ρ = 0

It should be emphasized that, given any sequence (an) in C, the limit superior ρ will always
exist in [0,∞]. The following theorem will make clear the reason why r ∈ R in the definition is
called the radius of convergence.

Theorem 4.2. Suppose the series
∑
an(z − z0)n has radius of convergence r.

1. If 0 < r <∞, the series converges absolutely if |z − z0| < r and diverges if |z − z0| > r.
2. If r = 0, the series converges absolutely if z = z0 and diverges if z 6= z0.
3. If r =∞ the series converges absolutely if |z − z0| <∞.
4. The series converges uniformly on compact subsets of Br(z0).

Proof.
Proof of Part (1). Let ρ = lim sup n

√
|an|. Suppose 0 < r < ∞. Then r = 1/ρ for some

0 < ρ <∞, which is to say

lim sup n
√
|an| =

1

r
.

By the Root Test
∑
an(z − z0)n converges absolutely if

lim sup n
√
|an(z − z0)n| < 1,

and diverges if

lim sup n
√
|an(z − z0)n| > 1.
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Since by Proposition 2.5(3)

lim sup n
√
|an(z − z0)n| = lim sup

(
|z − z0| n

√
|an|
)

= |z − z0| lim sup n
√
|an| =

|z − z0|
r

it follows that
∑
an(z − z0)n converges absolutely if |z − z0| < r and diverges if |z − z0| > r.

Proof of Part (2). Suppose that r = 0. Then ρ =∞, so for any z 6= z0 we have

lim sup n
√
|an(z − z0)n| = |z − z0| lim sup n

√
|an| = |z − z0| · ∞ =∞,

and thus
∑
an(z − z0)

n diverges by the Root Test. It is clear that
∑
an(z − z0)

n converges
absolutely if z = z0.

Proof of Part (3). Finally, suppose r =∞. Then ρ = 0, so for any z ∈ C (i.e. |z − z0| <∞) we
have

lim sup n
√
|an(z − z0)n| = |z − z0| lim sup n

√
|an| = |z − z0| · 0 = 0,

and thus
∑
an(z − z0)n converges absolutely by the Root Test.

Proof of Part (4). Let K ⊆ Br(z0) be a compact set. Choose s ∈ (0, r) such that K ⊆ Bs(z0).
Part (1) implies that ∑

|an||z − z0|n

converges for any z ∈ C such that |z − z0| < r. Choosing z = z0 + s and noting that

|z − z0| = |(z0 + s)− z0| = |s| = s < r,

it follows that
∑
|an|sn converges. Now, for each n define fn : Br(z0)→ C by

fn(z) = an(z − z0)n.

Since

‖fn‖K ≤ ‖fn‖Bs(z0) = sup
z∈Bs(z0)

(
|an||z − z0|n

)
≤ |an|sn,

and
∑
|an|sn converges, we conclude by the Weierstrass M-Test that

∑
fn converges uniformly

on K. Therefore
∑
an(z − z0)n converges uniformly on compact subsets of Br(z0). �

Proposition 4.3. If the series
∑
an(z − z0)n converges on Br(z0), then it converges absolutely

on Br(z0).

Proof. Suppose that
∑
an(z− z0)n converges on Br(z0), and let s be the radius of convergence

of the series. Assume there exists some z ∈ Br(z0) such that
∑
an(z − z0)n does not converge

absolutely. (Clearly this implies that z 6= z0.) Then s ≤ |z − z0| < r, since by Theorem 4.2(1)
the series must be absolutely convergent on Bs(z0). Now, let ẑ be such that

|z − z0| < |ẑ − z0| < r.

Then ẑ ∈ Br(z0), so by hypothesis
∑
an(ẑ − z0)n converges. However we also have |ẑ − z0| > s,

so that by Theorem 4.2(1) it follows that
∑
an(ẑ− z0)n diverges—a contradiction. We conclude
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that
∑
an(z − z0)n must converge absolutely, and therefore

∑
an(z − z0)n converges absolutely

on Br(z0). �

Example 4.4. Consider the series

σ(z) =
∞∑
n=0

1

n!
zn.

Clearly the series converges absolutely if z = 0. If z 6= 0, we find that

lim
n→∞

∣∣∣∣ zn+1

(n+ 1)!
· n!

zn

∣∣∣∣ = lim
n→∞

∣∣∣∣ z

n+ 1

∣∣∣∣ = 0,

and so

lim sup
n→∞

∣∣∣∣ zn+1

(n+ 1)!
· n!

zn

∣∣∣∣ = 0

as well, and by the Ratio Test we conclude that the series converges absolutely at z. Hence
the series converges absolutely on C, and the radius of converges of the series must be r =∞.
Indeed, if r < ∞, then by Theorem 4.2 the series must diverge for any z such that |z| > r,
which is a contradiction. We conclude by Theorem 4.2 that the series converges uniformly on
any compact subset of C. This is to say that if (σk) is the sequence of functions C→ C given by

σk(z) =
k∑

n=0

1

n!
zn

for each k ≥ 0, then on any compact set K the sequence (σk) converges uniformly to some
function K → C. It is easy to see that, in fact, σk−→u σ on K. �

Proposition 4.5. Suppose that
∑
an(z − z0)n has radius of convergence r > 0. Then for any

A > 1/r there exists some C > 0 such that |an| ≤ CAn for all n ≥ 0.

Proof. We have

lim sup n
√
|an| =

{
1/r, if 0 < r <∞
0, if r =∞

Assume to start that 0 < r <∞, so

sup
k≥n

k
√
|ak| ↓

1

r
> 0

as n→∞. Let A > 1/r, which is to say A = 1/r + ε for some ε > 0. Then there exists some
N ∈ Z such that

1

r
≤ sup

k≥n

k
√
|ak| <

1

r
+ ε = A

for all n ≥ N . In particular this implies that

0 ≤ k
√
|ak| ≤ A

for all k ≥ N , and hence
|ak| ≤ Ak
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for all k ≥ N . Choose C > 0 sufficiently large that |ak| ≤ CAk for k = 0, . . . , N − 1. Then we
have

|an| ≤ CAn

for all n ≥ 0 as desired.
If r =∞ the argument above is unchanged, and the conclusion reached the same, except

that 1/r is 0. �

Corollary 4.6. Suppose that
∑
an(z − z0)n has radius of convergence r > 0. Then there exists

some B > 1/r such that |an| ≤ Bn for all n ≥ 0.

Proof. The proof is identical to the proof of Proposition 4.5, except that when it comes time
to choose some C > 0 large enough that |ak| ≤ CAk for k = 0, . . . , N − 1, we instead choose
some B ≥ A such that |ak| ≤ Bk for k = 0, . . . , N − 1. The desired result follows. �

Definition 4.7. The Cauchy product of two series
∑∞

n=0 an and
∑∞

n=0 bn is(
∞∑
n=0

an

)
∗

(
∞∑
n=0

bn

)
=
∞∑
n=0

(
n∑
k=0

akbn−k

)
.

In Definition 4.7 there is no assumption that either
∑∞

n=0 an or
∑∞

n=0 bn is convergent, so a
Cauchy product (a kind of “discrete convolution”) is a formal construct. However we do have
the following result.

Theorem 4.8 (Mertens’ Theorem). If
∑∞

n=0 an is absolutely convergent and
∑∞

n=0 bn is
convergent, then (

∞∑
n=0

an

)
∗

(
∞∑
n=0

bn

)
=

(
∞∑
n=0

an

)(
∞∑
n=0

bn

)
.

Exercise 4.9 (L2.2.1). Show that
∞∑
n=1

zn =
z

1− z

if |z| < 1.

Solution. Suppose |z| < 1. From exercise La1.2.11 we have

k∑
n=0

zn =
zk+1 − 1

z − 1
,

for all k ≥ 0, so that
∞∑
n=0

zn = lim
k→∞

k∑
n=0

zn = lim
k→∞

zk+1 − 1

z − 1
=

0− 1

z − 1
=

1

1− z
.

Now,
∞∑
n=1

zn =
∞∑
n=0

zn+1 = z

∞∑
n=0

zn = z · 1

1− z
=

z

1− z
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as was to be shown. �

Exercise 4.10 (L2.2.2). Show that if r ∈ [0, 1) and θ ∈ R, then

∞∑
n=0

rneinθ and
∑
n∈Z

r|n|einθ

converge, and find a formula for the value of each series.

Before proceeding it must be acknowledged that Lang has thus far neglected to give a
definition for what it means for a series of the form

∑
n∈Z zn to converge. Such a series converges

if and only if ∑
n≥0

zn and
∑
n<0

zn

both converge, in which case we define∑
n∈Z

zn =
∑
n≥0

zn +
∑
n<0

zn.

Solution. Fix r ∈ [0, 1) and θ ∈ R. Since |reiθ| = |r||eiθ| = |r| < 1,∑
n≥0

rneinθ =
∞∑
n=0

rneinθ =
∞∑
n=0

(reiθ)n =
1

1− reiθ

(see the previous exercise).
Next, since |re−iθ| < 1 we have∑

n<0

r|n|einθ = lim
k→∞

−k∑
n=−1

r|n|einθ = lim
k→∞

−k∑
n=−1

r−neinθ = lim
k→∞

k∑
n=1

rne−inθ

=
∞∑
n=1

(re−iθ)n =
re−iθ

1− re−iθ
=

r

eiθ − r

by Exercise 4.9.
Since the series

∑
n≥0 and

∑
n<0 both converge, we conclude that

∑
n∈Z also converges, and∑

n∈Z

r|n|einθ =
∑
n≥0

r|n|einθ +
∑
n<0

r|n|einθ =
1

1− reiθ
+

r

eiθ − r

by definition. �

Exercise 4.11 (L2.2.4h). Determine the radius of convergence of

∞∑
n=0

(n!)3

(3n)!
zn.
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Solution. Since

lim
n→∞

∣∣∣∣zn+1

zn

∣∣∣∣ = lim
n→∞

∣∣∣∣ [(n+ 1)!]3zn+1

[3(n+ 1)]!
· (3n)!

(n!)3zn

∣∣∣∣
= lim

n→∞

∣∣∣∣ (n+ 1)3z

(3n+ 1)(3n+ 2)(3n+ 3)

∣∣∣∣ =
1

27
|z|,

by Proposition 2.5(4) we have

ρ = lim sup
n→∞

∣∣∣∣zn+1

zn

∣∣∣∣ =
1

27
|z|

and so by the Ratio Test the series converges absolutely if 0 ≤ |z|/27 < 1 (i.e. 0 ≤ |z| < 27) and
diverges if |z|/27 > 1 (i.e. |z| > 27). Therefore the radius of convergence of the series is 27. �

Exercise 4.12 (L2.2.5c). Let
∑
anz

n have radius of convergence r > 0, where an 6= 0 for all
but finitely many n. Show that

∑
ndanz

n also has radius of convergence r for any d ∈ N.

Solution. Let

ρ1 = lim sup

∣∣∣∣an+1z
n+1

anzn

∣∣∣∣= lim sup

∣∣∣∣an+1

an

∣∣∣∣|z|.
By the Ratio Test

∑
anz

n converges absolutely if 0 ≤ ρ1 < 1 and diverges if ρ1 > 1, and thus
we see that r = ρ1.

Next, let

ρ2 = lim sup

∣∣∣∣(n+ 1)dan+1z
n+1

ndanzn

∣∣∣∣= lim sup

(
(n+ 1)d

nd

∣∣∣∣an+1

an

∣∣∣∣|z|).
The Ratio Test indicates that

∑
ndanz

n converges absolutely if 0 ≤ ρ2 < 1 and diverges if
ρ2 > 1, and so the radius of convergence of

∑
ndanz

n is ρ2. We must show that ρ2 = ρ1.
By Proposition 2.5(2),

ρ2 = lim sup

(
(n+ 1)d

nd
·
∣∣∣∣an+1

an

∣∣∣∣|z|)
≤ lim sup

(n+ 1)d

nd
· lim sup

∣∣∣∣an+1

an

∣∣∣∣|z| = lim sup

∣∣∣∣an+1

an

∣∣∣∣|z| = ρ1,

and also

ρ1 = lim sup

[
nd

(n+ 1)d
· (n+ 1)d

nd

∣∣∣∣an+1

an

∣∣∣∣|z|]
≤ lim sup

nd

(n+ 1)d
· lim sup

(
(n+ 1)d

nd

∣∣∣∣an+1

an

∣∣∣∣|z|)
= lim sup

(
(n+ 1)d

nd

∣∣∣∣an+1

an

∣∣∣∣|z|) = ρ2.

Hence ρ1 ≤ ρ2 and ρ2 ≤ ρ1, and so ρ2 = ρ1 = r. �
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Exercise 4.13 (L2.2.8). Let (an)∞n=0 be a decreasing sequence in R+ that converges to 0. Prove
that for all δ > 0 the series

∑∞
n=0 anz

n converges uniformly on

Sδ = {z ∈ C : |z| ≤ 1 and |z − 1| ≥ δ},

provided that Sδ 6= ∅.

Solution. Let δ > 0 such that Sδ 6= ∅. Consider the sequence (cn)∞n=0 for which cn = an− an+1.
Since an+1 ≤ an for all n ≥ 0 we have

∞∑
n=0

|cn| =
∞∑
n=0

|an − an+1| = lim
n→∞

n∑
k=0

(ak − ak+1) = lim
n→∞

(a0 − an+1) = a0,

so
∑
|cn| converges and it follows that

∑
|2cn/δ| also converges.

Define the sequence of functions (fn) on Sδ by

fn(z) =
zn+1 − 1

z − 1
cn

for all n ≥ 0. We have

‖fn‖Sδ = sup
z∈Sδ
|fn(z)| = sup

z∈Sδ

(
|zn+1 − 1|
|z − 1|

cn

)
≤ sup

z∈Sδ

(
|zn+1 − 1|

δ
cn

)
≤ sup

z∈Sδ

(
|z|n+1 + 1

δ
cn

)
≤ sup

z∈Sδ

∣∣∣∣2cnδ
∣∣∣∣ ,

and since
∑
|2cn/δ| converges the Weierstrass M-Test implies that

∑
fn converges uniformly

on Sδ. That is, the sequence of functions (sn), where

sn =
n∑
k=0

fk,

converges uniformly on Sδ.
Next, define functions σn : Sδ → C by

σn(z) =
zn+1 − 1

z − 1
an.

Let ε > 0. Choose N such that an < δε/4 for all n ≥ N . Let n ≥ N . Then

sup
z∈Sδ
|σn(z)| = sup

z∈Sδ

|zn+1 − 1|
|z − 1|

an ≤ sup
z∈Sδ

|z|n+1 + 1

δ
an ≤ sup

z∈Sδ

(
2

δ
an

)
≤ 2

δ
· δε

4
< ε,

which shows that (σn) converges uniformly on Sδ.
For each n ≥ 0 define functions ϕn, τn : Sδ → C by

ϕn(z) =
n∑
k=0

akz
k

and τn = sn−1 (with τ0 ≡ 0). Using summation by parts, we obtain

ϕn(z) = an

n∑
k=0

zk +
n−1∑
k=0

(
(ak − ak+1)

k∑
j=0

zj

)



98

=
zn+1 − 1

z − 1
an +

n−1∑
k=0

(
zk+1 − 1

z − 1
ck

)
= σn(z) + τn(z)

for all n ≥ 0 and z ∈ Sδ. Thus, ϕn = σn + τn, and since (σn) and (τn) converge uniformly on
Sδ is follows by Proposition 2.51(2) that ϕn also converges uniformly on Sδ. Therefore

∑
anz

n

converges uniformly on Sδ. �

Exercise 4.14 (L2.2.9). Let
∑∞

n=0 anz
n have radius of convergence r ≥ 1. If

∑∞
n=0 an converges,

then

lim
x→1−

∞∑
n=0

anx
n =

∞∑
n=0

an.

Solution. Suppose that
∑
an converges. It can be assumed that r = 1, so that

∑
anz

n

converges absolutely for all |z| < 1, and in particular
∑
anx

n converges for all x ∈ [0, 1]. Define
functions sn : [0, 1]→ C by

sn(x) =
n∑
k=0

akx
k

for n ≥ 0. Also, for convenience, let

σn = sn(1) =
n∑
k=0

ak

for n ≥ 0. We will use summation by parts to show the sequence (sn) is Cauchy on [0, 1].
Let ε > 0. We have

lim
n→∞

σn =
∞∑
n=0

an = a

for some a ∈ C, so there exists some N such that |σn− a| < ε/2 for all n ≥ N , and then for any
m,n > N we have

|σn − σm| ≤ |σn − a|+ |a− σm| < ε/2 + ε/2 = ε.

Let m,n ≥ N with n > m. Then for any x ∈ [0, 1],

sn(x)− sm(x) =
n∑

k=m+1

akx
k =

n−m−1∑
k=0

ak+m+1x
k+m+1

= xn
n−m−1∑
k=0

ak+m+1 −
n−m−2∑
k=0

[(
xk+m+2 − xk+m+1

) k∑
j=0

aj+m+1

]

= xn
n∑

k=m+1

ak −
n−1∑

k=m+1

[(
xk+1 − xk

) k∑
j=m+1

aj

]

= xn(σn − σm) +
n−1∑

k=m+1

(xk − xk+1)(σk − σm).︸ ︷︷ ︸
Zero if n = m+ 1
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Now,

‖sn − sm‖[0,1] = sup
x∈[0,1]

|sn(x)− sm(x)|

≤ sup
x∈[0,1]

(
xn|σn − σm|+

n−1∑
k=m+1

(xk − xk+1)|σk − σm|

)

≤ sup
x∈[0,1]

(
xnε+

n−1∑
k=m+1

ε(xk − xk+1)

)
= sup

x∈[0,1]

[
xnε+ (xm+1 − xn)ε

]
= sup

x∈[0,1]

(xm+1ε) = ε,

and we conclude that (sn) is uniformly Cauchy on [0, 1]. By Theorem 2.52 it follows that (sn)
converges uniformly to some function s : [0, 1]→ C, and the proof of Theorem 2.52 establishes
that s is given by

s(x) = lim
n→∞

sn(x) =
∞∑
n=0

anx
n (4.1)

for each x ∈ [0, 1]. Since (sn) is clearly a sequence of continuous functions on [0, 1], by Theorem
2.54 we conclude that s is continuous on [0, 1], and so we have in particular

lim
x→1−

s(x) = s(1).

Therefore

lim
x→1−

∞∑
n=0

anx
n = lim

x→1−
s(x) = s(1) =

∞∑
n=0

an(1)n =
∞∑
n=0

an,

and the proof is finished. �

Solution (Alternate). We can show directly that

∀ε > 0∃δ > 0 ∀x ∈ [0, 1)

(
1− δ < x < 1 −→

∣∣∣∣∣
∞∑
n=0

anx
n −

∞∑
n=0

an

∣∣∣∣∣ < ε

)
.

We start by establishing (as before) that (sn) converges uniformly on [0, 1] to the function s
given by (4.1), so that we have

∀ε > 0∃N ∀n ≥ N ∀x ∈ [0, 1]
(
|sn(x)− s(x)| < ε

)
.

Let ε > 0 be arbitrary. There exists N ∈ N such that

∀n ≥ N ∀x ∈ [0, 1]
(
|sn(x)− s(x)| < ε/3

)
.

Choose δ > 0 sufficiently small so that 1− δ < x < 1 implies

|sN(1)− sN(x)| =

∣∣∣∣∣
N∑
n=0

an(1− xn)

∣∣∣∣∣ < ε/3.
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Let 1− δ < x < 1 be arbitrary. Then∣∣∣∣∣
∞∑
n=0

anx
n −

∞∑
n=0

an

∣∣∣∣∣ = |s(x)− s(1)|

≤ |s(x)− sN(x)|+ |sN(x)− sN(1)|+ |sN(1)− s(1)|

< ε/3 + ε/3 + ε/3 = ε

as desired. �

Exercise 4.15 (L2.2.12). Let (an)∞n=0 be a sequence in R defined recursively as follows:

an = an−1 + an−2, a0 = 1, a1 = 2. (4.2)

Determine the radius of convergence of
∑∞

n=0 anz
n.

Solution. From Exercise A.14 in the Appendix it is known that the difference equation in (4.2)
has general solution an = Aαn + Bβn (A and B arbitrary constants) if α and β are distinct
roots to the auxiliary equation

T 2 − T − 1 = 0.

Solving the auxiliary equation yields

T =
1±
√

5

2
,

and so

an = A

(
1 +
√

5

2

)n
+B

(
1−
√

5

2

)n
.

We find a particular solution to the initial value problem (4.2) by applying the initial conditions
a0 = 1 and a1 = 2 to obtain the system{

A + B = 1
1+
√

5
2
A + 1+

√
5

2
B = 2

Solving the system yields

A =
5 + 3

√
5

10
and B =

5− 3
√

5

10
,

and so

an =
5 + 3

√
5

10

(
1 +
√

5

2

)n
+

5− 3
√

5

10

(
1−
√

5

2

)n
.

To find the radius of convergence of
∑
anz

n we may employ the Ratio Test, since it is clear
from (4.2) that an 6= 0 for all n. To start, we have

lim
n→∞

∣∣∣∣an+1z
n+1

anzn

∣∣∣∣ = lim
n→∞

∣∣∣∣∣
[
(5 + 3

√
5 )(1 +

√
5 )n+1 + (5− 3

√
5 )(1−

√
5 )n+1

]
zn+1 · 10(2n)

10(2n+1) ·
[
(5 + 3

√
5 )(1 +

√
5 )n + (5− 3

√
5 )(1−

√
5 )n
]
zn

∣∣∣∣∣
= lim

n→∞

(∣∣∣∣∣(5 + 3
√

5 )(1 +
√

5 )n+1 + (5− 3
√

5 )(1−
√

5 )n+1

(5 + 3
√

5 )(1 +
√

5 )n + (5− 3
√

5 )(1−
√

5 )n

∣∣∣∣∣ · |z|2
)
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= lim
n→∞

∣∣∣∣∣∣
(20 + 8

√
5 ) + (20− 8

√
5 )
(

1−
√

5
1+
√

5

)n
(5 + 3

√
5 ) + (5− 3

√
5 )
(

1−
√

5
1+
√

5

)n
∣∣∣∣∣∣ · |z|2

.
Observing that

lim
n→∞

(
1−
√

5

1 +
√

5

)n
= 0

since |(1−
√

5)/(1 +
√

5)| < 1, we obtain

lim
n→∞

∣∣∣∣an+1z
n+1

anzn

∣∣∣∣ =

∣∣∣∣∣20 + 8
√

5

5 + 3
√

5

∣∣∣∣∣· |z|2 =
10 + 4

√
5

5 + 3
√

5
|z|,

so by Proposition 2.5(4)

lim sup

∣∣∣∣an+1z
n+1

anzn

∣∣∣∣ =
10 + 4

√
5

5 + 3
√

5
|z|.

By the Ratio Test the series
∑
anz

n converges absolutely if

10 + 4
√

5

5 + 3
√

5
|z| < 1,

or equivalently

|z| <
√

5− 1

2
.

The series diverges if |z| > 1
2
(
√

5− 1). Therefore the radius of convergence is 1
2
(
√

5− 1). �

Exercise 4.16 (L2.2.13). Let (an)∞n=0 be a sequence in R defined recursively as follows:

an = u1an−1 + u2an−2, a0 = a, a1 = b. (4.3)

Suppose that the difference equation’s auxiliary equation,

T 2 − u1T − u2 = 0,

has two distinct roots α, β 6= 0, such that |α| < |β|. Determine the radius of convergence of∑∞
n=0 anz

n.

Solution. From Exercise A.14 it is known that the difference equation in (4.3) has general
solution an = Aαn +Bβn, where A and B are arbitrary constants. The initial conditions a0 = a
and a1 = b can be used to determine A and B and thereby obtain a particular solution to the
initial value problem (refer to Equation (9) in the Appendix for the relevant formulas). To start
we assume that B 6= 0. We have

lim
n→∞

n
√
|anzn| = lim

n→∞
n

√∣∣(Aαn +Bβn)zn
∣∣ = lim

n→∞
|βz|

∣∣A(α/β)n +B
∣∣1/n. (4.4)

Since |α| < |β| implies that (α/β)n → 0 as n → ∞, there exists some N ∈ N such that
A(α/β)n +B 6= 0 for all n ≥ N , and thus∣∣A(α/β)n +B

∣∣1/n = exp
(

ln
(∣∣A(α/β)n +B

∣∣1/n)) = exp

(
ln
∣∣A(α/β)n +B

∣∣
n

)



102

for all n ≥ N . Now,

lim
n→∞

ln
∣∣A(α/β)n +B

∣∣ = ln |B|,
whence

lim
n→∞

ln
∣∣A(α/β)n +B

∣∣
n

= 0

obtains, and so

lim
n→∞

∣∣A(α/β)n +B
∣∣1/n = lim

n→∞
exp

(
ln
∣∣A(α/β)n +B

∣∣
n

)
= exp(0) = 1.

Returning to (4.4), we finally have

lim
n→∞

n
√
|anzn| = |βz| lim

n→∞

∣∣A(α/β)n +B
∣∣1/n = |β||z|,

and so by Proposition 2.5(4)

lim sup n
√
|anzn| = |β||z|.

From this we conclude by the Root Test that the series
∑
anz

n converges absolutely if
|z| < 1/|β| and diverges if |z| > 1/|β|. Therefore the radius of convergence is 1/|β| if B 6= 0,
regardless of whether A = 0 or A 6= 0.

If B = 0 and A 6= 0, then

lim sup n
√
|anzn| = lim

n→∞
n
√
|anzn| = lim

n→∞
n

√∣∣Aαnzn∣∣ = lim
n→∞

|α||z||A|1/n = |α||z|

and we conclude that the radius of convergence is 1/|α|.
The case A = B = 0 can only occur if a0 = a1 = 0, in which case an = 0 for all n ≥ 0 and

the series has radius of convergence ∞. �
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4.2 – Integral Formulas

Given z0 ∈ C and r > 0, let Cr(z0) denote the circle with center z0 and radius r; that is,

Cr(z0) = Br(z0) \Br(z0) = {z ∈ C : |z − z0| = r}.

The circle Cr(z0) will be parameterized by the function

γ(t) = z0 + reit, t ∈ [0, 2π], (4.5)

unless otherwise specified. We define ˛
Cr(z0)

f =

˛
γ

f,

with γ the path given by (4.5).

Theorem 4.17 (Cauchy’s Integral Formula for a Circle). Let f be analytic on Ω, z0 ∈ Ω,
and r > 0 such that Br(z0) ⊆ Ω. Then

f(z) =
1

2πi

˛
Cr(z0)

f(w)

w − z
dw

for all z ∈ Br(z0).

Proof. The proof in [AN] is clear, in the main, save for the step
˛
Cr(z0)

∞∑
n=0

(z − z0)n

(w − z0)n+1
dw =

∞∑
n=0

(˛
Cr(z0)

(z − z0)n

(w − z0)n+1
dw

)
. (4.6)

Fix z ∈ Br(z0), so that |z − z0| = r̂ for some r̂ < r, and for each n ≥ 0 define fn : Cr(z0)→ C
by

fn(w) =
(z − z0)n

(w − z0)n+1
.

Also define γ : [0, 2π]→ C by γ(t) = z0 + reit, so that γ∗ = Cr(z0) and fn ◦ γ : [0, 2π]→ C is
given by

(fn ◦ γ)(t) =
(z − z0)n

rn+1
e−it(n+1).

We see that fn ◦ γ ∈ R[0, 2π] for all n ≥ 0, since (z − z0)n/rn+1 (a constant) and e−it(n+1) are
each integrable on [0, 2π]. Moreover, since

∞∑
n=0

1

r

(
r̂

r

)n
is a convergent geometric series, and

‖fn‖ = sup
w∈Cr(z0)

∣∣∣∣ (z − z0)n

(w − z0)n+1

∣∣∣∣ = sup
w∈Cr(z0)

|z − z0|n

|w − z0|n+1
=

1

r

(
r̂

r

)n
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for all n ≥ 0, the Weierstrass M-Test implies that the series
∞∑
n=0

fn =
∞∑
n=0

(z − z0)n

(w − z0)n+1

converges uniformly on Cr(z0). Equation (4.6) now follows by Corollary 3.38. �

Corollary 4.18. If f is analytic on Ω and Br(z0) ⊆ Ω, then

f(z0) =
1

2π

ˆ 2π

0

f(z0 + reit)dt.

Proof. By Theorem 4.17, letting γ(t) = z0 + reit,

f(z0) =
1

2πi

˛
Cr(z0)

f(w)

w − z0

dw =
1

2πi

ˆ 2π

0

f(γ(t))

γ(t)− z0

γ′(t)dt

=
1

2πi

ˆ 2π

0

ireitf(z0 + reit)

reit
dt =

1

2π

ˆ 2π

0

f(z0 + reit)dt,

as desired. �

Theorem 4.19. Let γ be a path, g : γ∗ → C a continuous function, and Ω = C \ γ∗. Define
F : Ω→ C by

F (z) =

ˆ
γ

g(w)

w − z
dw.

Then F has derivatives of all orders on Ω,

F (n)(z) = n!

ˆ
γ

g(w)

(w − z)n+1
dw

for all z ∈ Ω and n ∈ N, and F (n)(z)→ 0 as |z| → ∞.

Corollary 4.20. If f is analytic on Ω, then f has derivatives of all orders on Ω, and for any
z0 ∈ Ω and r > 0 such that Br(z0) ⊆ Ω we have

f (n)(z) =
n!

2πi

˛
Cr(z0)

f(w)

(w − z)n+1
dw

for all z ∈ Br(z0) and n ∈ N.

Proof. Suppose f is analytic on Ω. Fix z0 ∈ Ω, and let r > 0 be such that Br(z0) ⊆ Ω. Define
γ : [0, 2π]→ C by (4.5), so that γ∗ = Cr(z0) ⊆ Ω, and define g : γ∗ → C by g(w) = f(z)/2πi.
Since f is analytic—and hence continuous—on Ω, we see that g is continuous on γ∗. If we define
F : C \ γ∗ → C by

F (z) =

˛
γ

g(w)

w − z
dw,

then F has derivatives of all orders on C \ γ∗ by Theorem 4.19. Now, since Br(z0) ⊆ C \ γ∗, by
Theorem 4.17

f(z) =
1

2πi

˛
Cr(z0)

f(w)

w − z
dw =

˛
Cr(z0)

f(w)/2πi

w − z
dw =

˛
γ

g(w)

w − z
dw = F (z)
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for all z ∈ Br(z0), and so f has derivatives of all orders on Br(z0) such that

f (n)(z) = F (n)(z) = n!

˛
γ

g(w)

(w − z)n+1
dw =

n!

2πi

˛
Cr(z0)

f(w)

(w − z)n+1
dw

for all z ∈ Br(z0) and n ∈ N.
Finally, we observe that f has derivatives of all orders at z0 in particular, and since z0 ∈ Ω

is arbitrary, it follows that f has derivatives of all orders on Ω. �

Corollary 4.21. If f has a primitive on Ω, then f is analytic on Ω.

Proof. Suppose f has a primitive on Ω. Thus there exists F : Ω→ C with F ′ = f . Since F
is analytic on Ω, by Corollary 4.20 it has derivatives of all orders, and so f ′ = F ′′ exists on Ω.
Therefore f is analytic on Ω. �

Corollary 4.22. If f is continuous on Ω and analytic on Ω \ {z0}, then f is analytic on Ω.

Proof. Suppose f is continuous on Ω and analytic on Ω \ {z0}. Fix z ∈ Ω, and let ε > 0 be
such that Bε(z) ⊆ Ω. If z0 /∈ Bε(z), then the analyticity of f on Bε(z) is immediate. Suppose
z0 ∈ Bε(z), then since Bε(z) is a starlike region, f is continuous on Bε(z), and f is analytic
on Bε(z) \ {z0}, Theorem 3.49(2) implies that f has a primitive on Bε(z). Now Corollary 4.21
implies that f is analytic on Bε(z), and in particular analytic at z. Since z ∈ Ω is arbitrary, we
conclude that f is analytic on Ω. �

Theorem 4.23 (Morera’s Theorem). If f is continuous on Ω and
¸

∆
f = 0 for every triangle

∆ such that Conv(∆) ⊆ Ω, then f is analytic on Ω.

Proof. Suppose f is continuous on Ω and
¸

∆
f = 0 for every triangle ∆ such that Conv(∆) ⊆ Ω.

Fix z0 ∈ Ω, and choose ε > 0 so that Ω′ := Bε(z0) ⊆ Ω. Then Ω′ is starlike with star center z0.
Since f is continuous on Ω′, we may define F : Ω′ → C by

F (z) =

ˆ
[z0,z]

f.

Fix w ∈ Ω′, and let r > 0 be such that Br(w) ⊆ Ω′. For all z ∈ B′r(w) we have

F (z)− F (w)

z − w
=

1

z − w

(ˆ
[z0,z]

f −
ˆ

[z0,w]

f

)
.

Since Conv[z, z0, w, z] ⊆ Ω, the equation (3.31) in the proof of Cauchy’s Theorem for Starlike
Regions holds,2 and as in that proof we come to conclude that F is a primitive for f on Ω′.
Hence f is analytic on Bε(z0) by Corollary 4.21, implying that f is analytic at z0 ∈ Ω, and
therefore f is analytic on Ω. �

2In the proof of Theorem 3.40 the hypothesized analyticity of f enabled the use of Goursat’s Theorem to
obtain (3.31).
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We define H to be the upper half-plane of C, and C \H the lower half-plane; that is,

H = {z ∈ C : Im z > 0} and C \H = {z ∈ C : Im z < 0},

where of course H = H ∪ R is the closure of the upper half-plane.

Theorem 4.24 (Schwarz Reflection Principle). Suppose f : H → C is continuous on H,
analytic on H, and f(x) ∈ R for all x ∈ R. Then f has an analytic extension to all of C.

A full proof of the Schwarz Reflection Principle is furnished by Exercises 4.25 and 4.26 below,
after which we apply results of this section to a matter concerning harmonic functions.

Exercise 4.25 (AN2.2.10). Suppose f : H → C is continuous on H, analytic on H, and
f(x) ∈ R for all x ∈ R. Define f ∗ : C→ C by

f ∗(z) =

{
f(z), z ∈ H

f(z), z ∈ C \H

Show that f ∗ is analytic on C \ R and continuous on C.

Solution. Clearly f ∗ is continuous on H. Fix z ∈ C \H, and let ε > 0 be arbitrary. Since z
is in the open set H, and f is continuous on H, there exists some δ > 0 such that Bδ(z) ⊆ H,
and w ∈ Bδ(z) implies |f(w)− f(z)| < ε. Suppose that w ∈ Bδ(z), where Bδ(z) ⊆ C \H. Then
w ∈ Bδ(z), and so |f(w)− f(z)| < ε. Now,

|f ∗(w)− f ∗(z)| =
∣∣∣f(w)− f(z)

∣∣∣ =
∣∣∣f(w)− f(z)

∣∣∣ = |f(w)− f(z)| < ε

and we conclude that f ∗ is continuous on C \H.
Fix x ∈ R, and again let ε > 0. Since f is continuous on H, there exists some δ > 0 such

that w ∈ Bδ(x) ∩ H implies |f(w) − f(x)| < ε. Suppose that w ∈ Bδ(x). If w ∈ H, then
|f(w)− f(x)| < ε, and hence |f ∗(w)− f ∗(x)| < ε. Suppose that w /∈ H. Then w ∈ C \H, so
that w ∈ H. Since

|w − x| =
∣∣w − x∣∣ = |w − x| = |w − x| < δ,

we see that w ∈ Bδ(x)∩H and therefore |f(w)− f(x)| < ε. Now, recalling that x, f(x) ∈ R, we
obtain

|f ∗(w)− f ∗(x)| =
∣∣∣f(w)− f(x)

∣∣∣ =
∣∣∣f(w)− f(x)

∣∣∣ = |f(w)− f(x)| < ε

once again, and we conclude that f ∗ is continuous on R. Therefore f ∗ is continuous on C.
Clearly f ∗ is analytic on H. Fix z ∈ C \H. Then z ∈ H, and so

f ′(z) = lim
h→0

f(z + h)− f(z)

h
∈ C.

Fix ε > 0. Then there exists some δ > 0 such that

0 < |h| < δ ⇒
∣∣∣∣f(z + h)− f(z)

h
− f ′(z)

∣∣∣∣ < ε.
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Now, 0 < |h| < δ if and only if 0 < |h| < δ, and so we obtain∣∣∣∣f(z + h)− f(z)

h
− f ′(z)

∣∣∣∣ < ε,

which yields ∣∣∣∣∣f
(
z + h

)
− f(z)

h
− f ′(z)

∣∣∣∣∣ < ε

by taking the conjugate of the number inside the absolute value. Assuming δ to be sufficiently
small so that z + h ∈ C \H, we then have∣∣∣∣f ∗(z + h)− f ∗(z)

h
− f ′(z)

∣∣∣∣ < ε.

Therefore

(f ∗)′(z) = lim
h→0

f ∗(z + h)− f ∗(z)

h
= f ′(z) ∈ C,

which shows that f ∗ is differentiable at z, and therefore f ∗ is analytic on C \H. �

Exercise 4.26 (AN2.2.11). Prove that the function f ∗ defined in the previous exercise is
analytic on C.

Solution. It has already been shown that f ∗ is continuous on C. If we can show that
´

∆
f ∗ = 0

for every triangle ∆ = [z1, z2, z3, z1], then the desired result will follow from Morera’s Theorem.
Since f ∗ is already known to be analytic on H and C \H, we have

´
∆
f ∗ = 0 for any ∆ in H or

C \H by Goursat’s Theorem. The degenerate case when z1, z2, and z3 are collinear is easily
dispatched with Proposition 3.30, and so it remains to analyze triangles ∆ for which ∆∩R 6= ∅.
There are three cases: (I) ∆ ∩ R contains one point, (II) two points, or (III) a line segment.

Case (I) occurs when all but a single vertex z1 of ∆ is in H or C \H. Suppose ∆ \ {z1} ⊆ H,
as shown at left in Figure 8. Let ε > 0 and choose points αε ∈ [z1, z2] and βε ∈ [z1, z3] such that
d(αε, z1) = d(βε, z1) = ε, as at right in Figure 8, so that d(αε, βε) < 2ε. Also let

M = sup
z∈Conv ∆

|f ∗(z)|,

which is a real number since f ∗ is continuous on the compact set Conv(∆). Let γ be the closed
path [αε, βε, z3, z2, αε]. Since f ∗ is analytic on the starlike region H and γ∗ ⊆ H, by Cauchy’s
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Theorem for Starlike Regions we obtain
´
γ
f ∗ = 0. This, along with Proposition 3.30, implies

that ˆ
[z2,z3]

f ∗ =

ˆ
[αε,βε]

f ∗ −
ˆ

[z3βε]

f ∗ −
ˆ

[αε,z2]

f ∗.

Substituting this into˛
∆

f ∗ =

ˆ
[z1,αε]

f ∗ +

ˆ
[αε,z2]

f ∗ +

ˆ
[z2,z3]

f ∗ +

ˆ
[z3,βε]

f ∗ +

ˆ
[βε,z1]

f ∗

yields ˛
∆

f ∗ =

ˆ
[z1,αε]

f ∗ +

ˆ
[αε,βε]

f ∗ +

ˆ
[βε,z1]

f ∗ =

˛
∆ε

f ∗,

where we define ∆ε = [z1, αε, βε, z1]. By Theorem 3.23,∣∣∣∣˛
∆

f ∗
∣∣∣∣ =

∣∣∣∣˛
∆ε

f ∗
∣∣∣∣ ≤ L(∆ε) sup

z∈∆ε

|f ∗(z)| ≤ 4Mε,

and since ε > 0 is arbitrary we conclude that
´

∆
f ∗ = 0. By symmetry the same holds if

∆ \ {z1} ⊆ C \H.
Before addressing Case (II), we first consider a rectangular path R = [z1, z2, z3, z4, z1] in H

such that [z1, z2] ⊆ R, as shown at left in Figure 9. For small δ > 0 define the rectangular paths

Rδ = [z1, z2, z2 + iδ, z1 + iδ, z1] and R′δ = [z1 + iδ, z2 + iδ, z3, z4, z1 + iδ],

shown at right in Figure 9. It’s straightforward to verify that“
R

f ∗ =

“
Rδ

f ∗ +

“
R′δ

f ∗ =

“
Rδ

f ∗,

where “
R′δ

f ∗ = 0

by Cauchy’s Theorem for Starlike Regions since the closed path R′δ lies in H and f ∗ is analytic
on H. Fix ε > 0. Let

M = sup
z∈ConvR

|f ∗(z)|.

Since f ∗ is uniformly continuous on Conv(R), there exists some 0 < δ < ε such that z, w ∈ R
with |z − w| < 2δ implies that

|f ∗(z)− f ∗(w)| < ε

2|z2 − z1|
.
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Defining γ1, γ2 : [0, 1]→ C by

γ1(t) = (1− t)z1 + tz2 and γ2(t) = (1− t)(z1 + iδ) + t(z2 + iδ),

and observing that γ1(t), γ2(t) ∈ R are such that

|γ2(t)− γ1(t)| = |iδ| = δ

for all 0 ≤ t ≤ 1, we obtain∣∣∣∣ˆ
[z1,z2]

f ∗ −
ˆ

[z1+iδ,z2+iδ]

f ∗
∣∣∣∣ =

∣∣∣∣ˆ 1

0

f ∗(γ1(t))(z2 − z1)dt−
ˆ 1

0

f ∗(γ2(t))(z2 − z1)dt

∣∣∣∣
= |z2 − z1|

∣∣∣∣ˆ 1

0

[
f ∗(γ1(t))− f ∗(γ2(t))

]
dt

∣∣∣∣
≤ |z2 − z1|

ˆ 1

0

∣∣f ∗(γ1(t))− f ∗(γ2(t))
∣∣dt

≤ |z2 − z1| ·
ε

2|z2 − z1|
< ε.

Applying Theorem 3.23,∣∣∣∣“
R

f ∗
∣∣∣∣ =

∣∣∣∣“
Rδ

f ∗
∣∣∣∣ =

∣∣∣∣ˆ
[z1,z2]

f ∗ +

ˆ
[z2,z2+iδ]

f ∗ +

ˆ
[z2+iδ,z1+iδ]

f ∗ +

ˆ
[z1+iδ,z1]

f ∗
∣∣∣∣

≤
∣∣∣∣ˆ

[z1,z2]

f ∗ −
ˆ

[z1+iδ,z2+iδ]

f ∗
∣∣∣∣+

∣∣∣∣ˆ
[z1,z1+iδ]

f ∗
∣∣∣∣+

∣∣∣∣ˆ
[z2,z2+iδ]

f ∗
∣∣∣∣

< ε+M |iδ|+M |iδ| = ε+ 2Mδ ≤ ε+ 2Mε = (1 + 2M)ε.

Since ∣∣∣∣“
R

f ∗
∣∣∣∣ < (1 + 2M)ε

for arbitrary ε > 0, we conclude that
´
R
f ∗ = 0. By symmetry the same holds if R ⊆ C \H.

Next, let ∆ = [z1, z2, z3, z1] be a right triangle in H such that [z1, z2] ⊆ R and Re z2 = Re z3.
Set z4 = z1 + Im z3, so that R = [z1, z2, z3, z4, z1] is a rectangle with side [z1, z2] in R. Defining
∆′ = [z1, z3, z4, z1], we obtain “

R

f ∗ =

˛
∆

f ∗ +

˛
∆′
f ∗,

but since “
R

f ∗ = 0 and

˛
∆′
f ∗ = 0

(∆′ is a Case (I) triangle), it follows that ˛
∆

f ∗ = 0. (4.7)

We now know that every right triangle ∆ ⊆ H, including any with a vertex or a side in R, must

satisfy (4.7). By symmetry the same holds if ∆ ⊆ C \H.
Now we deal with Case (II). If ∆ is any arbitrary triangle in H such that [z1, z2] ⊆ R, we

can construct two right triangles ∆1 and ∆2 such that the three triangles taken together form a
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rectangle R with bottom side in R. Thus, applying (4.7) to the path integrals over ∆1 and ∆2,
we obtain ˛

∆

f ∗ =

˛
∆

f ∗ +

˛
∆1

f ∗ +

˛
∆2

f ∗ =

“
R

f ∗ = 0,

as desired. We now know that every arbitrary triangle ∆ ⊆ H must satisfy (4.7). By symmetry

the same is true if ∆ ⊆ C \H.
Finally we examine the case when ∆∩R consists of precisely two points. This can only occur

if H contains two vertices of ∆ and C \H one vertex, or C \H contains two vertices and H one
vertex. We will examine the case shown at left in Figure 10, where two vertices lie in H and one
in C \H. Other scenarios (including those in which a vertex lies on R) are handled similarly.
Set ∆ = [z1, z2, z3, z1], with z1 ∈ C \H and z2, z3 ∈ H. Let a ∈ [z1, z2] ∩ R and b ∈ [z2, z3] ∩ R
be the two points of intersection between ∆ and R. Define the triangles

∆1 = [a, z2, z3, a], ∆2 = [a, z3, z1, a], and ∆3 = [a, z3, b, a],

as at right in Figure 10. For each k, ∆k is a triangle that is a subset of either H or C \H, and so˛
∆k

f ∗ = 0.

Therefore ˛
∆

f ∗ =

˛
∆1

f ∗ +

˛
∆2

f ∗ +

˛
∆3

f ∗ = 0.

By symmetry the same outcome will be realized if z1 ∈ H and z2, z3 ∈ C \H.
At this juncture we have shown that

´
∆
f ∗ = 0 for any triangle ∆ = [z1, z2, z3, z1] ⊆ C.

Therefore f ∗ is analytic on C by Morera’s Theorem. �

Exercise 4.27 (AN2.2.15). Use Morera’s Theorem to prove the following. Suppose fn : Ω→ C
is analytic on Ω for each n ∈ N. If f : Ω → C is such that the sequence (fn|K) converges
uniformly to f |K on every compact set K ⊆ Ω, then f is analytic on Ω.

Solution. Fix z ∈ Ω. If r > 0 is such that B2r(z) ⊆ Ω, then K = Br(z) is a compact subset of
Ω so that (fn|K) converges uniformly to f |K . Since each fn|K is continuous on K, by Theorem
2.54 it follows that f |K is also continuous on K. Hence f is continuous at z, and since z ∈ Ω is
arbitrary we conclude that f is continuous on Ω.
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Let ∆ = [z0, z1, z2, z0] ⊆ Ω such that N = Conv(∆) ⊆ Ω. It is clear that
´

∆
f = 0 if ∆ = {z0},

so we discount the case when ∆ is a point and assume that L(∆) > 0. Fix ε > 0. By Goursat’s
Theorem we have ˛

∆

fn = 0

for all n ∈ N. Also, since fn → f uniformly on N, there exists some n0 ∈ N such that for all
n ≥ n0 and z ∈ N,

|f(z)− fn(z)| < ε

L(∆)
.

Now, letting n ≥ n0 and applying Theorem 3.23, we obtain∣∣∣∣˛
∆

f

∣∣∣∣ =

∣∣∣∣˛
∆

f −
˛

∆

fn

∣∣∣∣ =

∣∣∣∣˛
∆

(f − fn)

∣∣∣∣ ≤ L(∆) sup
z∈∆

∣∣(f − fn)(z)
∣∣

≤ L(∆) sup
z∈N

∣∣(f − fn)(z)
∣∣ ≤ L(∆) · ε

L(∆)
= ε.

Since ε > 0 is arbitrary, we conclude that ˛
∆

f = 0.

It is now established that f : Ω→ C is a continuous function such that
´

∆
f = 0 for every

triangle ∆ such that Conv(∆) ⊆ Ω. Therefore f is analytic on Ω by Morera’s Theorem. �

Theorem 4.28. Let u, v : Ω→ R. If f = u+ iv is analytic on Ω, then u and v are harmonic
on Ω.

Proof. Suppose f = u+ iv is analytic on Ω. Then, by Theorem 3.7, ux = vy and uy = −vx with
f ′ = ux + ivx = ux − iuy on Ω. Since f has derivatives of all orders by Corollary 4.20, both f ′

and f ′′ are differentiable—and hence continuous—on Ω. By Theorem 2.23 it follows that the real
and imaginary parts of f ′ and f ′′ are continuous on Ω. Thus ux and uy are continuous on Ω in
particular. Applying Theorem 3.7 to f ′, we have f ′′ = uxx+ ivxx with uxx = vxy and uxy = −vxx,
which shows that uxx and uxy are continuous. Making use of the Cauchy-Riemann equations,
from uyx = −vxx and uyy = −vxy = −uxx we see that uyx and uyy are also continuous. Hence
all first- and second-order partial derivatives of u are continuous, and also uxx + uyy = 0, so
that u is seen to be harmonic on Ω. Similar arguments will show v to be likewise harmonic. �
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4.3 – Taylor Series Representation

A function f is representable by power series on Ω if, for each z0 ∈ Ω, there exists a
sequence (an)∞n=0 in C such that, for any r > 0 with Br(z0) ⊆ Ω,

f(z) =
∞∑
n=0

an(z − z0)n

for all z ∈ Br(z0).

Theorem 4.29. If f is analytic on Ω, then f is representable by power series on Ω. In fact,
for any Br(z0) ⊆ Ω we have

f(z) =
∞∑
n=0

f (n)(z0)

n!
(z − z0)n (4.8)

for all z ∈ Br(z0). The series, called the Taylor series for f at z0, converges absolutely on
Br(z0) and uniformly on compact subsets of Br(z0).

Proof. Suppose f is analytic on Ω, fix z0 ∈ Ω, and define the sequence (an)∞n=0 by an =
f (n)(z0)/n!. Let r > 0 be such that B(z0) ⊆ Ω, and let z ∈ Br(z0). Let |z − z0| < ρ < r, so

z ∈ Bρ(z0) ⊆ Bρ(z0) ⊆ Br(z0) ⊆ Ω.

By Theorem 4.17,

f(z) =
1

2πi

˛
Cρ(z0)

f(w)

w − z
dw =

1

2πi

˛
Cρ(z0)

f(w)

(w − z0)− (z − z0)
dw

=
1

2πi

˛
Cρ(z0)

f(w)

w − z0

· 1

1− z−z0
w−z0

dw =
1

2πi

˛
Cρ(z0)

f(w)

w − z0

∞∑
n=0

(
z − z0

w − z0

)n
dw,

since ∣∣∣∣ z − z0

w − z0

∣∣∣∣ =
|z − z0|
|w − z0|

<
ρ

r
< 1.

Making use of Corollary 3.38 in the same manner as in the proof of Theorem 4.17, we next
obtain

f(z) =
1

2πi

˛
Cρ(z0)

∞∑
n=0

[
f(w)

w − z0

(
z − z0

w − z0

)n]
dw =

1

2πi

∞∑
n=0

˛
Cρ(z0)

f(w)

w − z0

(
z − z0

w − z0

)n
dw

=
∞∑
n=0

[
1

2πi

˛
Cρ(z0)

f(w)

(w − z0)n+1
dw

]
(z − z0)n =

∞∑
n=0

f (n)(z0)

n!
(z − z0)n,

the last equality given by Corollary 4.20. This shows that f is representable by power series on
Ω, and specifically it is representable by the power series in (4.8).

Now, since (4.8) holds for all z ∈ Br(z0), it is immediate that the series is convergent on
Br(z0), and by Proposition 4.3 it follows that the series converges absolutely on Br(z0). Thus by
Theorem 4.2(1) the radius of convergence of the series is at least r, and therefore by Theorem
4.2(4) we conclude that the series converges uniformly on compact subsets of Br(z0). �
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Theorem 4.30. Suppose (fn) is a sequence of analytic functions on Ω. Suppose f : Ω → C
is such that fn−→u f on compact subsets of Ω. Then f is analytic on Ω, and f

(k)
n −→u f (k) on

compact subsets of Ω for each k ∈ N.

Proposition 4.31. Let r > 0, and let Ω be an open set.

1. If f is a complex-valued function given by

f(z) =
∞∑
n=0

an(z − z0)n

for all z ∈ Br(z0), then f is analytic on Br(z0).
2. If f is representable on Ω by power series, then f is analytic on Ω.

Proof.
Proof of Part (1). By Theorem 4.2 the given series converges uniformly on compact subsets of
Br(z0), which is to say if (σn) is the sequence of functions Br(z0)→ C given by

σn(z) =
n∑
k=0

ak(z − z0)k,

then on each compact K ⊆ Br(z0) the sequence (σn) converges uniformly to some function
σK : K → C. Now, since for each z ∈ Br(z0) we have

lim
n→∞

σn(z) =
∞∑
k=0

ak(z − z0)k = f(z),

so that (σn) is seen to converge pointwise to f on Br(z0), it follows that σK = f |K , and hence
(σn) converges uniformly to f on every compact subset of Br(z0). Clearly each σn, being a
polynomial function, is analytic on Br(z0), and thus the function f is analytic on Br(z0) by
Theorem 4.30.

Proof of Part (2). Suppose f is representable on Ω by power series. Fix z0 ∈ Ω. There exists
some ε > 0 such that Bε(z0) ⊆ Ω, and so there exists a sequence (an)∞n=0 in C such that

f(z) =
∞∑
n=0

an(z − z0)n

for all z ∈ Bε(z0). By Part (1) it follows that f is analytic on Bε(z0), and so in particular f is
complex-differentiable at z0. Since z0 ∈ Ω is arbitrary we conclude that f is analytic on Ω. �

Suppose f is analytic on Ω. Then f has derivatives of all orders on Ω by Corollary 4.20, and
so f (k) is analytic on Ω for any k ∈ N. It follows by Theorem 4.29 that for any Br(z0) ⊆ Ω we
have

f (k)(z) =
∞∑
n=0

(f (k))(n)(z0)

n!
(z − z0)n =

∞∑
n=0

f (n+k)(z0)

n!
(z − z0)n.

Reindexing and applying a little algebra then gives

f (k)(z) =
∞∑
n=k

f (n)(z0)

(n− k)!
(z − z0)n−k =

∞∑
n=k

f (n)(z0)

n!
n(n− 1) · · · (n− k + 1)(z − z0)n−k.
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In particular we have

f ′(z) =
∞∑
n=1

f (n)(z0)

n!
n(z − z0)n−1, (4.9)

which shows that on Br(z0) the series for f ′(z) may be obtained from the series for f(z) by
differentiating termwise:

f ′(z) =
d

dz

∞∑
n=0

f (n)(z0)

n!
(z − z0)n =

∞∑
n=0

f (n)(z0)

n!

d

dz
(z − z0)n =

∞∑
n=0

f (n)(z0)

n!
n(z − z0)n−1,

where (4.9) follows by noting that the 0th term is zero.
The next theorem establishes the same series formula for f (k) derived above, but also makes

clear that the coefficients of the series found for f in Theorem 4.29 are unique. That is, if f is
given by a power series

∞∑
n=0

an(z − z0)n

on Br(z0) ⊆ Ω, then the coefficients an can only be f (n)(z0)/n! for n ≥ 0.

Theorem 4.32. Define f : Br(z0)→ C by

f(z) =
∞∑
n=0

an(z − z0)n.

Then f has derivatives of all orders on Br(z0), with f (k) : Br(z0)→ C given by

f (k)(z) =
∞∑
n=k

n(n− 1) · · · (n− k + 1)an(z − z0)n−k.

Consequently, an = f (n)(z0)/n! for each n ≥ 0.

Proof. By Proposition 4.31(1) the function f is analytic on Br(z0), and hence f has derivatives
of all orders on Br(z0) by Corollary 4.20. The rest of the argument begins where the proof of
Proposition 4.31(1) left off. By Theorem 4.30,

σ(k)
n −→u f (k)

on compact subsets of Br(z0) for each k ∈ N, which implies that (σ
(k)
n ) converges pointwise to

the function f (k) on Br(z0). That is, for each z ∈ Br(z0) and k ∈ N,

f (k)(z) = lim
n→∞

σ(k)
n (z) = lim

n→∞

n∑
j=k

j(j − 1) · · · (j − k + 1)aj(z − z0)j−k

=
∞∑
n=k

n(n− 1) · · · (n− k + 1)an(z − z0)n−k, (4.10)

as was to be shown.
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Setting z = z0 in the series for f(z) readily yields a0 = f(z0), and for each k ≥ 1 we may set
z = z0 in (4.10) to obtain

f (k)(z0) = k(k − 1) · · · (1)ak = k!ak,

whence ak = f (k)(z0)/k! obtains. Therefore an = f (n)(z0)/n! for each n ≥ 0. �

Corollary 4.33. If
∞∑
n=0

an(z − z0)n =
∞∑
n=0

bn(z − z0)n ∈ C

for all z ∈ Br(z0), then an = bn for all n ≥ 0.

Proof. Define f : Br(z0)→ C by

f(z) =
∞∑
n=0

an(z − z0)n

for all z ∈ Br(z0). Then

f(z) =
∞∑
n=0

bn(z − z0)n

for all z ∈ Br(z0) also, and so

an = bn =
f (n)(z0)

n!
for all n ≥ 0 by Theorem 4.32. �

Exercise 4.34 (L2.1.2). Let f : Br(0)→ C be given by

f(z) =
∞∑
n=0

anz
n,

so that

f(−z) =
∞∑
n=0

an(−z)n =
∞∑
n=0

(−1)nanz
n

on Br(0). Define f to be even if an = 0 for n odd, and odd if an = 0 for n even. Show that f
is even iff f(−z) = f(z), and f is odd iff f(−z) = −f(z).

Solution. Suppose f is even. If n is odd, then an = 0 and so an = 0 = (−1)nan. If n is even,
then (−1)n = 1 and so an = (−1)nan. Hence (−1)nan = an for all n ≥ 0, and therefore

f(−z) =
∞∑
n=0

(−1)nanz
n =

∞∑
n=0

anz
n = f(z).

For the converse, suppose f(−z) = f(z) on Br(0); that is,
∞∑
n=0

(−1)nanz
n =

∞∑
n=0

anz
n
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for all z ∈ Br(0). Then an = (−1)nan for all n ≥ 0 by Corollary 4.33. If n is odd, then
(−1)n = −1 implies that an = −an, whence an = 0 obtains and we conclude that f(z) is even.

Next, suppose f is odd. If n is even, then an = 0 and so −an = 0 = (−1)nan. If n is odd,
then (−1)n = −1 and so −an = (−1)nan. Hence (−1)nan = −an for all n ≥ 0, and therefore

f(−z) =
∞∑
n=0

(−1)nanz
n =

∞∑
n=0

−anzn = −
∞∑
n=0

anz
n = −f(z).

For the converse, suppose f(−z) = −f(z) on Br(0); that is,

∞∑
n=0

(−1)nanz
n = −

∞∑
n=0

anz
n =

∞∑
n=0

−anzn

for all z ∈ Br(0). Then −an = (−1)nan for all n ≥ 0 by Corollary 4.33. If n is even, then
(−1)n = 1 implies that −an = an, whence an = 0 obtains and we conclude that f(z) is odd. �

Exercise 4.35 (AN2.2.3). Define f : R→ R by

f(x) =

{
e−1/x2 , if x 6= 0

0, if x = 0

We find that f has derivatives of all orders on R, with f (n)(0) = 0 for all n ≥ 0. Hence the
Taylor series for f about 0 does not converge to f .

Fix r > 0, and suppose there exists a function g that is analytic on Br(0) such that g = f
on (−r, r). By a theorem it follows that

g(z) =
∞∑
n=0

g(n)(0)

n!
zn

for all z ∈ Br(0).
Observe that since g = f on (−r, r), we have

g(0)(x) = g(x) = f(x) = f (0)(x)

for all x ∈ (−r, r). Let n ≥ 0 be arbitrary and suppose that g(n)(x) = f (n)(x) for all x ∈ (−r, r).
By Corollary 4.20 the function g has derivatives of all orders on Br(0), so for any x ∈ (−r, r)
we find that

g(n+1)(x) = lim
h→0

g(n)(h)− g(n)(x)

h

exists in C. That is, there is some complex number g(n+1)(x) such that, for all ε > 0, there
exists some δ > 0 for which ∣∣∣∣g(n)(h)− g(n)(x)

h
− g(n+1)(x)

∣∣∣∣ < ε

whenever 0 < |h| < δ. In particular this implies that∣∣∣∣f (n)(t)− f (n)(x)

t
− g(n+1)(x)

∣∣∣∣ < ε
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whenever t ∈ (−r, r) with 0 < |t| < δ, using the inductive hypothesis that g(n) = f (n) on (−r, r).
Hence

f (n+1)(x) = lim
t→0

f (n)(t)− f (n)(x)

t
= g(n+1)(x),

and we conclude that g(n+1) = f (n+1) on (−r, r).
Therefore g(n) = f (n) on (−r, r) for all n ≥ 0 by induction, and so for z ∈ Br(0) we find that

g(z) =
∞∑
n=0

g(n)(0)

n!
zn =

∞∑
n=0

f (n)(0)

n!
zn = 0.

That is, g = 0 on Br(0), which implies that f = 0 on (−r, r), which is a contradiction. Thus,
for any r > 0 there can be no analytic function Br(0)→ C which equals f on (−r, r). �

Exercise 4.36 (AN2.2.5). Prove that if f is analytic at z0, then it is not possible that

|f (n)(z0)| > n!bn

for all n ∈ N, where (bn)1/n →∞ as n→∞.

Solution. We will prove the contrapositive of the statement. Suppose |f (n)(z0)| > n!bn for all
n ∈ N, where (bn)1/n →∞ as n→∞. For any z 6= z0,

ρ = lim sup
n→∞

∣∣∣∣f (n)(z0)

n!
(z − z0)n

∣∣∣∣1/n = lim sup
n→∞

(
|f (n)(z0)|

n!

)1/n

|z − z0|

≥ lim sup
n→∞

(
n!bn
n!

)1/n

|z − z0| = lim sup
n→∞

(bn)1/n|z − z0| =∞,

and so by the Root Test the series

∞∑
n=0

f (n)(z0)

n!
(z − z0)n

is not convergent on Br(z0) for any r > 0. Thus, if Ω is any open set containing z0, there exists
some Br(z0) ⊆ Ω for which

f(z) =
∞∑
n=0

f (n)(z0)

n!
(z − z0)n

fails to hold, and so f is not analytic on Ω by Theorem 4.29. Since Ω is an arbitrary open set
containing z0, we conclude that f is not analytic at z0. �

Exercise 4.37 (AN2.2.6). Let f : Ω→ C be analytic, and for z0 ∈ Ω let r > 0 be such that
Br(z0) ⊆ Ω. For each n ≥ 0 define Rn : Br(z0)→ C by

Rn(z) = f(z)−
n∑
k=0

f (k)(z0)

k!
(z − z0)k.

Show the following.
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(a) If z ∈ C is such that |z − z0| < ρ < r, then

Rn(z) =
(z − z0)n+1

2πi

˛
Cρ(z0)

f(w)

(w − z)(w − z0)n+1
dw.

(b) If z ∈ C is such that |z − z0| ≤ s < ρ < r, then

|Rn(z)| ≤ ρ

ρ− s

(
s

ρ

)n+1

max
w∈Cρ(z0)

|f(w)|.

Solution. (a) Let z ∈ C be such that |z − z0| < ρ < r. Let C = Cρ(z0). Since Bρ(z0) ⊆ Ω, by
Cauchy’s Integral Formula for a Circle and Corollary 4.20,

Rn(z) =
1

2πi

˛
C

f(w)

w − z
dw − 1

2πi

n∑
k=0

˛
C

(z − z0)kf(w)

(w − z0)k+1
dw

=
1

2πi

˛
C

f(w)

(
1

w − z
−

n∑
k=0

(z − z0)k

(w − z0)k+1

)
dw.

Now,
1

w − z
=

1

(w − z0)− (z − z0)
=

1

w − z0

· 1

1− z − z0

w − z0

=
∞∑
k=0

(z − z0)k

(w − z0)k+1
,

and so

Rn(z) =
1

2πi

˛
C

f(w)

(
∞∑
k=0

(z − z0)k

(w − z0)k+1
−

n∑
k=0

(z − z0)k

(w − z0)k+1

)
dw

=
1

2πi

˛
C

(
f(w)

∞∑
k=n+1

(z − z0)k

(w − z0)k+1

)
dw

=
(z − z0)n+1

2πi

˛
C

(
f(w)

(w − z0)n+1

∞∑
k=0

(z − z0)k

(w − z0)k+1

)
dw

=
(z − z0)n+1

2πi

˛
C

f(w)

(w − z)(w − z0)n+1
dw.

(b) Let z ∈ C be such that z ∈ C is such that |z− z0| ≤ s < ρ < r. For any w ∈ Cρ(z0) we have

|w − z| = |(w − z0) + (z0 − z)| ≥
∣∣|w − z0| − |z0 − z|

∣∣ =
∣∣ρ− |z0 − z|

∣∣ = ρ− |z − z0| ≥ ρ− s,
so that

1

|w − z|
≤ 1

ρ− s
,

and then part (a) and Theorem 3.23 gives

|Rn(z)| ≤ |z − z0|n+1

2π

∣∣∣∣∣
˛
Cρ(z0)

f(w)

(w − z)(w − z0)n+1
dw

∣∣∣∣∣ ≤ ρsn+1 sup
w∈Cρ(z0)

|f(w)|
|w − z||w − z0|n+1

= ρsn+1 sup
w∈Cρ(z0)

|f(w)|
(ρ− s)ρn+1

=
ρ

ρ− s

(
s

ρ

)n+1

max
w∈Cρ(z0)

|f(w)|.
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Exercise 4.38 (AN2.2.12). Define F : C \ Cr(z0)→ C by

F (z) =

˛
Cr(z0)

1

w − z
dw.

Show that F ≡ 2πi on Br(z0).

Solution. By Theorem 4.19 F is analytic on C \ Cr(z0), and F ′ : C \ Cr(z0)→ C is given by

F ′(z) =

˛
Cr(z0)

1

(w − z)2
dw.

Fix z ∈ Br(z0), define f : C \ {z} → C by

f(w) =
1

(w − z)2
,

and define γ : [0, 2π]→ C by γ(t) = z0 + reit so that γ∗ = Cr(z0). Clearly f is continuous and
has primitive

ϕ(w) = − 1

w − z
on C \ {z}, and since γ is a closed path in C \ {z} it follows by the Fundamental Theorem for
Path Integrals that

F ′(z) =

˛
Cr(z0)

1

(w − z)2
dw =

˛
Cr(z0)

f =

˛
γ

f = 0.

Thus F ′ ≡ 0 on Br(z0), and it follows that F is constant on Br(z0). Now,

F (z0) =

˛
γ

1

w − z0

dw =

ˆ 2π

0

ireit

(z0 + reit)− z0

dt =

ˆ 2π

0

i dt = 2πi,

and therefore F ≡ 2πi. �

Exercise 4.39 (AN2.2.13a). Suppose f is analytic on BR(z0). Prove that for 0 < r < R

|f (n)(z0)| ≤ n!

2πrn

ˆ 2π

0

|f(z0 + reit)|dt.

Solution. Fix r ∈ (0, R). Since f is analytic on BR(z0) and Br(z0) ⊆ BR(z0), by Corollary 4.20

f (n)(z) =
n!

2πi

˛
Cr(z0)

f(w)

(w − z)n+1
dw

for all z ∈ Br(z0) and n ∈ N. Defining γ : [0, 2π] → C to be the usual parameterization of
Cr(z0) given by γ(t) = z0 + reit,

f (n)(z) =
n!

2πi

˛
γ

f(w)

(w − z)n+1
dw =

n!

2πi

ˆ 2π

0

f(γ(t))

(γ(t)− z)n+1
γ′(t) dt,

whence

f (n)(z0) =
n!

2πi

ˆ 2π

0

f(γ(t))γ′(t)

(γ(t)− z0)n+1
dt =

n!

2πi

ˆ 2π

0

ireitf(z0 + reit)

(reit)n+1
dt,
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and finally

|f (n)(z0)| =
∣∣∣∣ n!

2π

ˆ 2π

0

f(z0 + reit)

rn(eit)n
dt

∣∣∣∣ ≤ n!

2π

ˆ 2π

0

|f(z0 + reit)|
rn|eit|n

dt =
n!

2πrn

ˆ 2π

0

|f(z0 + reit)|dt

as desired. �

Exercise 4.40 (AN2.2.13b). Let f be an entire function. Prove that if there exists some
M > 0, k ∈ N, and ρ > 0 such that |f(z)| ≤M |z|k for all z ∈ C for which |z| > ρ, then f is a
polynomial function with deg(f) ≤ k.

Solution. Since f is analytic on C, by Theorem 4.29 we have

f(z) =
∞∑
n=0

f (n)(0)

n!
zn (4.11)

for all z ∈ C. Let r > ρ be arbitrary. Certainly f is analytic on BR(0) for any R > r, and so by
the previous exercise

|f (n)(0)| ≤ n!

2πrn

ˆ 2π

0

|f(reit)|dt.

Observing that |reit| = r > ρ, by hypothesis

|f(reit)| ≤M |reit|k = Mrk,

so that

|f (n)(0)| ≤ n!

2πrn

ˆ 2π

0

Mrkdt =
n!M

rn−k
,

and thus

0 ≤ |f
(n)(0)|
n!

≤ M

rn−k

for all r > ρ > 0. If n > k, then M/rn−k → 0 as r →∞, and so by the Squeeze Theorem

|f (n)(0)|
n!

= lim
r→∞

|f (n)(0)|
n!

= 0.

Therefore f (n)(0)/n! = 0 for n > k, and (4.11) yields

f(z) =
k∑

n=0

f (n)(0)

n!
zn.

That is, f is a polynomial function of degree at most k. �

Exercise 4.41 (AN2.2.13c). Let f be an entire function such that |f(z)| ≤ 1 + |z|3/2 for all
z ∈ C. Prove that there exist a0, a1 ∈ C such that f(z) = a0 + a1z.

Solution. Let M = 2 and ρ = 1. Let z be such that |z| > ρ. Then |z|2, |z|1/2 > 1, so that

1

|z|2
+

1

|z|1/2
< 1 + 1 = 2,
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and thus (since z 6= 0) we have

|f(z)| ≤ 1 + |z|3/2 =

(
1

|z|2
+

1

|z|1/2

)
|z|2 ≤ 2|z|2.

Thus there exists some M,ρ > 0 such that |f(z)| ≤ M |z|2 for all z with |z| > ρ, and so by
Exercise 4.40 we conclude that f is a polynomial function of degree at most 2; that is, there
exists a0, a1, a2 ∈ C such that

f(z) = a0 + a1z + a2z
2.

Now we have
|a0 + a1z + a2z

2| ≤ 1 + |z|3/2

for all z, whence

|a2z
2| − |a0 + a1z| ≤ 1 + |z|3/2 ⇒ |a2z

2| ≤ 1 + |a0 + a1z|+ |z|3/2

⇒ |a2||z|2 ≤ 1 + |a0|+ |a1||z|+ |z|3/2,
and so for all z 6= 0

|a2||z|1/2 ≤ 1 +
|a1|
|z|1/2

+
1 + |a0|
|z|3/2

. (4.12)

If we suppose a2 6= 0, then we may choose z 6= 0 such that |z|1/2 > 3/|a2|, |z|1/2 > 2|a1|, and
|z|3/2 > 2(1 + |a0|), in which case (4.12) yields the contradiction 3 < 2. Therefore a2 = 0 and
we obtain f(z) = a0 + a1z. �
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4.4 – The Exponential Function

Theorem 4.42. The exponential function exp : C→ C given by

exp(x+ iy) = ex(cos y + i sin y)

has the following properties.

1. The function exp is entire, with exp(n) = exp on C for all n ∈ N.
2. For all z ∈ C,

exp(z) =
∞∑
n=0

zn

n!
.

3. For all z, w ∈ C,
exp(z + w) = exp(z) exp(w).

4. There are no zeros for exp in C, and

exp(−z) =
1

exp(z)

for all z ∈ C.
5. exp(z) = 1 if and only if z = 2πni for some n ∈ Z.
6. For all z ∈ C,

| exp(z)| = eRe z.

7. For all z ∈ C, exp(z) = exp(z + w) if and only if w = 2πni for some n ∈ Z. In particular if
eis = eit for s, t ∈ R, then s− t = 2πn for some n ∈ Z.

8. exp maps {z : Re z = r} onto Cer(0), and maps {z : Im z = θ} onto the open ray from 0
through exp(iθ).

9. For each θ ∈ R, the map

exp : {z : θ ≤ Im z < θ + 2π} → C∗
is a bijection.

Proof.
Proof of Part (1). By Proposition 3.12 we find that exp′(z) = exp(z) for each z ∈ C, and so the
exponential function is entire. That exp(n)(z) = exp(z) for every z ∈ C and n ∈ N follows from
Proposition 3.12 via induction.

Proof of Part (2). Fix z ∈ C. Let r > 0 be such that z ∈ Br(0). Since Br(0) ⊆ C and exp is
analytic on C by part (1), we have

exp(z) =
∞∑
n=0

exp(n)(0)

n!
zn =

∞∑
n=0

exp(0)

n!
zn =

∞∑
n=0

1

n!
zn

by Theorem 4.29 and another application of part (1).

Proof of Part (3). Fix z, w ∈ C. By Theorem 4.29 and part (1) we have

exp(ζ) =
∞∑
n=0

exp(n)(w)

n!
(ζ − w)n =

∞∑
n=0

exp(w)

n!
(ζ − w)n
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for all ζ ∈ C, and thus if we set ζ = z + w we obtain

exp(z + w) =
∞∑
n=0

exp(w)

n!
zn = exp(w)

∞∑
n=0

1

n!
zn = exp(w) exp(z)

by part (2), observing that the series
∑
zn/n! is absolutely convergent on C.

Proof of Part (4). If exp(z0) = 0 for some z0 ∈ C, then part (3) implies that

1 = exp(0) = exp(−z0 + z0) = exp(−z0) exp(z0) = 0,

which is a contradiction. Therefore exp(z) 6= 0 for all z ∈ C.
Next, for any z ∈ C,

1 = exp(0) = exp(−z + z) = exp(−z) exp(z) ⇒ exp(−z) =
1

exp(z)
,

since exp(z) 6= 0.

Proof of Part (5). Suppose z = x+ iy is such that exp(z) = 1, so

ex cos y + iex sin y = 1,

and hence sin y = 0 and ex cos y = 1. From sin y = 0 we obtain y = mπ for some m ∈ Z, where
m must be an even integer since otherwise cos y = −1 and we conclude that ex = −1 for x ∈ R,
a contradiction. Therefore z = 2πni for some n ∈ Z.

Proof of the converse is straightforward: If z = 2πni for some n ∈ Z, then exp(z) =
cos(2πn) + i sin(2πn) = 1.

Proof of Part (6). If z = x+ iy, then

| exp(z)| = |ex cos y + iex sin y| = ex| cos y + i sin y| = ex = eRe z.

Proof of Part (7). If exp(z + w) = exp(z) for all z ∈ C, then we have exp(w) = exp(0) = 1 in
particular, and so w = 2πni for some n ∈ Z by part (5).

If w = 2πni for some n ∈ Z, then for any z ∈ C we find that

exp(z + p) = exp(z) exp(p) = exp(z)

by parts (3) and (5).
Finally, suppose eis = eit for s, t ∈ R. Then eit = eit+(is−it), and by the result just proven it

follows that is− it = 2πni for some n ∈ Z, and therefore s− t = 2πn.

Proof of Part (8). Let Lr = {z : Re z = r}. If z ∈ Lr, so that z = r + iy for some y ∈ R, then

| exp(z)| = |er(cos y + i sin y)| = er

shows that exp(z) ∈ Cer(0), and so exp(Lr) ⊆ Cer(0). On the other hand any w ∈ Cer(0) is
expressible as

w = er cos θ + ier sin θ
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for some θ ∈ [0, 2π), so that z ∈ Lr given by z = r + iθ is such that exp(z) = w, and thus
Cer(0) ⊆ exp(Lr). �

Definition 4.43. Define the cosine function cos : C→ C and the sine function sin : C→ C
by

cos(z) =
eiz + e−iz

2
and sin(z) =

eiz − e−iz

2i
for all z ∈ C.

Clearly the cosine and sine functions are entire functions, and thus by Theorem 4.29 there
exist sequences (an)∞n=0 and (bn)∞n=0 such that cos(z) =

∑
anz

n and sin(z) =
∑
bnz

n for all
z ∈ C. Since cos(−z) = cos(z) and sin(−z) = − sin(z) for all z ∈ C, by Exercise 4.34 we
conclude that cos(z) is an even function with an = 0 for n odd, and sin(z) is an odd function
with bn = 0 for n even. More explicitly, by Theorem 4.42(2),

cos(z) =
∞∑
n=0

anz
n =

1

2

(
eiz + e−iz

)
=
∞∑
n=0

(iz)n + (−iz)n

2n!
=
∞∑
n=0

in + (−i)n

2n!
zn.

Corollary 4.33 requires

an =
in + (−i)n

2n!
for all n ≥ 0. We have a2k+1 = 0 and

a2k =
i2k + (−i)2k

2(2k)!
=

(−1)k + (−1)k

2(2k)!
=

(−1)k

(2k)!

for all k ≥ 0, and in this fashion obtain

cos(z) =
∞∑
k=0

(−1)k

(2k)!
z2k

on C. A similar argument leads to a power series representation for sin(z) on C, which is given
in the following proposition.

Proposition 4.44. For all z ∈ C,

cos(z) =
∞∑
n=0

(−1)n

(2n)!
z2n and sin(z) =

∞∑
n=0

(−1)n

(2n+ 1)!
z2n+1.

We define the tangent, cotangent, secant, and cosecant functions by

tan(z) =
sin(z)

cos(z)
, cot(z) =

cos(z)

sin(z)
, sec(z) =

1

cos(z)
, csc(z) =

1

sin(z)
,

respectively. None of these four functions is entire, but note that sec(z) is even while the other
three functions are odd.

Exercise 4.45 (AN2.3.3). Evaluate ˛
∂B

sin z

z4
dz.
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Solution. The series

sin z =
∞∑
n=0

(−1)n
z2n+1

(2n+ 1)!

is convergent for any z ∈ C, and thus by the sequential limit equivalent of Theorem 2.15 we
obtain

sin z

z4
=

1

z4

∞∑
n=0

(−1)n
z2n+1

(2n+ 1)!
=
∞∑
n=0

(−1)n
z2n+1

z4(2n+ 1)!
=
∞∑
n=0

(−1)n
z2n−3

(2n+ 1)!

for any z 6= 0. This new series converges for all z ∈ ∂B, and so˛
∂B

sin z

z4
dz =

˛
∂B

(
∞∑
n=0

(−1)n
z2n−3

(2n+ 1)!

)
dz

=

˛
∂B

(
1

z3
− 1

6z
+
∞∑
n=2

(−1)n
z2n−3

(2n+ 1)!

)
dz.

Letting

f(z) =
∞∑
n=2

(−1)n
z2n−3

(2n+ 1)!
=
∞∑
n=0

(−1)n
z2n+1

(2n+ 5)!
,

we write ˛
∂B

sin z

z4
dz =

˛
∂B

(
1

z3
− 1

6z
+ f(z)

)
dz.

Now, since f is analytic on C, by Cauchy’s Theorem for Starlike Regions it has a primitive on
C, and hence ˛

∂B
f(z) dz = 0

by the Fundamental Theorem of Path Integrals. As for z−3, it is analytic on Ω = C∗ and has
primitive −z−2/2 there, and since ∂B ⊆ Ω we conclude once more by the Fundamental Theorem
of Path Integrals that ˛

∂B

1

z3
dz = 0.

Finally we have ˛
∂B

1

6z
dz =

1

6

˛
∂B

1

z
dz =

2πi

6
=
πi

3
by direct computation, and so ˛

∂B

sin z

z4
dz = −πi

3
obtains. �

Exercise 4.46 (AN2.3.4). Show that for every r > 0 there exists some n0 ≥ 0 such that, for
all n ≥ n0, the zeros of

σn(z) =
n∑
k=0

1

k!
zk

lie in C \Br(0).
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Solution. Fix r > 0. By Example 4.4 together with Theorem 4.42(2) the sequence of functions
(σn) converges uniformly to exp on the compact set Br(0), and so there exists some n0 such that

|σn(z)− exp(z)| < 1

2er

for all n ≥ n0 and z ∈ Br(0). Now, for any z = x+ iy ∈ Br(0), since

|z| ≤ r ⇒ |x| ≤ r ⇒ −r ≤ x ≤ r,

it follows that
| exp(z)| = |ex(cos y + i sin y)| = ex ∈ [e−r, er],

and so in particular | exp(z)| ≥ e−r. Thus, for all n ≥ n0 and z ∈ Br(0),

|σn(z)− exp(z)| < 1

2er
⇒

∣∣|σn(z)| − | exp(z)|
∣∣ < 1

2er

⇒ | exp(z)| − 1

2
e−r < |σn(z)| < | exp(z)|+ 1

2
e−r,

and hence

|σn(z)| > e−r − 1

2
e−r =

1

2
e−r > 0.

That is, σn(z) 6= 0 for all n ≥ n0 and z ∈ Br(0), and therefore any zeros of σn must lie in
C \Br(0) for n ≥ n0. �

Exercise 4.47 (AN2.3.5). Let f be an entire function that satisfies the initial value problem

f ′′ + f = 0, f(0) = 0, f ′(0) = 1.

Prove that f(z) = sin(z) for all z ∈ C.

Solution. It is easy to verify that sin(z) is a solution to the IVP; however, the trick is to show
that there can be no other entire function that works. That is, we must show that sin(z) is a
unique solution.

Since f is an entire function, by Theorem 4.29 it is representable in C by power series, and
in particular there exists a sequence of complex numbers (an)∞n=0 such that

f(z) =
∞∑
n=0

anz
n

for all z ∈ C. Now, f has derivatives of all orders by Corollary 4.20, so from f ′′ + f = 0 we
obtain f (n+2) + f (n) = 0 for all n ≥ 0, and thus

f (n+2)(0) + f (n)(0) = 0.

By Theorem 4.32 we have an = f (n)(0)/n!, and so the sequence (an)∞n=0 is defined recursively by

(n+ 2)!an+2 + n!an = 0, a0 = 0, a1 = 1,

or equivalently

an+2 = − an
(n+ 1)(n+ 2)

, a0 = 0, a1 = 1.
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This recursion relation uniquely determines the sequence (an)∞n=0, and therefore sin(z) must be
the unique solution to the IVP. �

Exercise 4.48 (AN2.3.6). Let f be an entire function such that f ′ = f and f(0) = 1. What
follows and why?

Solution. Since f is an entire function we have, by Theorem 4.29, that

f(z) =
∞∑
n=0

f (n)(0)

n!
zn

for all z ∈ C. From f ′ = f we obtain f (n+1) = f (n) for all n ≥ 0, and thus f (n)(0) = f(0) = 1
for all n ≥ 0. Hence

f(z) =
∞∑
n=0

1

n!
zn,

and we see that f(z) = exp(z). �
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4.5 – Bernoulli Numbers

Consider the function ϕ(z) = z(ez − 1)−1. Clearly ϕ is analytic on Ω = {z ∈ C : ez 6= 1},
and since, by Theorem 4.42(5), ez = 1 if and only if z = 2πni for some n ∈ Z, we see that ϕ is
analytic on B′2π(0) ⊆ Ω. Now define f : B2π(0)→ C by

f(z) =


z

ez − 1
, 0 < |z| < 2π

1, z = 0.

It can be shown that f(z)→ 1 as z → 0, so f is analytic on B′2π(0) and continuous on B2π(0),
and hence f is analytic on B2π(0) by Corollary 4.22. By Theorem 4.29 we conclude that f has
a power series representation

∑
anz

n on B2π(0). This justifies the following definition.

Definition 4.49. The Bernoulli numbers are the numbers Bn for which
∞∑
n=0

Bn

n!
zn =

z

ez − 1
(4.13)

for all z ∈ B2π(0).

By Theorem 4.2(1) the series in (4.13) converges absolutely on B2π(0), and so in particular
we have the useful fact that

∑∞
n=0 |Bn|/n! converges.

By Theorem 4.29 we see that

Bn = f (n)(0)

for all n ≥ 0. This formula could be used to find Bernoulli numbers, though in the following
exercise we will instead make use of the Cauchy product of series formula.

Exercise 4.50 (L2.1.3). Show that

n∑
k=1

Bn−k

k!(n− k)!
=

{
1, if n = 1

0, if n > 1.

Also show that Bn = 0 for all odd n ≥ 3.

Solution. Multiply both sides of (4.13) by ez − 1 to obtain

(ez − 1)
∞∑
n=0

Bn

n!
zn = z.

That is,

z =

(
∞∑
n=0

anz
n

)(
∞∑
n=0

bnz
n

)
, (4.14)

where

an =

{
0, if n = 0

1/n!, if n > 0
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by Theorem 4.42(2), and bn = Bn/n! for n ≥ 0. The first series in (4.14) is absolutely convergent
for all z ∈ C, whereas the second series is convergent for all z ∈ B2π(0). Thus by Mertens’
Theorem,

z =
∞∑
n=0

(
n∑
k=0

akz
k · bn−kzn−k

)
=
∞∑
n=0

(
n∑
k=0

akbn−k

)
zn =

∞∑
n=1

(
n∑
k=1

1

k!
· Bn−k

(n− k)!

)
zn

for z ∈ B2π(0), and so
n∑
k=1

Bn−k

k!(n− k)!
=

{
1, if n = 1

0, if n > 1

by Corollary 4.33. Using this recursion relation, we readily obtain

B0 = 1, B1 = −1

2
, B2 =

1

6
, B3 = 0, B4 = − 1

30
.

To show that Bn = 0 for all odd n ≥ 3, we use the result of Exercise 4.34. We have

z

ez − 1
=
∞∑
n=0

Bn

n!
zn = −z

2
+
∑
n6=1

Bn

n!
zn,

and so ∑
n6=1

Bn

n!
zn =

z

2
+

z

ez − 1
=
z

2

(
ez + 1

ez − 1

)

=
z

2

(
ez/2 + e−z/2

ez/2 − e−z/2
· e

z/2

ez/2

)
=
z

2
· e

z/2 + e−z/2

ez/2 − e−z/2
,

where we make use of Theorem 4.42(3) to secure the third equality. Now, setting

g(z) =
∑
n6=1

Bn

n!
zn,

we have

g(−z) =
∑
n6=1

Bn

n!
(−z)n =

−z
2
· e
−z/2 + e−(−z)/2

e−z/2 − e−(−z)/2 =
−z
2
· e
−z/2 + ez/2

e−z/2 − ez/2

=
z

2
· e

z/2 + e−z/2

ez/2 − e−z/2
= g(z).

Thus g(z) is even, and by Exercise 4.34 we conclude that Bn/n! = 0 for n = 3, 5, 7, . . ., and
therefore Bn = 0 for odd n ≥ 3. �

Exercise 4.51 (L2.1.4). Show that

z

2
· e

z/2 + e−z/2

ez/2 − e−z/2
=
∞∑
n=0

B2n

(2n)!
z2n,

and then obtain

πz cot(πz) =
∞∑
n=0

(−1)n
(2π)2n

(2n)!
B2nz

2n.
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Solution. From Exercise 4.50 we have
z

ez − 1
= B0 +B1z +

B2

2!
z2 +

B3

3!
z3 +

B4

4!
z4 +

B5

5!
z5 +

B6

6!
z6 + · · ·

= B0 −
1

2
z +

B2

2!
z2 +

B4

4!
z4 +

B6

6!
z6 + · · · = −1

2
z +

∞∑
n=0

B2n

(2n)!
z2n,

and thus
z

2
+

z

ez − 1
=
∞∑
n=0

B2n

(2n)!
z2n.

From this we obtain
∞∑
n=0

B2n

(2n)!
z2n =

z

2

(
1 +

2

ez − 1

)
=
z

2

(
ez − 1

ez − 1
+

2

ez − 1

)
=
z

2

(
ez + 1

ez − 1

)
=
z

2

(
ez/2 + e−z/2

ez/2 − e−z/2
· e

z/2

ez/2

)
=
z

2
· e

z/2 + e−z/2

ez/2 − e−z/2
,

as was to be shown.
Recalling Definition 4.43 and the remarks that follow it,

cot(z) =
cos(z)

sin(z)
=

eiz + e−iz

2
eiz − e−iz

2i

= i

(
eiz + e−iz

eiz − e−iz

)
,

and so

πz cot(πz) = πz · i
(
eπiz + e−πiz

eπiz − e−πiz

)
=

2πiz

2
· e

2πiz/2 + e−2πiz/2

e2πiz/2 − e−2πiz/2

=
∞∑
n=0

B2n

(2n)!
(2πiz)2n =

∞∑
n=0

(−1)n
(2π)2n

(2n)!
B2nz

2n

as desired. �

Exercise 4.52 (L2.1.5). Express the power series centered at 0 for z/ sin(z) and z cot(z) in
terms of Bernoulli numbers.

Solution. For z cot(z) we need only replace z with z/π in the result of Exercise 4.51 to obtain

z cot(z) = π
( z
π

)
cot
[
π
( z
π

)]
=
∞∑
n=0

(−1)n
(2π)2n

(2n)!
B2n

( z
π

)2n

=
∞∑
n=0

(−1)n
22n

(2n)!
B2nz

2n. (4.15)

To find a recursion relation that will generate the coefficients of z/ sin(z), we first observe
that

z cot(z) = z · cos(z)

sin(z)
=

z

sin(z)
· cos(z). (4.16)

Letting

z

sin(z)
=
∞∑
n=0

anz
n and cos(z) =

∞∑
n=0

bnz
n,
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so that bn = 0 for n odd and bn 6= 0 for n even, we obtain

z cot(z) =
∞∑
n=0

(
n∑
k=0

akbn−k

)
zn

from (4.16), and so by (4.15) we find that
∞∑
n=0

(
n∑
k=0

akbn−k

)
zn =

∞∑
n=0

(−1)n
22n

(2n)!
B2nz

2n. (4.17)

For n = 1 we have
n∑
k=0

akbn−k =
1∑

k=0

akb1−k = a0b1 + a1b0 = 0,

whence a1 = 0 since b1 = 0 and b0 6= 0. Let n odd be arbitrary and suppose ak = 0 for all odd
k ≤ n. We have

n+2∑
k=0

akbn+2−k = 0,

but since ak = bk = 0 for all odd k ≤ n, and n+ 2− k is even if and only if k is odd, the sum
collapses to yield an+2b0 = 0. Hence an+2 = 0 and we conclude by the principle of induction
that an = 0 for all odd n.

In contrast, from (4.17) we see that

2n∑
k=0

akb2n−k = (−1)n
22n

(2n)!
B2n

for all n ∈ N. This recursion relation will deliver all the nonzero coefficients for the series
z/ sin(z). In particular we have

a0 = B0, a2 =
1

2
B0 − 2B2, a4 =

5

24
B0 −B2 +

2

3
B4,

so that
z

sin(z)
= 1 +

1

6
z2 +

7

360
z4 + · · · .

To find an explicit formula for the coefficients an, we proceed as follows:

1

sin(2z)
=

1

2 sin(z) cos(z)
=

sec2(z)

2 tan(z)
=

1 + tan2(z)

2 tan(z)

=
2− (1− tan2(z))

2 tan(z)
=

1

tan(z)
− 1− tan2(z)

2 tan(z)

= cot(z)− cot(2z),

whence
2z

sin(2z)
= 2z cot(z)− 2z cot(2z)

obtains, and so

z

sin(z)
= 2 · z

2
cot
(z

2

)
− z cot(z) =

∞∑
n=0

(−1)n
22n+1

(2n)!
B2n

(z
2

)2n

−
∞∑
n=0

(−1)n
22n

(2n)!
B2nz

2n
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=
∞∑
n=0

(−1)n
2− 22n

(2n)!
B2nz

2n.

�

Exercise 4.53. Show that ˆ 1

0

xs−1

ex − 1
dx =

∞∑
n=0

Bn

n!(s+ n− 1)
(4.18)

for all s ∈ (1,∞).

Solution. For s > 1, note that since

|Bn|
n!(s+ n− 1)

≤ |Bn|
n!

for all n ≥ 1, and
∑
|Bn|/n! converges, the series in (4.18) is absolutely convergent by the

Direct Comparison Test.
Fix s > 1. By Definition 4.49, since [0, 1] ⊆ B2π(0),

ˆ 1

0

xs−1

ex − 1
dx =

ˆ 1

0

(
xs−2

∞∑
n=0

Bn

n!
xn

)
dx =

ˆ 1

0

(
∞∑
n=0

Bn

n!
xs+n−2

)
dx.

Fix ξ ∈ (0, 1), and define the sequence of functions (ϕn : [ξ, 1]→ R)n≥0 by

ϕn(x) =
Bn

n!
xs+n−2

for each n ≥ 0 and x ∈ [ξ, 1]. Then

‖ϕn‖[ξ,1] = sup
x∈[ξ,1]

(
|Bn|
n!
|x|s+n−2

)
=
|Bn|
n!

sup
x∈[ξ,1]

|x|s+n

x2
≤ |Bn|
n!ξ2

:= Mn,

and since
∑
Mn is a convergent series, the Weierstrass M-Test implies that

∑
ϕn converges

uniformly on [ξ, 1]. It is clear that ϕn ∈ R[ξ, 1], so

ˆ 1

ξ

(
∞∑
n=0

Bn

n!
xs+n−2

)
dx =

ˆ 1

ξ

∞∑
n=0

ϕn =
∞∑
n=0

ˆ 1

ξ

ϕn =
∞∑
n=0

ˆ 1

ξ

Bn

n!
xs+n−2dx

by Corollary 3.36, and then

ˆ 1

0

xs−1

ex − 1
dx = lim

ξ→0+

ˆ 1

ξ

(
∞∑
n=0

Bn

n!
xs+n−2

)
dx = lim

ξ→0+
lim
k→∞

k∑
n=0

ˆ 1

ξ

Bn

n!
xs+n−2dx

= lim
ξ→0+

lim
k→∞

k∑
n=0

(1− ξ)Bn

n!(s+ n− 1)
.

Define (gn : (0, 1]→ R)n≥0 by

gn(ξ) =
(1− ξ)Bn

n!(s+ n− 1)
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for each n ≥ 0 and ξ ∈ (0, 1], and let sk =
∑k

n=0. For n ∈ N,

‖gn‖(0,1] = sup
ξ∈(0,1]

(1− ξ)|Bn|
n!(s+ n− 1)

≤ |Bn|
n!(s+ n− 1)

≤ |Bn|
n!

,

and since
∑
|Bn|/n! converges, the Weierstrass M-Test implies the series

∑
gn, and hence the

sequence (sk)k≥0, is uniformly convergent on (0, 1]. It then follows by Theorem 2.55 that
ˆ 1

0

xs−1

ex − 1
dx = lim

ξ→0+
lim
k→∞

k∑
n=0

(1− ξ)Bn

n!(s+ n− 1)
= lim

k→∞
lim
ξ→0+

k∑
n=0

(1− ξ)Bn

n!(s+ n− 1)

= lim
k→∞

k∑
n=0

Bn

n!(s+ n− 1)
=
∞∑
n=0

Bn

n!(s+ n− 1)
,

which proves (4.18) for all s ∈ (1,∞). �
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5
Maximum Modulus Principle

5.1 – Liouville’s Theorem

Theorem 5.1 (Cauchy’s Estimate). Let Ω ⊆ C be an open set. If f is analytic on Ω and
Br(z0) ⊆ Ω, then

|f (n)(z0)| ≤ n!

rn
sup

z∈Cr(z0)

|f(z)|

Proof. Suppose that f is analytic on Ω and Br(z0) ⊆ Ω for some r > 0. Fix n ∈ N. By
Corollary 4.20 we have

f (n)(z) =
n!

2πi

˛
Cr(z0)

f(w)

(w − z)n+1
dw

for all z ∈ Br(z0)

|f (n)(z0)| =
∣∣∣∣ n!

2πi

˛
Cr(z0)

f(z)

(z − z0)n+1
dz

∣∣∣∣ =
n!

2π

∣∣∣∣˛
Cr(z0)

f(z)

(z − z0)n+1
dz

∣∣∣∣ .
Thus, by Theorem 3.23,

|f (n)(z0)| ≤ n!

2π
L(Cr(z0)) sup

z∈Cr(z0)

∣∣∣∣ f(z)

(z − z0)n+1

∣∣∣∣ =
n!

2π
(2πr) sup

z∈Cr(z0)

|f(z)|
|z − z0|n+1

,

and hence

|f (n)(z0)| ≤ n!r sup
z∈Cr(z0)

|f(z)|
rn+1

=
n!

rn
sup

z∈Cr(z0)

|f(z)|,

as was to be shown. �

Theorem 5.2 (Liouville’s Theorem). If f is a bounded entire function, then f is a constant
function.

The following proof of Liouville’s Theorem will make use of Exercise 4.40 instead of Cauchy’s
Estimate.
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Proof. Let f be a bounded entire function, so there exists some M > 0 such that |f(z)| ≤M
for all z ∈ C. Then for all z such that |z| > 1 we have |f(z)| ≤M |z|, so by Exercise 4.40 f is a
polynomial function of degree at most 1. Thus there exist a, b ∈ C such that f(z) = a+ bz, and
for all z we find that

|f(z)| ≤M ⇒ |a+ bz| ≤M ⇒ |bz| − |a| ≤M ⇒ |b||z| ≤M + |a|,

which is only possible if b = 0. Therefore f ≡ a. �

Theorem 5.3 (Fundamental Theorem of Algebra). If p is a polynomial function of degree
n ≥ 1, then p has a zero in C.

Proof. Suppose p is a polynomial function of degree n ≥ 1, so

p(z) = anz
n + · · ·+ a1z + a0.

For z 6= 0,

|p(z)| = |z|n
∣∣∣an +

an−1

z
+ · · ·+ a0

zn

∣∣∣ ≥ |z|n(|an| − ∣∣∣an−1

z
+ · · ·+ a0

zn

∣∣∣). (5.1)

Let

g(z) =
∣∣∣an−1

z
+ · · ·+ a0

zn

∣∣∣ ,
so that

g(z) ≤ 1

|z|

(
|an−1|+

|an−2|
|z|

+ · · ·+ |a0|
|zn−1|

)
,

and it’s clear there exists some r > 0 sufficiently large that g(z) < |an|/2 for all z ∈ C \Br(0).
From (5.1) comes

|p(z)| ≥ |z|n(|an| − g(z))≥ |an|
2
|z|n ≥ |an|r

n

2
:= M > 0

for all z ∈ C \Br(0).
Now, suppose that p(z) 6= 0 for all z ∈ C. Since p is an entire function, it then follows that

1/p is also entire. Moreover, ∣∣(1/p)(z)
∣∣ =

1

|p(z)|
≤ 1

M

for all z ∈ C \Br(0), and since the continuity of 1/p implies it is bounded on the compact set
Br(0), we conclude that 1/p is bounded on C. Thus by Liouville’s Theorem 1/p is a constant
function, which in turns leads us to conclude that p is likewise constant: p(z) = a0. But this
contradicts the hypothesis that deg(p) ≥ 1. Therefore there must exist some z0 ∈ C such that
p(z0) = 0. �

Exercise 5.4 (AN2.4.13). If f is an entire function such that |f(z)| ≥ 1 for all z ∈ C, then f
is a constant function.
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Solution. Suppose f is an entire function such that |f(z)| ≥ 1 for all z ∈ C. Then f(z) 6= 0,
and so

(1/f)′(z) = − f
′(z)

f 2(z)

by the Quotient Rule. Since z ∈ C is arbitrary it follows that 1/f is an entire function; and
since ∣∣(1/f)(z)

∣∣ =

∣∣∣∣ 1

f(z)

∣∣∣∣ =
1

|f(z)|
∈ (0, 1],

we see that 1/f is also bounded. Hence 1/f is a constant function by Liouville’s Theorem: there
exists some c 6= 0 such that 1/f ≡ c on C, and hence f ≡ 1/c on C. �

Exercise 5.5 (AN2.4.16). Suppose that f is an entire function such that Im f ≥ 0 on C.
Prove that f is constant.

Solution. We have f = u + iv with v(z) ≥ 0 for all z ∈ C. Define g = eif , which is to say
g(z) = exp(if(z)). Since if and the exponential function are analytic on C, by the Chain Rule
it follows that the composition g is an entire function. Also g is bounded,

0 < |g(z)| = |eif(z)| = |e−v(z)+iu(z)| = e−v(z) =
1

ev(z)
≤ 1,

so g is constant by Liouville’s Theorem and we have g′ ≡ 0. Now, for any z ∈ C,

0 = g′(z) = exp′(if(z)) · if ′(z) = if ′(z) exp(if(z)),

and we obtain f ′(z) = 0 since exp(if(z)) 6= 0. Therefore f ′ ≡ 0 and we conclude by Theorem
3.26 that f is constant. �
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5.2 – The Identity Theorem

Definition 5.6. Let f be analytic on Ω, z0 ∈ Ω, and f(z0) = 0. If there exists some m ∈ N
and analytic function g : Ω→ C such that g(z0) 6= 0 and

f(z) = (z − z0)mg(z)

for all z ∈ Ω, then f is said to have a zero of order m at z0, written ord(f, z0) = m. A zero
of order 1 is called a simple zero.

If a function f has a zero of order m ∈ N at a point z0 where it is analytic, we also say that
z0 is a zero for f of multiplicity m. For the more elegant statement of certain theorems we
define ord(f, z) = 0 whenever f(z) 6= 0. Also it is convenient to define, for f : Ω→ C, the set

Z(f) = {z ∈ Ω : f(z) = 0}

of all zeros of f in its domain. Finally,

Z(f, S) = Z(f) ∩ S = {z ∈ S : f(z) = 0}

for any arbitrary S ⊆ Ω.

Proposition 5.7. Suppose f is analytic and not identically zero on any component of Ω. If
S = {ζ1, . . . , ζn} ⊆ Z(f) with ord(f, ζj) = kj for each 1 ≤ j ≤ n, then there is an analytic
function g : Ω→ C that is nonvanishing on S such that

f(z) = g(z)
n∏
j=1

(z − ζj)kj

for all z ∈ Ω.

Proof. Define the analytic function ψ : Ω→ C by

ψ(z) =
n∏
j=1

(z − ζj)kj .

The function f/ψ is analytic on Ω \ S, with

(f/ψ)(z) = f(z)
n∏
j=1

1

(z − ζj)kj

for all z ∈ Ω \ S. Now, for each j there exists analytic ψj : Ω→ C with ψj(ζj) 6= 0 such that

f(z) = (z − ζj)kjψj(z)

for all z ∈ Ω, and since there exists some εj > 0 such that Bεj(ζj) ⊆ Ω and B′εj(ζj) ∩ S = ∅,

lim
z→ζj

(f/ψ)(z) = lim
z→ζj

[
(z − ζj)kjψj(z)

n∏
`=1

1

(z − ζ`)k`

]
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= lim
z→ζj

[
ψj(z)

∏
`6=j

1

(z − ζ`)k`

]
= ψj(ζj)

∏
`6=j

1

(ζj − ζ`)k`
∈ C∗.

Define

(f/ψ)(ζj) = ψj(ζj)
∏
`6=j

1

(ζj − ζ`)k`

for each j so as to make f/ψ continuous and nonzero at each ζj ∈ S. By Corollary 4.22, the
continuity of f/ψ on Bεj(ζj) and analyticity on B′εj(ζj) implies analyticity on Bεj(ζj), and in

this way f/ψ is extended to a function g : Ω → C that is analytic on Ω and nonzero on S.
Specifically,

g(z) =

{
f(z)/ψ(z), z ∈ Ω \ S
ψj(ζj)

∏
` 6=j(ζj − ζ`)−k` , z = ζj.

For each z ∈ Ω \ S,

g(z)ψ(z) =
f(z)

ψ(z)
· ψ(z) = f(z),

and for each ζj ∈ S,

g(ζj)ψ(ζj) = ψj(ζj)
∏
` 6=j

1

(ζj − ζ`)k`
· 0 = 0 = f(ζj).

Therefore f = gψ on Ω, as desired. �

Proposition 5.8. Let f be analytic and not identically zero on any component of Ω, with
Z(f) = {ζ1, . . . , ζn} and ord(f, ζj) = kj for 1 ≤ j ≤ n. If 1 ≤ m ≤ n and g is the analytic
function for which g(ζm) 6= 0 and

f(z) = (z − ζm)kmg(z)

for all z ∈ Ω, then Z(g) = Z(f) \ {ζm} with ord(g, ζj) = kj for each j 6= m.

Proof. By Proposition 5.7 there exists some analytic function h : Ω→ C that is nonvanishing
on Z(f) and given by

f(z) = h(z)
n∏
j=1

(z − ζj)kj (5.2)

for all z ∈ Ω. Suppose 1 ≤ m ≤ n and g is the analytic function for which g(ζm) 6= 0 and

f(z) = (z − ζm)kmg(z) (5.3)

for all z ∈ Ω. Equating the right-hand sides of (5.2) and (5.3) and dividing by (z− ζm)km yields

g(z) = h(z)
∏
j 6=m

(z − ζj)kj

for all z 6= ζm. This equation must hold for all z ∈ Ω, including at ζm, since g and h are known
to be continuous on Ω. In particular we have, for any ` 6= m,

g(z) = (z − ζ`)k` · h(z)
∏
j 6=`,m

(z − ζj)kj ,
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where of course

ϕ(z) = h(z)
∏
j 6=`,m

(z − ζj)kj

is analytic on Ω with ϕ(ζ`) 6= 0. Therefore ord(g, ζ`) = k` for any ` 6= m. �

Exercise 5.9 (AN2.4.1). Give an example of a non-constant analytic function f on an open
connected set Ω such that Z(f) has a limit point on C \ Ω

Solution. Since 1/z is analytic on Ω = C∗ and sin(z) is analytic on C, by the Chain Rule it
follows that f(z) = sin(1/z) is analytic on Ω. Define the sequence (zn)∞n=1 ⊆ Ω by zn = 1/(nπ).
Then zn → 0 as n→∞, yet

f(zn) = sin(1/zn) = sin(nπ) = 0

for all n. Hence 0 is a limit point for Z(f) on C \ Ω = {0}. �

Exercise 5.10 (AN2.4.2). Suppose f is analytic on Ω and z0 ∈ Ω, so that

f(z) =
∞∑
n=0

an(z − z0)n

on Br(z0) ⊆ Ω. Then ord(f, z0) = m if and only if an = 0 for 0 ≤ n ≤ m− 1 and am 6= 0.

Solution. Suppose that f has zero of order m at z0, so there exists some analytic function
g : Ω → C such that g(z0) 6= 0 and f(z) = (z − z0)

mg(z) for all z ∈ Ω. By Theorem 4.29 we
have

g(z) =
∞∑
n=0

bn(z − z0)n,

where b0 = g(z0). Now,

f(z) = (z − z0)m
∞∑
n=0

bn(z − z0)n =
∞∑
n=0

bn(z − z0)n+m =
∞∑
n=m

bn−m(z − z0)n.

Defining cn = 0 for 0 ≤ n ≤ m− 1 and cn = bn−m for n ≥ m, we obtain
∞∑
n=0

an(z − z0)n =
∞∑
n=0

cn(z − z0)n

for all z ∈ Br(z0). Thus an = cn for all n ≥ 0 by Corollary 4.33, and therefore an = cn = 0 for
0 ≤ n ≤ m− 1 and am = cm = b0 = g(z0) 6= 0. In fact, by Theorem 4.32 we have

f (n)(z0) = n!an = 0

for 0 ≤ n ≤ m− 1 and f (m)(z0) 6= 0.
Conversely, suppose an = 0 for 0 ≤ n ≤ m− 1 and am 6= 0, so that

f(z) =
∞∑
n=m

an(z − z0)n
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on Br(z0). Define g : Br(z0)→ C by

g(z) =
∞∑
n=m

an(z − z0)n−m =
∞∑
n=0

an+m(z − z0)n.

The series is absolutely convergent on Br(z0), and so g is analytic on Br(z0) by Proposition
4.31(1). Then g(z0) = am 6= 0, and

f(z) =
∞∑
n=m

an(z − z0)n = (z − z0)m
∞∑
n=m

an(z − z0)n−m = (z − z0)mg(z)

for z ∈ Br(z0). In fact if we define

ĝ(z) =

{
g(z), if z ∈ Br(z0)

f(z)/(z − z0)m, if z ∈ Ω \Br(z0)

then ĝ : Ω → C is an analytic function such that ĝ(z0) 6= 0 and f(z) = (z − z0)ĝ(z) on Ω.
Therefore f is of order m at z0. �

Proposition 5.11. Suppose that f is analytic at z0 and m ∈ N. Then ord(f, z0) = m if and
only if

min{n ∈ Z : f (n)(z0) 6= 0} = m. (5.4)

Proof. Suppose ord(f, z0) = m. Since f is analytic on Br(z0) for some r > 0, by Theorem 4.29
we have

f(z) =
∞∑
n=0

f (n)(z0)

n!
(z − z0)n

for all z ∈ Br(z0). By Exercise 5.10, f (n)(z0)/n! = 0 for 0 ≤ n ≤ m− 1 and f (m)(z0)/m! 6= 0,
and (5.4) readily follows. The proof of the converse is clear. �

Lemma 5.12. Let f be analytic on a region Ω. If L is the set of limit points of Z(f) that lie
in Ω, then L is both an open and closed set in Ω.

Proof. Suppose z0 ∈ Ω is such that z0 /∈ Z(f). Then |f(z0)| > 0, and since f is continuous at
z0, there exists some δ > 0 such that

|f(z0)− f(z)| < 1
2
|f(z0)|,

and hence |f(z)| > 1
2
|f(z0)|, for all z ∈ Bδ(z0). Thus Bδ(z0) ∩ Z(f) = ∅, which implies that

z0 /∈ L. Therefore L ⊆ Z(f).
Next, let z0 ∈ Ω \ L, so z0 ∈ Ω is not a limit point of Z(f) in Ω, and hence z0 is not a limit

point of Z(f) in C. Then there exists ε > 0 such that Bε(z0) ⊆ Ω and Bε(z0)∩Z(f) = ∅. Now,
for any z ∈ Bε(z0) there exists εz > 0 such that Bεz(z) ⊆ Bε(z0), and so Bεz(z) ∩ Z(f) = ∅.
Then z ∈ Ω \ L, which implies that Bε(z0) ⊆ Ω \ L. This shows that Ω \ L is open in C, so
(Ω \ L)c is closed in C, and then since L = Ω ∩ (Ω \ L)c it follows that L is closed in Ω.

Finally, fix z0 ∈ L. Since L ⊆ Ω, by Theorem 4.29 there exists r > 0 such that

f(z) =
∞∑
n=0

an(z − z0)n
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for all z ∈ Br(z0) ⊆ Ω. Also f(z0) = 0 since L ⊆ Z(f). By Exercise 5.10 either an = 0 for
all n, or ord(f, z0) = m ∈ N. Suppose ord(f, z0) = m ∈ N, so there exists analytic g : Ω→ C
with g(z0) 6= 0 and f(z) = (z − z0)

mg(z) for all z ∈ Ω. Since g is continuous at z0, there
exists 0 < δ < r such that g(z) 6= 0 for all z ∈ Bδ(z0), and hence f(z) 6= 0 for all z ∈ B′δ(z0).
Thus B′δ(z0) ∩ Z(f) = ∅, implying z0 is not a limit point of Z(f); that is, z0 /∈ L, which is a
contradiction. We conclude that an = 0 for all n, so f ≡ 0 on Br(z0) ⊆ Ω, and hence Br(z0) ⊆ L.
This shows that L is open in C, and since L ⊆ Ω, it follows that L is open in Ω. �

Theorem 5.13 (Identity Theorem). Suppose f is analytic on a region Ω. If Z(f) has a
limit point in Ω, then f ≡ 0 on Ω.

Proof. Suppose Z(f) has a limit point in Ω, which is to say L 6= ∅, where L is the set of limit
points of Z(f) that lie in Ω. By Lemma 5.12, L is both open and closed in Ω. In particular
there exists a closed set F ⊆ C such that L = Ω∩F , and then Ω \L = Ω∩F c shows that Ω \L
is open in Ω. Since (Ω \ L) ∩ L = ∅ and (Ω \ L) ∪ L = Ω, the connectedness of Ω implies that
either Ω \ L = ∅ or L = ∅. However, L 6= ∅ by hypothesis, and so Ω \ L = ∅ obtains. Hence
Ω ⊆ L, and therefore L = Ω. In the proof of Lemma 5.12 we found that L ⊆ Z(f) ⊆ Ω, and so
it follows that Z(f) = Ω. That is, f ≡ 0 on Ω. �

Corollary 5.14. Suppose f and g are analytic on a region Ω. If Z(f − g) has a limit point in
Ω, then f ≡ g on Ω.

Proposition 5.15. Suppose f is analytic on a region Ω, z0 ∈ Ω, and f(z0) = 0. If f is not
identically zero on Ω, then ord(f, z0) = m for some m ∈ N.

Proof. Suppose f is not identically zero on Ω. Let r > 0 be such that B = Br(z0) ⊆ Ω. If
f |B ≡ 0, then Z(f) has a limit point in Ω (for instance z0 itself), and so by the Identity Theorem
we arrive at the contradiction that f must be identically zero on Ω. Hence f |B is not identically
zero, and since

f(z) =
∞∑
n=0

f (n)(z0)

n!
(z − z0)n

for all z ∈ B by Theorem 4.29, it follows that f (n)(z0)/n! 6= 0 for some n ∈ N (note n > 0 since
f(z0) = 0 by hypothesis). The Well-Ordering Principle now implies that

m = min

{
n ∈ N :

f (n)(z0)

n!
6= 0

}
exists in N, so that f (n)(z0) = 0 for 0 ≤ n ≤ m−1 and f (m)(z0) 6= 0, and therefore ord(f, z0) = m
by Proposition 5.11. �

Exercise 5.16 (AN2.4.11). An open set Ω is connected if and only if, for any functions f and
g analytic on Ω, fg ≡ 0 implies that f ≡ 0 or g ≡ 0.
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Solution. Suppose Ω is connected. Let f, g : Ω→ C be analytic, and suppose that fg ≡ 0. Fix
z0 ∈ Ω, and let r > 0 be such that K = Br(z0) ⊆ Ω. Let

Z(f,K) = {z ∈ K : f(z) = 0} and Z(g,K) = {z ∈ K : g(z) = 0}.

Since f(z)g(z) = 0 for all z ∈ K, every point in K is in either Z(f,K) or Z(g,K), which
implies that Z(f,K)∪Z(g,K) = K and either Z(f,K) or Z(g,K) is an infinite set. If Z(f,K)
is infinite, then since K is compact and Z(f,K) ⊆ K, we conclude that Z(f,K) has a limit
point in K, and thus Z(f,K) has a limit point in Ω and it follows by the Identity Theorem
that f ≡ 0. If Z(g,K) is infinite, then g ≡ 0. Therefore either f ≡ 0 or g ≡ 0.

For the converse, suppose that Ω is not connected, so that Ω consists of at least two
components. Let Ω1 be one component, and let Ω2 = Ω \ Ω1 be the union of all other
components, so that Ω1 and Ω2 are both open sets. Define f : Ω→ C by

f(z) =

{
0, if z ∈ Ω1

1, if z ∈ Ω2

and define g : Ω→ C by

g(z) =

{
1, if z ∈ Ω1

0, if z ∈ Ω2

Then f and g are analytic on Ω such that fg ≡ 0, yet neither f ≡ 0 nor g ≡ 0 is the case. �

Exercise 5.17 (AN2.4.14). Does there exist an entire function f , not identically zero, for
which the set Z(f) is uncountable?

Solution. Suppose a set S ⊆ C is uncountable. For each n ∈ N define Bn = Bn(0). Claim:
there exists some n ∈ N such that S ∩ Bn is uncountable. To verify the claim, suppose that
S ∩Bn is at most countable (i.e. empty, finite, or countable) for all n. Since a countable union
of at most countable sets is at most countable, it follows that

∞⋃
n=1

(S ∩Bn)

is at most countable. But this is impossible, since
∞⋃
n=1

(S ∩Bn) = S ∩

(
∞⋃
n=1

Bn

)
= S ∩ C = S,

and S is uncountable by hypothesis. The claim must be true.
Now, suppose f is an entire function such that Z(f) is uncountable. Then there exists some

n ∈ N such that Zn(f) := Z(f) ∩Bn is uncountable. In particular Zn(f) is an infinite subset
of the compact set Bn, and hence Zn(f) has a limit point w ∈ Bn by Theorem 2.39. Since
Zn(f) ⊆ Z(f), it follows that w is a limit point of Z(f) as well. We now see that Z(f) has a
limit point in the open connected set C on which f is analytic, and so by the Identity Theorem
we must have f ≡ 0. Therefore there does not exist an entire function with uncountably many
zeros. �
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5.3 – The Maximum Principle for Analytic Functions

Lemma 5.18. Suppose ϕ : [a, b] → R is continuous, there exists α ∈ R such that ϕ ≤ α on
[a, b], and

1

b− a

ˆ b

a

ϕ ≥ α. (5.5)

Then ϕ ≡ α on [a, b].

Proof. Suppose ϕ(c) < α for some c ∈ [a, b], so there exists δ > 0 such that ϕ(c) = α− 2δ. By
continuity there exists some ε > 0 such that ϕ(c) ≤ α− δ for all x ∈ (c− ε, c+ ε) ∩ [a, b]. Now,ˆ b

a

ϕ =

ˆ c−ε

a

ϕ+

ˆ c+ε

c−ε
ϕ+

ˆ b

c+ε

ϕ ≤
ˆ c−ε

a

α +

ˆ c+ε

c−ε
(α− δ) +

ˆ b

c+ε

α = α(b− a)− 2δε,

whence
´ b
a
ϕ < α(b− a), and finally

1

b− a

ˆ b

a

ϕ < α.

Thus (5.5) implies that ϕ(x) ≥ α holds for all x ∈ [a, b], and since ϕ ≤ α on [a, b] by hypothesis,
we conclude that ϕ ≡ α on [a, b]. �

We now present the maximum principle for analytic functions, henceforth to be referred to
simply as the Maximum Principle. The proof of the first part makes use of two easily checked
facts: Re z ≤ |z|, and if Re z = |z| then z = Re z.

Theorem 5.19 (Maximum Principle). Let f be analytic on a region Ω.

1. If |f | has a local maximum at some z0 ∈ Ω, then f is constant on Ω.
2. Let

α = sup
z∈Ω
|f(z)|.

Then either |f | < α on Ω or f is constant on Ω.
3. Suppose Ω is bounded. If

lim sup |f(zn)| ≤ α

for every sequence (zn) ⊆ Ω that converges to some z ∈ ∂Ω, then either |f | < α on Ω or f is
constant on Ω.

4. Suppose Ω is bounded and f is continuous on Ω. If M = max{|f(z)| : z ∈ ∂Ω}, then either
|f | < M on Ω or f is constant on Ω. Moreover,

max
z∈Ω
|f(z)| = max

z∈∂Ω
|f(z)|. (5.6)

Proof.
Proof of Part (1). Suppose |f | has a local maximum at some z0 ∈ Ω. Thus there exists some
r > 0 such that |f(z)| ≤ |f(z0)| for all z ∈ Br(z0) ⊆ Ω. If f(z0) = 0, then f ≡ 0 on Br(z0), and
hence f ≡ 0 (i.e. f is constant) on Ω by the Identity Theorem.
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Assume f(z0) = w0 6= 0. Define γ : [0, 2π]→ ∂Br(z0) by γ(t) = z0 +reit. Set ϕ = |f ◦γ|/|w0|.
Then ϕ : [0, 2π]→ R is a continuous function such that ϕ ≤ 1 on [0, 2π]. Now by Corollary 4.18,

w0 =
1

2π

ˆ 2π

0

f(z0 + reit)dt =
1

2π

ˆ 2π

0

(f ◦ γ)(t)dt,

so

1 =
1

2π

ˆ 2π

0

(f ◦ γ)(t)

w0

dt ≤ 1

2π

ˆ 2π

0

|(f ◦ γ)(t)|
|w0|

dt =
1

2π

ˆ 2π

0

ϕ(t)dt

and Lemma 5.18 implies that ϕ ≡ 1 on [0, 2π]. That is, |f(z)/w0| = 1 for all z ∈ ∂Br(z0).
Next, define ψ : [0, 2π]→ R by

ψ(t) = Re

(
(f ◦ γ)(t)

w0

)
,

which is continuous. For any t ∈ [0, 2π] we have ψ(t) ≤ ϕ(t) ≤ 1 by the general property
Re z ≤ |z|, while

1

2π

ˆ 2π

0

ψ(t)dt = Re

(
1

2π

ˆ 2π

0

(f ◦ γ)(t)

w0

dt

)
= Re(1) = 1 ≥ 1.

Thus ψ ≡ 1 on [0, 2π] by Lemma 5.18. That is, Re[f(z)/w0] = 1 for all z ∈ ∂Br(z0).
We now have |f(z)/w0| = 1 = Re[f(z)/w0] for all z ∈ ∂Br(z0), giving f(z)/w0 = 1 and

hence f(z) = w0 for all z ∈ Cr(z0). This shows that Z(f − w0) ⊇ Cr(z0), and since every point
on Cr(z0) is a limit point of Cr(z0), we conclude by Corollary 5.14 that f ≡ w0 on Ω.

Proof of Part (2). Suppose |f | < α on Ω is not the case. Then there exists some z0 ∈ Ω such
that |f(z0)| = α, and thus |f(z)| ≤ |f(z0)| for all z ∈ Ω. This implies |f | has a local maximum
at z0 ∈ Ω, and by part (1) it follows that f is constant on Ω. Therefore either |f | < α on Ω or
f is constant on Ω.

Proof of Part (3). Suppose lim sup |f(zn)| ≤ α for every sequence (zn)n∈N in Ω such that zn → zb
for some zb ∈ ∂Ω. Let β = supz∈Ω |f(z)|. Thus for each n ∈ N there exists some zn ∈ Ω such that
β − n−1 < |f(zn)| ≤ β, and then limn→∞ |f(zn)| = β. Now, Ω is compact since Ω is bounded,
and so by Theorem 2.39 the sequence (zn)n∈N has a subsequence (znk)k∈N that converges to
some z0 ∈ Ω.

If z0 ∈ Ω, then by the continuity of |f | we have

β = lim
k→∞
|f(znk)| = |f(z0)|.

Hence |f(z)| ≤ |f(z0)| for all z ∈ Ω, showing that |f | has a local maximum at z0, and therefore
f is constant on Ω by part (1).

Suppose z0 /∈ Ω. Then z0 ∈ ∂Ω, and so

β = lim
k→∞
|f(znk)| = lim sup |f(znk)| ≤ α.

By part (2) either f is constant on Ω or |f | < β, and therefore either f is constant on Ω or |f | < α.
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Proof of Part (4). We note first that, since ∂Ω is compact and |f ||∂Ω is continuous, there exists
some zb ∈ ∂Ω such that

|f(zb)| = max
z∈∂Ω
|f(z)| := M.

Also Ω is compact and |f | : Ω→ R is continuous, and so there exists z0 ∈ Ω for which

|f(z0)| = max
z∈Ω
|f(z)| := N.

Suppose z0 ∈ Ω. Then |f | has a local maximum at a point in Ω, and part (1) implies that
f is constant on Ω. In particular |f | ≡ N on Ω, so by the continuity of |f | : Ω → R we have
|f | ≡ N on Ω, whence M = N obtains and (5.6) is affirmed.

Next suppose z0 ∈ ∂Ω. Then N ≤ M , and since it is clear that M ≤ N , we once again
obtain M = N . Now, by part (2) either |f | < supz∈Ω |f(z)| or f is constant on Ω, and since

sup
z∈Ω
|f(z)| ≤ max

z∈Ω
|f(z)| = M,

we conclude that either |f | < M on Ω or f is constant on Ω. �

Theorem 5.20 (Minimum Principle). Let f be analytic on a region Ω such that f(z) 6= 0
for all z ∈ Ω.

1. If |f | has a local minimum at some z0 ∈ Ω, then f is constant on Ω.
2. Let

β = inf
z∈Ω
|f(z)|.

Then either |f | > β on Ω or f is constant on Ω.
3. Suppose Ω is bounded. If

lim inf |f(zn)| ≥ β

for every sequence (zn) ⊆ Ω that converges to some z ∈ ∂Ω, then either |f | > β on Ω or f is
constant on Ω.

4. Suppose Ω is bounded and f is continuous on Ω. If m = min{|f(z)| : z ∈ ∂Ω}, then either
|f | > m on Ω or f is constant on Ω. Moreover,

min
z∈Ω
|f(z)| = min

z∈∂Ω
|f(z)|.

Proof.
Proof of Part (1). Suppose |f | has a local minimum at some z0 ∈ Ω. Since f is nonvanishing
on Ω, we have that 1/f is analytic on Ω, and moreover |1/f | = 1/|f | has a local maximum at
z0 ∈ Ω. Thus 1/f is constant on Ω by Theorem 5.19(1), and the conclusion follows.

Proof of Part (2). If β = 0, then |f | > β on Ω is immediate. Suppose β > 0. Then

1

β
= sup

z∈Ω

∣∣∣∣ 1

f(z)

∣∣∣∣
and by Theorem 5.19(2) it follows that either 1/|f | < 1/β on Ω or 1/f is constant on Ω.
Therefore either |f | > β on Ω or f is constant on Ω. �
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Lemma 5.21 (Schwarz’s Lemma). Let f be analytic on B, with f(0) = 0 and |f(z)| ≤ 1 for
all z ∈ B. Then

|f(z)| ≤ |z| (5.7)

for all z ∈ B, and
|f ′(0)| ≤ 1. (5.8)

If equality holds in (5.7) for some z 6= 0, or if equality holds in (5.8), then there exists some
λ ∈ S such that f(z) = λz for all z ∈ B.

Proof. Define g : B→ C by

g(z) =

{
f(z)/z, z ∈ B′

f ′(0), z = 0,

clearly analytic on B′. Since f(0) = 0 by hypothesis, we have limz→0 f(z)/z = f ′(0), so that g
is continuous on B and therefore analytic on B by Corollary 4.22.

Fix z ∈ B′, and let |z| < r < 1. Since g is analytic on Br(0) and continuous on Br(0),
Theorem 5.19(4) implies that

|g(z)| ≤ max
w∈Br(0)

|g(w)| = max
w∈∂Br(0)

|g(w)| = max
w∈∂Br(0)

|f(w)|
r

=
1

r
max

w∈∂Br(0)
|f(w)| ≤ 1

r
.

That is, |g(z)| ≤ r−1 for all r < 1 such that r > |z|, and hence |g(z)| ≤ 1 for all z ∈ B′. The
continuity of g on B then ensures that |g(z)| ≤ 1 for all z ∈ B, and thus |f ′(0)| ≤ 1 in particular.
Again noting that f(0) = 0, |g| ≤ 1 on B makes clear that |f(z)| ≤ |z| for all z ∈ B.

Suppose |f(z0)| = |z0| for some z0 ∈ B′. Then |g(z0)| = 1, and since |g| ≤ 1 on B, we find
that |g| has a local maximum at z0 and hence g ≡ λ for some constant λ ∈ C by Theorem
5.19(1). This gives f(z) = λz for all z ∈ B, with |z0| = |f(z0)| = |λ||z0| for |z0| 6= 0 leading us
to conclude that |λ| = 1. That is, λ ∈ S.

Finally, suppose |f ′(0)| = 1. Now |g| has a local maximum at 0, so that once again g ≡ λ for
some λ ∈ C. For any z ∈ B′,

g(z) =
f(z)

z
=
λz

z
= λ,

whence
1 = |f ′(0)| = lim

z→0
|g(z)| = |λ|,

and so λ ∈ S once more. �

Exercise 5.22 (AN2.4.5). If f is analytic on an open connected set Ω and |f | is constant on
Ω, show that f is constant on Ω.

Solution. Suppose f is analytic on an open connected set Ω and |f | is constant on Ω. Then,
for any fixed z0 ∈ Ω and ε > 0 such that Bε(z0) ⊆ Ω, we have |f(z)| = |f(z0)| for all z ∈ Bε(z0),
so f has a local maximum at z0. Therefore f is constant on Ω by the Maximum Principle. �

Exercise 5.23 (AN2.4.8). Suppose that K ⊆ C is compact, f is continuous on K, and f is
analytic on K◦. Show that

max
z∈K
|f(z)| = max

z∈∂K
|f(z)|. (5.9)

Moreover, if |f(z0)| = maxz∈K |f(z)| for some z0 ∈ K◦, then f is constant on the component of
K◦ that contains z0.
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Solution. Since K is compact and f is continuous on K, there exists some z0 ∈ K such that

M = max
z∈K
|f(z)| = |f(z0)|.

If z0 ∈ ∂K, then (5.9) follows immediately and we’re done.
Suppose that z0 ∈ K◦. Let Ω be the component of K◦ containing z0. Thus Ω is an open

connected set, f is analytic on Ω, and |f | has a local maximum at z0 ∈ Ω. By the Maximum
Principle and the continuity of f on Ω ⊆ K, we conclude that f ≡ M on Ω. Now, ∂Ω 6= ∅
since Ω is a bounded set, and thus there exists some w ∈ ∂Ω ⊆ Ω such that f(w) = M . If
w /∈ ∂K, then w ∈ K◦ and so w must lie in the interior of some component of K◦, and not
on the boundary of some component, which is a contradiction. Therefore w ∈ ∂K, and since
w ∈ K also, we obtain (5.9) once again. �

Exercise 5.24 (AN2.4.9). Suppose that Ω is a bounded open set, f is continuous on Ω and
analytic on Ω. Show that

max
z∈Ω
|f(z)| = max

z∈∂Ω
|f(z)|.

Solution. The set Ω is compact, and the interior of Ω is Ω. By the previous exercise we obtain

max
z∈Ω
|f(z)| = max

z∈∂Ω
|f(z)|,

and then the desired result follows by observing that ∂Ω = ∂Ω. �

Exercise 5.25 (AN2.4.24). Suppose that f is analytic on B, with f(0) = 0. For each n ∈ N
define fn : B → C by fn(z) = f(zn). Prove that

∑
fn is uniformly convergent on compact

subsets of B.

Solution. Let K ⊆ B be a compact set. Let 0 < r < 1 be such that K ⊆ Br(0). Since f is
continuous on Br(0), there exists some M ∈ (0,∞) such that |f(z)| ≤ M for all z ∈ Br(0).
Define ϕ : B → C by ϕ(z) = f(z)/M , and define h : B → Br(0) by h(z) = rz. Since h is
analytic on B and ϕ is analytic on h(B) = Br(0), by the Chain Rule ϕ ◦ h is analytic on B. Also

(ϕ ◦ h)(0) = ϕ(h(0)) = ϕ(0) =
f(0)

M
= 0,

and for any z ∈ B,

|(ϕ ◦ h)(z)| = |ϕ(rz)| = |f(rz)|
M

≤ 1.

Hence by Schwarz’s Lemma
|(ϕ ◦ h)(z)| = |ϕ(rz)| ≤ |z|

for all z ∈ B. From this it is immediate that |ϕ(z)| ≤ |z|/r for any z ∈ Br(0), so that

|f(z)| ≤ M |z|
r

on Br(0).
Now, for any n ∈ N and z ∈ Br(0), since

|z| < r < 1 ⇒ |zn| < rn < r ⇒ zn ∈ Br(0),
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we find that

|fn(z)| = |f(zn)| ≤ M |zn|
r

<
Mrn

r
= Mrn−1.

Thus
‖fn‖K ≤Mrn−1

for each n ∈ N, and since
∑
Mrn−1 is a convergent series, we conclude by the Weierstrass

M-Test that
∑
fn converges uniformly on K. �
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5.4 – The Maximum Principle for Harmonic Functions

Theorem 5.26 (Identity Theorem for Harmonic Functions). Suppose u is harmonic on
a region Ω. If u is constant on some nonempty open set Ω′ ⊆ Ω, then u is constant on Ω.

Proof. Suppose u ≡ c on open ∅ 6= Ω′ ⊆ Ω. Define

A =
{
a ∈ Ω : ∃ρ > 0

(
u|Bρ(a) ≡ c

)}
.

By construction A is open in Ω, and it is nonempty since A ⊇ Ω′. Fix z ∈ Ω \ A. Let r > 0
be such that B := Br(z) ⊆ Ω. By Theorem 3.15 there exists harmonic v : B → R such that
f = u+ iv is analytic on B. Define g : B → C by g = ef , which is also analytic on B.

Now, suppose there exists w0 ∈ B with w0 ∈ A. Then there can be found ρ > 0 such that
Bρ(w0) ⊆ B and u ≡ c on Bρ(w0). Since |g| = eRe f = eu by Theorem 4.42, it is clear that |g|
has a local maximum at w0. Thus g is constant on B by Theorem 5.19(1), which implies that eu

is constant on B. Noting that u is real-valued and the exponential function is injective on R, it
follows that u is constant on B. In particular u|B ≡ c, which implies that z ∈ A, a contradiction.
Hence B ∩ A = ∅ must be the case, or equivalently B ⊆ Ω \ A, and we see that Ω \ A is open
in Ω. Since Ω is connected and A 6= ∅, it follows that Ω \ A = ∅ and therefore A = Ω. That is,
u ≡ c on Ω. �

Theorem 5.27 (Maximum Principle for Harmonic Functions). Let u be harmonic on a
region Ω.

1. If u has a local maximum at some z0 ∈ Ω, then u is constant on Ω.
2. Let

α = sup
z∈Ω

u(z).

Then either u < α on Ω or u is constant on Ω.
3. Suppose Ω is bounded. If

lim supu(zn) ≤ α

for every sequence (zn) ⊆ Ω that converges to some z ∈ ∂Ω, then either u < α on Ω or u is
constant on Ω.

4. Suppose Ω is bounded and u is continuous on Ω. If M = max{u(z) : z ∈ ∂Ω}, then either
u < M on Ω or u is constant on Ω. Moreover,

max
z∈Ω

u(z) = max
z∈∂Ω

u(z).

Proof.
Proof of Part (1). Suppose u has a local maximum at z0 ∈ Ω. Let r > 0 be such that
B := Br(z0) ⊆ Ω and u(z) ≤ u(z0) for all z ∈ B. By Theorem 3.15 there exists harmonic
v : B → R such that f = u+ iv is analytic on B. Define g = ef . Since |g| = eu, it is clear from
the strictly increasing nature of the exponential function on R that |g| has a local maximum at
z0. Thus g is constant on B by Theorem 5.19(1), implying that eu—and hence u—is constant
on B. Therefore u is constant on Ω by Theorem 5.26. �
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Theorem 5.28 (Minimum Principle for Harmonic Functions). Let u be harmonic on a
region Ω.

1. If u has a local minimum at some z0 ∈ Ω, then u is constant on Ω.
2. Let

β = inf
z∈Ω

u(z).

Then either u > β on Ω or u is constant on Ω.
3. Suppose Ω is bounded. If

lim inf u(zn) ≥ β

for every sequence (zn) ⊆ Ω that converges to some z ∈ ∂Ω, then either u > β on Ω or u is
constant on Ω.

4. Suppose Ω is bounded and u is continuous on Ω. If m = min{u(z) : z ∈ ∂Ω}, then either
u > m on Ω or u is constant on Ω. Moreover,

min
z∈Ω

u(z) = min
z∈∂Ω

u(z).

Exercise 5.29 (AN2.4.6). If f is continuous on B, analytic on B, and real-valued on ∂B, then
f is constant on B.

Solution. Suppose f = u+ iv is continuous on B, analytic on B, and real-valued on ∂B. Then
u, v : B→ R are harmonic on B by Theorem 4.28, and in particular v is continuous on B with

max
z∈∂B

v(z) = M = 0 = m = min
z∈∂B

v(z),

since v(z) = 0 for all z ∈ ∂B. By Theorem 5.27(4) either v < 0 on B or v is constant on B, and
by Theorem 5.28(4) either v > 0 on B or v is constant on B. Since v < 0 on B contradicts both
conclusions of Theorem 5.28, we must conclude that v is a constant on B, and hence vx ≡ 0 and
vy ≡ 0 on B. Now, since f is complex-differentiable on B, by the Cauchy-Riemann equations

f ′(z) = ux(z) + iuy(z) = vy(z)− ivx(z) = 0

for all z ∈ B. That is, f ′ ≡ 0 on B, and therefore f is constant on B by Theorem 3.26. Since f
is continuous on B, it follows that f must be constant on B. �

Exercise 5.30 (AN2.4.19). Suppose f and g are analytic on B and continuous on B. If
Re f = Re g on ∂B, prove that f − g is constant on B.

Solution. Suppose Re f = Re g on ∂B. The analyticity of f = u + iv and g = û + iv̂ on B
implies that u and û are harmonic on B, and the continuity of f and g on B implies that u and
û are continuous on B. Thus Re f − Re g = u− û is harmonic on B and continuous on B, with

max
z∈∂B

(u− û)(z) = M = 0 = m = min
z∈∂B

(u− û)(z).

By Theorem 5.27 either u− û < 0 on B or u− û is constant on B, and by the Theorem 5.28 either
u− û > 0 on B or u− û is constant on B. Since u− û < 0 on B contradicts both conclusions of
the Theorem 5.28, we must conclude that u− û is a constant on B, and hence ux − ûx ≡ 0 and
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uy − ûy ≡ 0 on B. Now, since f − g is complex-differentiable on B, by the Cauchy-Riemann
equations

(f − g)′(z) = f ′(z)− g′(z) = [ux(z)− iuy(z)]− [ûx(z)− iûy(z)]

= (ux − ûx)(z)− i(uy − ûy)(z) = 0

for all z ∈ B. That is, (f − g)′ ≡ 0 on B, and therefore f − g is constant on B by Theorem 3.26.
Since f − g is continuous on B, it follows that f − g must be constant on B. �

Exercise 5.31 (AN2.4.21). Prove that if u : C→ R is a nonnegative harmonic function, then
u is constant.

Solution. Suppose that u is harmonic such that u(z) ≥ 0 for all z ∈ C. By Theorem 3.15
there exists a harmonic function v : C → R such that f = u + iv is an entire function. Now,
if = −v + iu is likewise entire, and since Im(if) = u ≥ 0 on C, it follows by Exercise 5.5 that
if , and hence f itself, is constant. That is, there exist a, b ∈ R such that

f(z) = u(z) + iv(z) = a+ ib

for all z ∈ C, which shows that u ≡ a on C. �
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6
Cauchy’s Theorem

6.1 – Logarithms and Arguments

It has been established by Theorem 4.42(9) that, for any θ ∈ R, the exponential function
restricted to the horizontal strip

Hθ = R× [θ, θ + 2π) = {x+ iy : x ∈ R and y ∈ [θ, θ + 2π)}

is a bijection on C∗, and therefore it has an inverse function C∗ → Hθ. In what follows we
let expθ, the θ-exponential, denote the restriction of the exponential function to Hθ; that is,
expθ = exp|Hθ .

Definition 6.1. For any θ ∈ R, the θ-logarithm is the function logθ = exp−1
θ . That is,

logθ : C∗ → Hθ is such that

∀z ∈ Hθ

(
logθ(expθ(z)) = z

)
and ∀z ∈ C∗

(
expθ(logθ(z)) = z

)
.

The argument of logθ is the function argθ : C∗ → [θ, θ + 2π) given by argθ(z) = Im(logθ(z)).
The principal logarithm is the function Log = log−π, and the principal argument is

Arg = arg−π.

Recalling the last two parts of Theorem 4.42, an illustration of the workings of expθ and
logθ is provided by Figure 11.

Typically when working with logθ it is understood that the exponential function is restricted
to Hθ, and so we may write

∀z ∈ Hθ

(
logθ(exp(z)) = z

)
and ∀z ∈ C∗

(
exp(logθ(z)) = z

)
.

Some basic properties of the θ-logarithm are as follows.

Proposition 6.2. For all z ∈ C∗,
logθ(z) = ln |z|+ i argθ(z),

where argθ(z) is the unique number in the interval [θ, θ + 2π) for which

z = |z|ei argθ(z).



153

x

y

Hθ

θ + 2π

θ

ln |w|

x

y

Rθ

θ

w

C∗

expθ(z)

logθ(z)

Figure 11.

Proof. Let z ∈ C∗, and let w = logθ(z). By definition w is the unique number in Hθ for which
exp(w) = z, while by Theorem 4.42(6) we have | exp(w)| = eRew. Hence eRew = |z| > 0, so that

ln |z| = ln(eRew) = Rew = Re(logθ(z)).

Since argθ(z) = Im(logθ(z)), we obtain

w = logθ(z) = ln |z|+ i argθ(z)

as desired, which in turn yields

z = exp(w) = exp
(

ln |z|+ i argθ(z)
)

= eln |z|ei argθ(z) = |z|ei argθ(z)

as was also to be shown.
Now,

w ∈ Hθ ⇒ Im(w) ∈ [θ, θ + 2π) ⇒ argθ(z) ∈ [θ, θ + 2π);

and if α, β ∈ [θ, θ + 2π) are such that z = |z|eiα and z = |z|eiβ, so that exp(iα) = exp(iβ)
obtains, then

exp(iα) = exp(iβ) ⇒ iα = iβ ⇒ α = β

since iα, iβ ∈ Hθ and exp is one-to-one on Hθ. Therefore argθ(z) is the unique number in
[θ, θ + 2π) for which z = |z|ei argθ(z). �

Let θ ∈ R, and suppose z = reiα for some α ∈ [θ, θ + 2π). By Proposition 6.2,

ei argθ(z) =
z

|z|
=
reiα

r
= eiα

for iα, i argθ(z) ∈ Hθ, and so argθ(z) = α since the exponential function is injective on Hθ by
Theorem 4.42(9). This proves the following.

Proposition 6.3. Let θ ∈ R. If α ∈ [θ, θ + 2π), then

argθ(re
iα) = α

for any r > 0. In particular argθ(re
iθ) = θ.
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In general argθ(re
iα) may be said to be an angle that is co-terminal with the angle α between

the ray Rα = {reiα : r ∈ [0,∞)} and the positive real axis.

Proposition 6.4. Let Rθ = {reiθ : r ∈ [0,∞)}. Then logθ and argθ are continuous at each
point on C \Rθ, and discontinuous at each point on Rθ.

Proof. Clearly argθ and logθ are not continuous at 0 since neither function is defined there.
Fix z ∈ Rθ \ {0}, so z = reiθ for some r > 0. Define (zn)n∈N by

zn = rei(θ+2π−1/n),

so that limn→∞ zn = z. For each n, θ+2π−1/n ∈ [θ, θ+2π), and hence argθ(zn) = θ+2π−1/n
by Proposition 6.3. Now,

lim
n→∞

argθ(zn) = lim
n→∞

(
θ + 2π − 1

n

)
= θ + 2π 6= θ = argθ(z),

and so argθ is not continuous at z by Theorem 2.20. Moreover, by Proposition 6.2,

lim
n→∞

logθ(zn) = lim
n→∞

[
ln |zn|+ i argθ(zn)

]
= lim

n→∞

[
ln r + i argθ(zn)

]
= ln r + θ + 2π 6= ln r + θ = logθ(z),

and so logθ is also not continuous at z.
The continuity of argθ and logθ on C \Rθ is easily shown using Propositions 6.2 and 6.3. �

Proposition 6.5. The function logθ : C∗ → Hθ is analytic precisely on C \Rθ, with

log′θ(z) =
1

z

for all z ∈ C \Rθ.

Proof. By Proposition 6.4 the function logθ : C \ Rθ → H◦θ is continuous, and of course
exp : H◦θ → C is analytic. Also exp′(z) = exp(z) 6= 0 for all z ∈ H◦θ , and exp(logθ(z)) = z for
all z ∈ C \Rθ. Thus logθ is analytic on C \Rθ by Theorem 3.6, and by the same theorem

log′θ(z) =
1

exp′(logθ(z))
=

1

exp(logθ(z))
=

1

z

for all z ∈ C \Rθ. �

For any θ ∈ R we call the restriction of logθ to its domain of analyticity C \Rθ a branch of
the logarithm. What we mean here by “the logarithm” is the so-called “multivalued-function”
C∗ → C that maps each z 6= 0 to all w ∈ C for which exp(w) = z. The symbol log (no subscript
and lowercase “l”) will be used either to denote an unspecified branch of the logarithm function,
or to serve as a placeholder for different branches of the logarithm function.

In particular the principal logarithm Log : C∗ → R×[−π, π) is analytic on the set C\(−∞, 0]
known as the slit plane. Indeed, in light of earlier findings, Log : C \ (−∞, 0]→ R× (−π, π)
is an analytic bijection whose inverse is also analytic, which is to say the principal logarithm
restricted to the slit plane is a diffeomorphism. Henceforth we call Log restricted to C\(−∞, 0]
the principal branch of the logarithm.
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Recalling that the principal logarithm’s full domain is C∗, we are in a position to define the
complex exponentiation wz of any w ∈ C∗ by z ∈ C as follows:

wz = ez Logw. (6.1)

For fixed z ∈ C the function w 7→ wz is seen to be analytic on C \ (−∞, 0] by Proposition 6.5
and Theorem 3.5.

Example 6.6. We find a power series representation for the principal logarithm function Log
on B1(1). First we note that Log is analytic on B1(1) since, by Proposition 6.5, it is in fact
analytic on C \R−π. By Theorem 4.12 we have, for all z ∈ B1(1),

Log(z) =
∞∑
n=0

Log(n)(1)

n!
(z − 1)n.

Using Proposition 6.5 for the first derivative,

Log′(z) =
0!

z
, Log′′(z) = − 1!

z2
, Log′′′(z) =

2!

z3
, Log(4)(z) =

3!

z4
,

and in general

Log(n)(z) = (−1)n−1 (n− 1)!

zn

for n ≥ 1 (which can be formally affirmed by induction). Thus Log(n)(1) = (−1)n−1(n− 1)! for
n ≥ 1, and since Log(1) = 0 we obtain

Log(z) =
∞∑
n=1

(−1)n−1

n
(z − 1)n

for all z ∈ B1(1). �

Definition 6.7. Let (X, d) be a metric space, and let f : X → C∗ be continuous. A continuous
function λ : X → C is a continuous logarithm of f on X if f(x) = eλ(x) for all x ∈ X. A
continuous function α : X → R is a continuous argument of f on X if f(x) = |f(x)|eiα(x)

for all x ∈ X.

Proposition 6.8. Let f : X → C be continuous.

1. If λ is a continuous logarithm of f , then Imλ is a continuous argument of f .
2. If α is a continuous argument of f , then ln |f |+ iα is a continuous logarithm of f .
3. Suppose X is a connected set. If λ1 and λ2 are continuous logarithms of f , then λ1−λ2 ≡ 2πik

for some k ∈ Z.
4. Suppose X is a connected set. If α1 and α2 are continuous arguments of f , then α1−α2 ≡ 2πk

for some k ∈ Z.

Proof.
Proof of Part (1). Suppose λ : X → C is a continuous logarithm of f on X, so f(x) = eλ(x) for
all x ∈ X. Then

|f(x)| =
∣∣eReλ(x)+i Imλ(x)

∣∣ =
∣∣eReλ(x)ei Imλ(x)

∣∣ = eReλ(x)
∣∣ei Imλ(x)

∣∣ = eReλ(x),
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and so
f(x) = eReλ(x)ei Imλ(x) = |f(x)|ei Imλ(x),

where Imλ is continuous on X by Theorem 2.23. Hence Imλ is a continuous argument of f .

Proof of Part (2). Suppose α : X → R is a continuous argument of f , so f(x) = |f(x)|eiα(x) for
all x ∈ X. Let λ = ln |f |+ iα. Then

eλ(x) = eln |f(x)|+iα(x) = eln |f(x)|eiα(x) = |f(x)|eiα(x) = f(x)

for all x ∈ X, and since λ is continuous on X we find that λ is a continuous argument for f .

Proof of Part (3). Let λ1 and λ2 be continuous logarithms of f . For each x ∈ X we have

eλ1(x) = f(x) = eλ2(x),

and so λ1(x) = λ2 + 2πik(x) for some k(x) ∈ Z. That is, (λ1 − λ2)(x) = 2πik(x) for all x ∈ X.
Suppose k : X → Z is not constant, so that there exist x, y ∈ X such that k(x) = m 6= n = k(y).
Define the sets A = {2πim} and

B = {2πik(x) : x ∈ X and k(x) 6= m} = Ran(λ1 − λ2) \ A,

so that Ran(λ1− λ2) = A∪B. Both A and B are open sets in the discrete topological subspace
A ∪B ⊆ C, and since λ = λ1 − λ2 is continuous, it follows that X1 = λ−1(A) and X2 = λ−1(B)
are open sets in X. Now, A,B 6= ∅ implies X1, X2 6= ∅ (note that 2πin ∈ B), and since
X1 ∪ X2 = X and X1 ∩ X2 = ∅, we see that X1 and X2 constitute a separation of X and
therefore X is not connected! As this is a contradiction, we conclude that k : X → Z must be
constant, and so λ1 − λ2 ≡ 2πik on X for some fixed k ∈ Z.

Proof of Part (4). Let α1 and α2 be continuous arguments of f on X. Then λ1 = ln |f |+ iα1

and λ2 = ln |f | + iα2 are continuous logarithms of f by Part (1), and so λ1 − λ2 ≡ 2πik for
some k ∈ Z by Part (3). Now,

2πik ≡ λ1 − λ2 = (ln |f |+ iα1)− (ln |f |+ iα2) = i(α1 − α2),

and so α1 − α2 ≡ 2πk. �

Proposition 6.9. If γ : [a, b ]→ C∗ is a curve, then γ has a continuous argument.

Proof. Suppose γ : [a, b] → C∗ is a curve. Since [a, b] is compact and |γ| : [a, b] → R
is continuous, the Extreme Value Theorem implies there exist some τ ∈ [a, b] such that
|γ(τ)| ≤ |γ(t)| for all t ∈ [a, b ]. Setting ε = |γ(τ)| and noting that 0 /∈ γ∗, we have ε > 0.

Now, γ is uniformly continuous on [a, b], which is to say there exists δ > 0 such that
|γ(s)− γ(t)| < ε whenever s, t ∈ [a, b ] are such that |s− t| < δ. Let

a = t0 < t1 < · · · < tn = b

be a partition of [a, b ] with γ([tk−1, tk]) ⊆ Bε(γ(tk−1)) for each 1 ≤ k ≤ n. Define γk = γ|[tk−1,tk].
Since Bε(γ(tk−1)) ⊆ C \Rθk for some ray Rθk , by Proposition 6.4 we find that αk = argθk ◦γk is
a continuous argument for γk.
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By Proposition 6.8 the arguments α1 and α2 for γ1 and γ2 are such that α2(t1)−α1(t1) = 2πj
for some j ∈ Z. Defining α̂2 = α2 − 2πj, we find that α̂2 is a continuous argument for γ2 such
that α1 ∪ α̂2 is a continuous argument for γ1 ∪ γ2. The arguments α̂2 and α3 for γ2 and γ3

likewise differ by an integer multiple of 2π, and so we may define a new argument α̂3 for γ3 such
that α1 ∪ α̂2 ∪ α̂3 is a continuous argument for γ1 ∪ γ2 ∪ γ3. Continuing in this way, we come to
construct a continuous argument for

⋃n
k=1 γk = γ and we are done. �

Definition 6.10. Let f be analytic on Ω. Then g : Ω→ C is an analytic logarithm of f on
Ω if g is analytic and exp(g) = f on Ω.

By Theorem 4.42(4) it is clear that for an analytic function f : Ω→ C to have an analytic
logarithm on Ω, it is necessary that f(z) 6= 0 for all z ∈ Ω; that is, f must be nonvanishing on
Ω. Is this sufficient? The next theorem makes clear that it is not, unless for instance Ω happens
to be a starlike region.

Theorem 6.11. Let f be analytic and nonvanishing on Ω. Then the following statements are
equivalent.

1. f has an analytic logarithm on Ω.
2. f ′/f has a primitive on Ω.
3.
¸
γ
f ′/f = 0 for every closed path γ in Ω.

Corollary 6.12. If Ω is an open set such that˛
γ

g = 0

for every analytic function g : Ω→ C and every closed path γ in Ω, then every nonvanishing
analytic function Ω→ C has an analytic logarithm on Ω.

Proof. Let f : Ω→ C be a nonvanishing analytic function. Then f ′/f is analytic on Ω, so that˛
γ

f ′/f = 0

for every closed path γ in Ω. Therefore f has an analytic logarithm on Ω by Theorem 6.11. �

Exercise 6.13 (AN3.2.1a). Let Ω ⊆ C∗ such that Ω ∩Rθ 6= ∅ for all θ ∈ R. Show that logθ
is not analytic on Ω for any θ.

Solution. Fix θ ∈ R. There exists some z0 ∈ Ω such that z0 ∈ Rθ, and since logθ is not
continuous at z0 by Proposition 6.4, we conclude that it is also not analytic there. Hence logθ is
not analytic on Ω. �

Exercise 6.14 (AN3.2.1b). Let f be the identity function f(z) = z. Show there exists a
region Ω ⊆ C∗ such that Ω ∩Rθ 6= ∅ for all θ ∈ R, and yet f has an analytic logarithm on Ω.
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Figure 12. The region Ω.

Solution. Consider the region Ω ⊆ C shown in Figure 12. For the sake of interest, Ω as pictured
is the open set of points that lie between the paths given by

γ1(t) =
(

3
20
t3/2 − 1

)
eit and γ2(t) =

(
3
20
t3/2 + 1

)
eit

for 7 < t < 14. More precisely

Ω =
⋃

t∈(7,14)

(
γ1(t), γ2(t)

)
,

where (γ1(t), γ2(t)) is the open line segment with endpoints γ1(t) and γ2(t). Let S1 ⊆ Ω be the
set

S1 = {z ∈ Ω : Re(z) ≤ 0} ∪ {z ∈ Ω : Re(z), Im(z) ≥ 0 and |z| < 1},

and let S2 ⊆ Ω be

S2 = {z ∈ Ω : Re(z) ≥ 0 and z /∈ S1},
as shown in Figure 12. Define λ : Ω→ C by

λ(z) =

{
log0(z), z ∈ S1

logπ(z), z ∈ S2

Note that S = S1 ∩ S2 is nonempty, and so we must verify that λ is well-defined on S. If z ∈ S,
then z = re3πi/2 for some r > 0, and since 3π/2 ∈ [0, 2π) ∩ [π, 3π), by Proposition 6.3 we obtain
arg0(z) = argπ(z) = 3π/2. Hence

log0(z) = ln |z|+ i arg0(z) = ln |z|+ i argπ(z) = logπ(z)

by Proposition 6.2, and so λ is a well-defined (and continuous) function throughout its domain.
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For any z ∈ S◦1 = S1 \ S, we have z = reiθ for some θ ∈ (0, 2π), and so

eλ(z) = exp(log0(z)) = z = f(z).

Similarly, for any z ∈ S◦2 = S2 \ S, we have z = reiθ for some θ ∈ (π, 3π), and so

eλ(z) = exp(logπ(z)) = z = f(z).

Finally, if z ∈ S, then λ(z) = log0(z) = logπ(z) as observed earlier, so that once again
eλ(z) = z = f(z). Therefore λ is a continuous logarithm of f .

It remains to verify that λ is analytic on Ω. Certainly it is analytic on S◦1 , since λ|S◦1 ≡ log0,
S◦1 ⊆ C \ R0 and log0 is analytic on C \ R0 by Proposition 6.5. Similarly, λ is analytic on
S◦2 , since λ|S◦2 ≡ logπ, S◦2 ⊆ C \ Rπ and logπ is analytic on C \ Rπ. Fix w ∈ S. There exists

some ε > 0 sufficiently small that B = Bε(w) ⊆ Ω, and z ∈ B implies that z = reiθ for some
θ ∈ (π, 2π) ⊆ [0, 2π) ∩ [π, 3π). As a consequence, z ∈ B implies that argπ(z) = θ = arg0(z), so
that logπ(z) = log0(z) and hence λ|B ≡ log0. This shows that λ is analytic on B, and therefore
analytic at w. Since w ∈ S is arbitrary, we conclude that λ is analytic on S ∪ S◦1 ∪ S◦2 = Ω. �

Exercise 6.15 (AN3.2.5). Let f(z) = z for all z. Show that f does not have a continuous
argument on S.

Solution. Suppose that f does have a continuous argument on S. Thus there exists some
continuous α : S→ R such that, for all z ∈ S, we have f(z) = |f(z)|eiα(z), and thus z = eiα(z).
Define γ : [0, 2π]→ S by γ(t) = eit. Since |γ(t)| = 1, we obtain γ(t) = |γ(t)|eit for all t ∈ [0, 2π],
which shows that β : [0, 2π]→ R given by β(t) = t is a continuous argument of γ. On the other
hand we have

γ(t) = eiα(γ(t)) = |γ(t)|ei(α◦γ)(t)

for all t ∈ [0, 2π], where the continuity of γ on [0, 2π] and the continuity of α on S imply the
continuity of α ◦ γ on [0, 2π], and so α ◦ γ is a continuous argument of γ. Since β and α ◦ γ are
continuous arguments of γ, it follows that α ◦ γ − β ≡ 2πk for some k ∈ Z. From this we obtain

2πk = α(γ(0))− β(0) = α(1) and 2πk = α(γ(2π))− β(2π) = α(1)− 2π,

so that α(1) = 2πk and α(1) = 2π(k+ 1), a contradiction. Therefore f must have no continuous
argument on S. �

Exercise 6.16 (AN3.2.6). Let

S =
{
z : Re(z) ∈ [a, b] and Im(z) ∈ [c, d]

}
,

and suppose f : S → C∗ is continuous. Show that f has a continuous logarithm on S.

Solution. Since f is continuous and S is a closed set, the set f(S) ⊆ C∗ is likewise closed and
thus ε = min{|f(z)| : z ∈ S} is greater than 0. Because f is uniformly continuous on S, there
exists some δ > 0 such that, for any z, w ∈ S,

|z − w| ≤ δ ⇒ |f(z)− f(w)| < ε.

Let
X = {xj : 0 ≤ j ≤ m, xj−1 < xj, x0 = a, xm = b}
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be a partition of [a, b] with mesh ‖X‖ < δ/2, and let

Y = {yk : 0 ≤ k ≤ n, yk−1 < yk, y0 = c, yn = d}

be a partition of [c, d] with mesh ‖Y ‖ < δ/2. Then Z = X + iY , where

X + iY = {x+ iy : x ∈ X and y ∈ Y },

is a partition of S such that ‖Z‖ < δ. The partition Z subdivides S into rectangular subsets

Sjk = {z : Re(z) ∈ [xj−1, xj] and Im(z) ∈ [yk−1, yk]
}

for 1 ≤ j ≤ m and 1 ≤ k ≤ n, where diam(Sjk) ≤ ‖Z‖ < δ. Define zjk ∈ Sjk to be the point
given by zjk = xj + iyk. Now,

z ∈ Sjk ⇒ |z − zjk| < δ ⇒ |f(z)− f(zjk)| < ε,

so that f(Sjk) ⊆ Bε(zjk). If fjk denotes f restricted to Sjk, then fjk : Sjk → Bε(zjk). Observing
that 0 /∈ Bε(zjk), there exists some αjk ∈ R such that Bε(zjk) ⊆ C \ Rαjk ; and since argαjk is
continuous on C \Rαjk by Proposition 6.4, and

f(z) = |f(z)|ei argαjk
(f(z))

for all z ∈ Sjk by Proposition 6.2, we conclude that θjk := argαjk ◦f is a continuous argument of
fjk.

Fix 1 ≤ j ≤ m. For each 1 ≤ k ≤ n−1 we find that θjk and θj(k+1) are continuous arguments
for f restricted to the connected set Sjk ∩ Sj(k+1), and thus θjk and θj(k+1) must differ by an
integer multiple of 2π on this set. Thus θj1 − θj2 = 2π`1 for some `1 ∈ Z, but if we define

ϕj(z) =

{
θj1(z), z ∈ Sj1
θj2(z) + 2π`1, z ∈ Sj2

it is easy to verify that ϕj is a continuous argument of f on Sj1 ∪ Sj2. Adjusting θj3 by
an appropriate constant 2π`2, we may extend ϕj to obtain a continuous argument of f on
Sj1 ∪ Sj2 ∪ Sj3, and so on until we have constructed a continuous argument ϕj for f on

Sj =
n⋃
k=1

Sjk.

Now, observing that ϕ1 and ϕ2 are continuous arguments for f on the line segment S1 ∩ S2,
we may adjust ϕ2 by an integer multiple of 2π so as to obtain a continuous argument of f on
S1 ∪ S2. Continuing in this fashion, we finally obtain a continuous argument of f on

S =
m⋃
j=1

Sj.

Now Proposition 6.8(2) implies that f has a continuous logarithm on S. �
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Figure 13.

Remark. Consider the rectangle R = [a, b]× [c, d] ⊆ R2, and suppose f : R→ C∗ is continuous.
Let S be as in Exercise 6.16. Now, since ϕ : S → R given by ϕ(x + iy) = (x, y) is a
homeomorphism, it follows that f ◦ϕ : S → C∗ is continuous and so has a continuous logarithm
λ : S → C by Exercise 6.16. Hence

f(x, y) = (f ◦ ϕ)(x+ iy) = eλ(x+iy) = e(λ◦ϕ−1)(x,y)

for all (x, y) ∈ R, which shows that λ ◦ ϕ−1 : R→ C is a continuous argument of f .

Exercise 6.17 (AN3.2.7). Let f be analytic and zero-free on Ω, and suppose that λ is a
continuous logarithm of f on Ω. Show that λ is analytic on Ω.

Solution. Fix z0 ∈ Ω. Let θ ∈ R be such that λ(z0) ∈ H◦θ . Since λ is continuous at z0, and
Ω and H◦θ are open, there exists some δ > 0 such that B = Bδ(z0) ⊆ Ω and z ∈ B implies
λ(z) ∈ H◦θ . Thus λ(B) ⊆ H◦θ , whence exp(λ(B)) ⊆ C \Rθ obtains (see Figure 13), and so z ∈ B
implies f(z) = exp(λ(z)) ∈ C \Rθ and we conclude that f(B) ⊆ C \Rθ.

By Proposition 6.5 the function logθ : C \Rθ → H◦θ is analytic, and exp : H◦θ → C \Rθ is its
inverse. For any z ∈ B we have

(logθ ◦f)(z) = logθ(f(z)) = logθ(exp(λ(z))) = λ(z),

since λ(z) ∈ H◦θ . Hence λ = logθ ◦f on B, and since f is analytic on B and logθ is analytic on
f(B), by the Chain Rule we conclude that λ is analytic on B. In particular λ is analytic at z0,
and since z0 ∈ Ω is arbitrary it follows that λ is analytic on Ω. �
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6.2 – Winding Numbers

Proposition 6.18. Suppose that γ : [a, b]→ C is a closed curve, with z /∈ γ∗ and α : [a, b]→ R
a continuous argument of γ − z.

1. α(b)− α(a) = 2πn for some n ∈ Z.
2. If α̂ : [a, b]→ R is another continuous argument of γ − z, then α̂(b)− α̂(a) = α(b)− α(a).

Proof.
Proof of Part (1). First note that γz := γ − z is a closed curve, and since z /∈ γ∗ implies that
0 /∈ γ∗z , Proposition 6.9 ensures γz does indeed have a continuous argument α. That is,

γz(t) = |γz(t)|eiα(t)

for all t ∈ [a, b], and from γz(b) = γz(a) it follows that eiα(b) = eiα(a). Therefore α(b)−α(a) = 2πn
for some n ∈ Z by Theorem 4.42(7).

Proof of Part (2). Let α̂ be another continuous argument of γz. Then α̂− α ≡ 2πk for some
k ∈ Z by Proposition 6.8(4), and so

α̂(b)− α̂(a) = [α(b) + 2πk]− [α(a) + 2πk] = α(b)− α(a)

as desired. �

Definition 6.19. Suppose that γ : [a, b]→ C is a closed curve with z /∈ γ∗, and let α : [a, b]→ R
be any continuous argument of γ − z. The winding number of z with respect to γ is

wn(γ, z) =
α(b)− α(a)

2π
.

The first part of Proposition 6.18 makes clear that the winding number wn(γ, z) is always
an integer, and the second part guarantees that the winding number is independent of the
continuous argument α chosen for γ − z.

Proposition 6.20. Let γ, γ1, γ2 : [a, b]→ C be closed curves.

1. If z /∈ γ∗, then wn(γ, z) = wn(γ + w, z + w) for all w ∈ C.
2. If z /∈ γ∗, then wn(γ, z) = wn(γ − z, 0).
3. If 0 /∈ γ∗1 ∪ γ∗2 , then

wn(γ1γ2, 0) = wn(γ1, 0) + wn(γ2, 0) and wn(γ1/γ2, 0) = wn(γ1, 0)− wn(γ2, 0).

4. If γ∗ ⊆ Br(z0), then wn(γ, z) = 0 for all z ∈ C \Br(z0).
5. If |γ1(t)− γ2(t)| < |γ1(t)| for all t ∈ [a, b], then 0 /∈ γ∗1 ∪ γ∗2 and wn(γ1, 0) = wn(γ2, 0)

Proof.
Proof of Part (1). Suppose z /∈ γ∗. Fix w ∈ C. Let α : [a, b] → R be a continuous argument
of γ − z. Since γ + w : [a, b] → C is a closed curve with z + w /∈ (γ + w)∗, and since
(γ + w)− (z + w) = γ − z, it follows that α is also a continuous argument of (γ + w)− (z + w).
Therefore

wn(γ + w, z + w) =
α(b)− α(a)

2π
= wn(γ, z)
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by Definition 6.19.

Proof of Part (2). This follows from the preceding part simply by choosing w = −z.

Proof of Part (3). Suppose 0 /∈ γ∗1 ∪ γ∗2 , so γ1(t) 6= 0 and γ2(t) 6= 0 for all t ∈ [a, b], which
shows that (γ1γ2)(t) 6= 0 for t ∈ [a, b], and hence γ1γ2 is a closed curve with 0 6= (γ1γ2)

∗. Let
α1, α2 : [a, b]→ R be continuous arguments for γ1, γ2, so

γ1(t) = |γ1(t)|eiα1(t) and γ2(t) = |γ2(t)|eiα2(t)

for t ∈ [a, b]. Then

(γ1γ2)(t) = |γ1(t)||γ2(t)|eiα1(t)eiα2(t) = |(γ1γ2)(t)|ei(α1+α2)(t),

and so α1 + α2 is a continuous argument of γ1γ2 on [a, b]. By Definition 6.19,

wn(γ1γ2, 0) =
(α1 + α2)(b)− (α1 + α2)(a)

2π
=
α1(b)− α1(a)

2π
+
α2(b)− α2(a)

2π

= wn(γ1, 0) + wn(γ2, 0).

Also

(γ1/γ2)(t) =
|γ1(t)|eiα1(t)

|γ2(t)|eiα2(t)
= |(γ1/γ2)(t)|ei(α1−α2)(t)

shows α1 − α2 to be a continuous argument of γ1/γ2 on [a, b], and so

wn(γ1/γ2, 0) =
(α1 − α2)(b)− (α1 − α2)(a)

2π
=
α1(b)− α1(a)

2π
− α2(b)− α2(a)

2π

= wn(γ1, 0)− wn(γ2, 0).

Proof of Part (4). Suppose γ∗ ⊆ B := Br(z0), and fix z ∈ C \ B. Define f : B → C by
f(w) = w − z for all w ∈ B. Clearly f is analytic and nonvanishing on B. Since B is a starlike
region, by Theorem 3.40 any analytic function g : B → C has a primitive on B, and hence¸

Γ
g = 0 for every closed path Γ in B by Theorem 3.24. Thus f has an analytic logarithm λ on

B by Corollary 6.12, and by Proposition 6.8(1) we have θ = Imλ as a continuous argument of
f on B; that is, f(w) = |f(w)|eiθ(w) for all w ∈ B, and therefore

f(γ(t)) = |f(γ(t))|eiθ(γ(t))

for all t ∈ [a, b]. Setting α = θ ◦ γ, we have

(γ − z)(t) = γ(t)− z = f(γ(t)) = |f(γ(t))|eiθ(γ(t)) = |(γ − z)(t)|eiα(t),

and so α is a continuous argument of γ − z. Since z /∈ γ∗ and γ(a) = γ(b), we have

wn(γ, z) =
α(b)− α(a)

2π
=
θ(γ(b))− θ(γ(a))

2π
= 0

as was to be shown.

Proof of Part (5). Suppose |γ1(t)− γ2(t)| < |γ1(t)| for all t ∈ [a, b]. If 0 ∈ γ∗1 , so that γ1(τ) = 0
for some τ ∈ [a, b], then we obtain the contradiction |γ2(τ)| < 0. If 0 ∈ γ∗2 , so that γ2(τ) = 0 for
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some τ ∈ [a, b], then we obtain the contradiction |γ1(τ)| < |γ1(τ)|. Hence 0 /∈ γ∗1 ∪ γ∗2 must be
the case. Now,

|γ1(t)− γ2(t)| < |γ1(t)| ⇒ |(γ2/γ1)(t)− 1| < 1

for all t ∈ [a, b], and so (γ2/γ1)
∗ ⊆ B1(1). Since 0 ∈ C \ B1(1), by part (4) we obtain

wn(γ2/γ1, 0) = 0. But wn(γ2/γ1, 0) = wn(γ2, 0)−wn(γ1, 0) by part (3), and therefore wn(γ1, 0) =
wn(γ2, 0). �

Proposition 6.21. Let γ : [a, b] → C be a closed curve, and let n : C \ γ∗ → Z be given by
n(z) = wn(γ, z).

1. n is constant on each component of C \ γ∗.
2. C \ γ∗ has precisely one unbounded component U , with n|U ≡ 0.

Proof.
Proof of Part (1). Since γ is continuous and [a, b] is compact, by Theorems 2.41 and 2.40 the
trace γ∗ is closed and bounded, and so C \ γ∗ is open. Let Ω be a component of C \ γ∗, and for
some z0 ∈ Ω define

A = {w ∈ Ω : n(w) = n(z0)}.

Fix w0 ∈ A. By Proposition 2.35 the set Ω is open in C, so choose some r > 0 such that
Br(w0) ⊆ Ω, and suppose w ∈ Br(w0). Since w /∈ γ∗, Proposition 6.20 implies that

wn(γ, w)− wn(γ, w0) = wn(γ − w, 0)− wn(γ − w0, 0)

= wn

(
γ − w
γ − w0

, 0

)
= wn(1 + Γ, 0), (6.2)

where Γ : [a, b]→ C is the curve given by

Γ(t) =
w0 − w
γ(t)− w0

.

Now, for any t ∈ [a, b] we have γ(t) ∈ C \Br(w0), so |γ(t)− w0| ≥ r and hence

|Γ(t)| < r

|γ(t)− w0|
≤ 1,

which shows that Γ∗ ⊆ B1(0), and finally (Γ + 1)∗ ⊆ B1(1). Noting that 0 /∈ B1(1), Proposition
6.20(4) yields wn(Γ + 1, 0) = 0, and thus wn(γ, w) = wn(γ, w0) by (6.2). That is, n(w) =
n(w0) = n(z0) for all w ∈ Br(w0), so Br(w0) ⊆ A and we see that A is an open set.

Next suppose that w1 ∈ Ω \ A, and let r > 0 be such that Br(w1) ⊆ Ω. The same argument
as before will show that n(w) = n(w1) for all w ∈ Br(w1), and since n(w1) 6= n(z0), it follows
that Br(w1) ⊆ Ω \ A and hence Ω \ A is an open set. Since Ω is connected and A 6= ∅, we
conclude that Ω \ A = ∅. That is, A = Ω, or equivalently n ≡ n(z0) on Ω.

Proof of Part (2). As noted already, γ∗ is closed and bounded, so in particular there exists some
r > 0 such that γ∗ ⊆ Br(0), and thus S := C \Br(0) ⊆ C \ γ∗ := X. Since S is connected, there
must exist some component U of X such that U ⊇ S, and it is clear that this component is
unbounded. This proves the existence of an unbounded component U .

Now suppose U1 and U2 are unbounded components of X. Then U1∩S 6= ∅ and U2∩S 6= ∅,
and since S is connected, by Theorem 2.34 it follows that S ⊆ U1 and S ⊆ U2. This implies that



165

U1 ∩U2 6= ∅, so by two more applications of Theorem 2.34 we obtain U1 ⊆ U2 and U2 ⊆ U1, and
therefore U1 = U2. This proves the uniqueness of the unbounded component U that we found.

Finally, let z ∈ U be such that |z| > r. Then wn(γ, z) = 0 by Proposition 6.21(4), and since
n is constant on U by part (1), we conclude that n|U ≡ 0. �

Theorem 6.22. Let γ be a closed path with z0 /∈ γ∗. Then

wn(γ, z0) =
1

2πi

˛
γ

1

z − z0

dz.

Corollary 6.23. Let γ be a closed path, and let f be analytic on an open set Ω containing γ∗.
If z0 /∈ (f ◦ γ)∗, then

wn(f ◦ γ, z0) =
1

2πi

˛
γ

f ′(z)

f(z)− z0

dz.

The following exercise could be completed making use of Theorem 6.22, but Cauchy’s Integral
Formula for a Circle from §4.2 will be used instead.

Exercise 6.24 (AN3.2.2). For any a, b ∈ C with a 6= b, let f(z) = (z − a)(z − b) for all
z ∈ Ω = C \ [a, b]. Show that f has an analytic square root on Ω, but not an analytic logarithm.

Solution. Let ϕ be the angle between [a, b] and the positive real axis, as in Figure 14. Fix
z ∈ Ω, so that z − a /∈ [0, b − a] and z − b /∈ [a − b, 0] = [0, a − b]. For definiteness we may
suppose [0, b− a] ⊆ Rϕ, so that [0, a− b] ⊆ Rϕ+π. Then z− a = r1e

iθ1 for some θ1 ∈ [ϕ, ϕ+ 2π),
where either θ1 6= ϕ, or θ1 = ϕ and r1 > |b− a|; and z − b = r2e

iθ2 for some θ2 ∈ [ϕ, ϕ + 2π),
where either θ2 6= ϕ+ π, or θ2 = ϕ+ π and r2 > |a− b|. Now, define

h(z) =
√
|f(z)| exp

(
i

2

(
argϕ(z − a) + argϕ(z − b)

))
,

which with an application of Proposition 6.3 becomes

h(z) =
√
|f(z)| exp

(
i(θ1 + θ2)

2

)
=
√
r1r2e

iθ1/2eiθ2/2,

x

y

ϕ
a

b

C \ [a, b]

Figure 14.
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and thus
h2(z) = r1r2e

iθ1eiθ2 = (z − a)(z − b) = f(z).

This shows that h : Ω→ C is an analytic square root for f on Ω.
Next, for any z ∈ Ω,

(f ′/f)(z) =
2z − (a+ b)

(z − a)(z − b)
=

1

z − a
+

1

z − b
,

and so for any r > 0 such that [a, b] ⊆ Br(0),˛
Cr(0)

f ′/f =

˛
Cr(0)

(
1

z − a
+

1

z − b

)
dz =

˛
Cr(0)

1

z − a
dz +

˛
Cr(0)

1

z − b
dz.

By Cauchy’s Integral Formula for a Circle, since a, b ∈ Br(0) and the constant function 1 is
analytic on C, we have

1

2πi

˛
Cr(0)

1

z − a
dz = 1 and

1

2πi

˛
Cr(0)

1

z − b
dz = 1,

and hence ˛
Cr(0)

f ′/f = 2πi+ 2πi = 4πi 6= 0

for the closed path Cr(0) in Ω. Therefore f does not have an analytic logarithm on Ω by
Theorem 6.11. �

Exercise 6.25 (AN3.2.3). Let f be a nonvanishing analytic function on Ω. Show that the
following are equivalent.

1. f has an analytic logarithm on Ω.
2. f has an analytic nth root on Ω for all n ∈ N.
3. f has an analytic nth root on Ω for infinitely many n ∈ N.

Solution.
(1) ⇒ (2): Suppose that f has an analytic logarithm on Ω, so there exists some λ : Ω→ C such
that f = eλ. Fix n ∈ N, and define h : Ω → C by h(z) = eλ(z)/n. Thus h = exp ◦λ/n, where
λ/n is analytic on Ω and exp is analytic on the range of λ/n, and so h is analytic on Ω by the
Chain Rule. Moreover, for any z ∈ Ω,

hn(z) =
n∏
k=1

exp

(
λ(z)

n

)
= exp

(
n∑
k=1

λ(z)

n

)
= exp

(
λ(z)

)
= eλ(z) = f(z),

using the property exp(z1) exp(z2) = exp(z1 + z2). Therefore hn = f , and we conclude that h is
an analytic nth root of f on Ω.

(2) ⇒ (3): Suppose f has an analytic nth root on Ω for all n ∈ N. Then it follows trivially that
f has an analytic nth root on Ω for infinitely many n ∈ N.

(3) ⇒ (1): Suppose f has an analytic nth root hn on Ω for infinitely many n ∈ N. For all z ∈ Ω
we have f(z) = hnn(z), and so

f ′(z) = nhn−1
n (z)h′n(z)
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by the Chain Rule. Now, for any closed path γ in Ω,˛
γ

f ′(z)

f(z)
dz =

˛
γ

nhn−1
n (z)h′n(z)

hnn(z)
dz = n

˛
γ

h′n(z)

hn(z)
dz,

and since 0 /∈ (hn ◦ γ)∗ on account of hn being zero-free on Ω, it follows by Corollary 6.23 that˛
γ

f ′(z)

f(z)
dz = 2πinwn(hn ◦ γ, 0),

and hence

2πiwn(hn ◦ γ, 0) =
1

n

˛
γ

f ′(z)

f(z)
dz.

Let (hnk)
∞
k=1 be a sequence of functions such that hnk is an nkth root for f on Ω. Then

|wn(hnk ◦ γ, 0)| = 1

2πnk

∣∣∣∣˛
γ

f ′(z)

f(z)
dz

∣∣∣∣
for all k ≥ 1. For sufficiently large k we obtain 0 ≤ |wn(hnk◦γ, 0)| < 1, and thus wn(hnk◦γ, 0) = 0
since a winding number must be an integer. This immediately implies that˛

γ

f ′(z)

f(z)
dz = 0,

and since γ is an arbitrary closed path in Ω, we conclude by Theorem 6.11 that f has an analytic
logarithm on Ω. �
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6.3 – Cauchy’s Theorem

Lemma 6.26. Let f : Ω→ C be analytic, and define g : Ω× Ω→ C by

g(w, z) =


f(w)− f(z)

w − z
, w 6= z

f ′(z), w = z
(6.3)

The function g is continuous, and for each w ∈ Ω the function Ω→ C given by z 7→ g(w, z) is
analytic on Ω.

Proof. The proof in [AN] is for the most part clear except for the argument that g is continuous
at (w, z) in the case when w = z. Let (z, z) ∈ Ω×Ω, and let (wn, zn)n∈N be a sequence in Ω×Ω
that converges to (z, z). Fix ε > 0. Since f ′ is continuous at z, there exists some δ > 0 such
that, for all ζ ∈ Ω,

|ζ − z| < δ ⇒ |f ′(ζ)− f ′(z)| < ε. (6.4)

Since wn, zn → z as n→∞, there exists some N ∈ N such that wn, zn ∈ Bδ(z) for all n ≥ N .
Fix n ≥ N . If wn = zn, then g(wn, zn) = f ′(zn), and since |zn − z| < δ, by (6.4) we find that

|g(wn, zn)− f ′(z)| = |f ′(zn)− f ′(z)| < ε.

Suppose wn 6= zn. Then

g(wn, zn) =
f(wn)− f(zn)

wn − zn
=

1

wn − zn

ˆ
[zn,wn]

f ′(ζ)dζ

=
1

wn − zn

ˆ 1

0

f ′((1− t)zn + twn)(wn − zn)dt

=

ˆ 1

0

f ′((1− t)zn + twn)dt.

Now,

wn, zn ∈ Bδ(z) ⇒ [wn, zn] ⊆ Bδ(z) ⇒ ∀t ∈ [0, 1]
(
(1− t)zn + twn ∈ Bδ(z)

)
,

and hence ∣∣f ′((1− t)zn + twn)− f ′(z)
∣∣ < ε

for all 0 ≤ t ≤ 1 by (6.4). Therefore,

|g(wn, zn)− f ′(z)| =
∣∣∣∣ˆ 1

0

f ′((1− t)zn + twn)dt− f ′(z)

∣∣∣∣
=

∣∣∣∣ˆ 1

0

[
f ′((1− t)zn + twn)− f ′(z)

]
dt

∣∣∣∣
≤
ˆ 1

0

∣∣f ′((1− t)zn + twn)− f ′(z)
∣∣dt

≤
ˆ 1

0

εdt = ε.
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We see that for every sequence (wn, zn)n∈N in Ω× Ω that converges to (z, z), the sequence
(g(wn, zn))n∈N converges to g(z, z). Therefore g is continuous at (z, z). �

Remark. Notice that g(w, z) = g(z, w) for all (w, z) ∈ Ω× Ω, and so Lemma 6.26 implies an
additional, symmetric conclusion: for each z ∈ Ω the function Ω→ C given by w 7→ g(w, z) is
analytic on Ω.

Lemma 6.27. Let [a, b] ⊆ R, and let ϕ : Ω × [a, b] → C be continuous. Suppose ϕ(·, t) is
analytic on Ω for each t ∈ [a, b]. If F : Ω→ C is given by

F (z) =

ˆ b

a

ϕ(z, t)dt,

then F is analytic on Ω, and

F ′(z) =

ˆ b

a

∂ϕ

∂z
(z, t)dt

for all z ∈ Ω

Proof. Fix z0 ∈ Ω, let r > 0 be such that Br(z0) ⊆ Ω, and let γ(s) = z0 + reis for s ∈ [0, 2π].
For each t ∈ [a, b] Cauchy’s Integral Formula for a Circle gives

ϕ(z, t) =
1

2πi

˛
Cr(z0)

ϕ(w, t)

w − z
dw

for all z ∈ Br(z0), and so by Fubini’s Theorem in [MT]3 we have

F (z) =

ˆ b

a

(
1

2πi

˛
Cr(z0)

ϕ(w, t)

w − z
dw

)
dt =

1

2πi

ˆ b

a

ˆ 2π

0

ϕ(γ(s), t)γ′(s)

γ(s)− z
dsdt

=
1

2πi

ˆ 2π

0

ˆ b

a

ϕ(γ(s), t)γ′(s)

γ(s)− z
dtds =

1

2πi

ˆ 2π

0

(
γ′(s)

γ(s)− z

ˆ b

a

ϕ(γ(s), t)dt

)
ds

=
1

2πi

ˆ 2π

0

F (γ(s))γ′(s)

γ(s)− z
ds =

1

2πi

˛
Cr(z0)

F (w)

w − z
dw := G(z) (6.5)

for all z ∈ Br(z0). Since F is continuous on Cr(z0), the function G defined in (6.5) is analytic
on C \ Cr(z0) by Theorem 4.19, and hence F is analytic on Br(z0) since F = G there. Now, by
Corollary 4.20,

∂ϕ

∂z
(z, t) =

1

2πi

˛
Cr(z0)

ϕ(w, t)

(w − z)2
dw

for all t ∈ [a, b] and z ∈ Br(z0), and so by another application of Corollary 4.20 and Fubini’s
Theorem we obtain

F ′(z) =
1

2πi

˛
Cr(z0)

F (w)

(w − z)2
dw =

1

2πi

˛
Cr(z0)

ˆ b

a

ϕ(w, t)

(w − z)2
dtdw

=
1

2πi

ˆ b

a

˛
Cr(z0)

ϕ(w, t)

(w − z)2
dwdt =

ˆ b

a

∂ϕ

∂z
(z, t)dt

for all z ∈ Br(z0). �

3In particular refer to Example 3.18.

http://faculty.bucks.edu/erickson/MeasureTheoryProbability/MeasureTheoryProbability.pdf
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Theorem 6.28 (Cauchy’s Integral Formula). Let γ be a closed path in Ω such that
wn(γ, z) = 0 for all z /∈ Ω. If f is analytic on Ω and z ∈ Ω \ γ∗, then

wn(γ, z)f(z) =
1

2πi

˛
γ

f(w)

w − z
dw.

Proof. Suppose that f : Ω→ C is analytic. Let g : Ω× Ω→ C be given by (6.3), and define
F : Ω→ C by

F (z) =

˛
γ

g(w, z)dw =

ˆ b

a

g(γ(t), z)γ′(t)dt.

Define ϕ : Ω× [a, b]→ C by ϕ(z, t) = g(γ(t), z)γ′(t), and for each t ∈ [a, b] define ψt : Ω→ C
by ψt(z) = ϕ(z, t).

By Lemma 6.26 the function g is continuous on Ω× Ω, and since γ and γ′ are continuous
on [a, b], it follows that ϕ is continuous on Ω× [a, b]. Also by Lemma 6.26, ξw(z) = g(w, z) is
analytic on Ω for all w ∈ Ω, and thus ξγ(t)(z) = g(γ(t), z) is analytic on Ω for all t ∈ [a, b]. From
this fact it easily follows that ψt is analytic on Ω for each fixed t ∈ [a, b], since

ψt(z) = ϕ(z, t) = g(γ(t), z)γ′(t) = ξγ(t)(z)γ′(t).

Therefore F is analytic on Ω by Lemma 6.27.
Define Ω′ = {z ∈ C \ γ∗ : wn(γ, z) = 0}, which is an open set by Proposition 6.21. Clearly

C \ Ω ⊆ Ω′ and Ω ∪ Ω′ = C. Define h : C→ C by

h(z) =


¸
γ
g(w, z)dw, z ∈ Ω

¸
γ
f(w)
w−z dw, z ∈ Ω′

If z ∈ Ω ∩ Ω′, then

g(w, z) =
f(w)− f(z)

w − z
for all w ∈ γ∗ since z /∈ γ∗, and so˛

γ

g(w, z)dw =

˛
γ

f(w)

w − z
dw −

˛
γ

f(z)

w − z
dw =

˛
γ

f(w)

w − z
dw − 2πiwn(γ, z)f(z) =

˛
γ

f(w)

w − z
dw

by Theorem 6.22 and the fact that wn(γ, z) = 0. Hence h is a well-defined function. In fact h
is an entire function, since it is analytic on Ω′ by Theorem 4.19, and it is analytic on Ω since
h|Ω = F .

Let M = max{|f(w)| : w ∈ γ∗}, and let R > 0 be such that γ∗ ⊆ BR(0). Then wn(γ, z) = 0
for all z ∈ C\BR(0) by Proposition 6.20(4), and so C\BR(0) ⊆ Ω′. Thus, for any z ∈ C\BR(0),

|h(z)| =
∣∣∣∣˛
γ

f(w)

w − z
dw

∣∣∣∣ ≤ ˛
γ

∣∣∣∣ f(w)

w − z

∣∣∣∣ dw ≤ ˛
γ

M

|w − z|
dw ≤

˛
γ

M

|z| − |w|
dw,

where |z| ≥ R > |w| for all w ∈ γ∗. This shows that |h(z)| → 0 as |z| → ∞, and since h
is bounded on any closed disc Br(0), we conclude that h is a bounded entire function. By
Liouville’s Theorem h must be constant on C, and in fact h ≡ 0 since, again, |h(z)| → 0 as
|z| → ∞.
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Finally, fix z ∈ Ω \ γ∗. Then

0 = h(z) =

˛
γ

g(w, z)dw =

˛
γ

f(w)

w − z
dw − 2πiwn(γ, z)f(z),

which yields

wn(γ, z)f(z) =
1

2πi

˛
γ

f(w)

w − z
dw

as desired. �

Theorem 6.29 (Cauchy’s Theorem). Let γ be a closed path in Ω. Then wn(γ, z) = 0 for
all z ∈ C \ Ω if and only if

¸
γ
f = 0 for every function f that is analytic on Ω.

Proof. Suppose that wn(γ, z) = 0 for all z /∈ Ω. Let f : Ω→ C be analytic. Fix z ∈ Ω \γ∗, and
define the analytic function ϕ : Ω→ C by ϕ(w) = (w − z)f(w). By Cauchy’s Integral Formula,

wn(γ, z)ϕ(z) =
1

2πi

˛
γ

ϕ(w)

w − z
dw =

1

2πi

˛
γ

f(w)dw,

and since ϕ(z) = 0 it follows that
¸
γ
f = 0.

Next, suppose that
¸
γ
f = 0 for every function f that is analytic on Ω. Fix z /∈ Ω, and define

the analytic function f : Ω→ C by

f(w) =
1

w − z
.

Applying Theorem 6.22, we obtain

wn(γ, z) =
1

2πi

˛
γ

1

w − z
dw =

1

2πi

˛
γ

f = 0

as desired. �

Proposition 6.30 (Cauchy’s Integral Formula for Cycles). Let γ be a cycle in Ω such
that wn(γ, z) = 0 for all z /∈ Ω. If f is analytic on Ω and z ∈ Ω \ γ∗, then

wn(γ, z)f(z) =
1

2πi

˛
γ

f(w)

w − z
dw.

Proof. We have γ = k1γ1 + · · · + kmγm, where k1, . . . , km ∈ Z and each γj : [a, b] → Ω is a
closed path. Suppose that f : Ω→ C is analytic. Let g : Ω× Ω→ C be given by (6.3), and for
each 1 ≤ j ≤ m define Fj : Ω→ C by

Fj(z) =

˛
γj

g(w, z)dw =

ˆ b

a

g(γj(t), z)γ
′
j(t)dt.

Define ϕj : Ω× [a, b]→ C by ϕj(z, t) = g(γj(t), z)γ′j(t), and for each t ∈ [a, b] define ψj,t : Ω→ C
by ψj,t(z) = ϕj(z, t).

By Lemma 6.26 the function g is continuous on Ω× Ω, and since γj and γ′j are continuous
on [a, b], it follows that ϕj is continuous on Ω× [a, b]. Also by Lemma 6.26, ξw(z) = g(w, z) is
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analytic on Ω for all w ∈ Ω, and thus ξγj(t)(z) = g(γj(t), z) is analytic on Ω for all t ∈ [a, b].
From this fact it easily follows that ψj,t is analytic on Ω for each fixed t ∈ [a, b], since

ψj,t(z) = ϕj(z, t) = g(γj(t), z)γ
′
j(t) = ξγj(t)(z)γ′j(t).

Therefore Fj is analytic on Ω for each 1 ≤ j ≤ m by Lemma 6.27. Defining F : Ω→ C by

F (z) =

˛
γ

g(w, z)dw =
m∑
j=1

kj

˛
γj

g(w, z)dw =
m∑
j=1

kjFj(z),

it is clear that F is also analytic on Ω.
Define Ω′ = {z ∈ C \ γ∗ : wn(γ, z) = 0}, which is an open set by Proposition 6.21. Clearly

C \ Ω ⊆ Ω′ and Ω ∪ Ω′ = C. Define h : C→ C by

h(z) =


¸
γ
g(w, z)dw, z ∈ Ω

¸
γ
f(w)
w−z dw, z ∈ Ω′

If z ∈ Ω ∩ Ω′, then

g(w, z) =
f(w)− f(z)

w − z
for all w ∈ γ∗ since z /∈ γ∗, and so˛

γ

g(w, z)dw =

˛
γ

f(w)

w − z
dw −

˛
γ

f(z)

w − z
dw =

˛
γ

f(w)

w − z
dw − 2πiwn(γ, z)f(z) =

˛
γ

f(w)

w − z
dw

by Theorem 6.22 (which easily adapts to cycles) and the fact that wn(γ, z) = 0. Hence h is a
well-defined function. In fact h is an entire function, since it is analytic on Ω′ by Theorem 4.19,
and it is analytic on Ω since h|Ω = F .

Let

M = max{|kjf(w)| : w ∈ γ∗ and 1 ≤ j ≤ m},

and for each 1 ≤ j ≤ m let Rj > 0 be such that γ∗j ⊆ BRj(0). Then wn(γj, z) = 0 for
all z ∈ C \ BRj(0) by Proposition 6.20(4), and if we let R = max{Rj : 1 ≤ j ≤ m}, then
wn(γ, z) = 0 on C \BR(0) and so C \BR(0) ⊆ Ω′. Thus, for any z ∈ C \BR(0),

|h(z)| =
∣∣∣∣˛
γ

f(w)

w − z
dw

∣∣∣∣ =

∣∣∣∣∣
m∑
j=1

kj

˛
γj

f(w)

w − z
dw

∣∣∣∣∣ ≤
m∑
j=1

∣∣∣∣∣
˛
γj

kjf(w)

w − z
dw

∣∣∣∣∣
≤

m∑
j=1

˛
γj

∣∣∣∣kjf(w)

w − z

∣∣∣∣ dw ≤ m∑
j=1

˛
γj

M

|w − z|
dw ≤

m∑
j=1

˛
γj

M

|z| − |w|
dw,

where |z| ≥ R > |w| for all w ∈ γ∗. This shows that |h(z)| → 0 as |z| → ∞, and since h
is bounded on any closed disc Br(0), we conclude that h is a bounded entire function. By
Liouville’s Theorem h must be constant on C, and in fact h ≡ 0 since, again, |h(z)| → 0 as
|z| → ∞.

Finally, fix z ∈ Ω \ γ∗. Then

0 = h(z) =

˛
γ

g(w, z)dw =

˛
γ

f(w)

w − z
dw − 2πiwn(γ, z)f(z),
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which yields

wn(γ, z)f(z) =
1

2πi

˛
γ

f(w)

w − z
dw

as desired. �

Proposition 6.31 (Cauchy’s Theorem for Cycles). Let γ be a cycle in Ω. Then wn(γ, z) = 0
for all z /∈ Ω if and only if

¸
γ
f = 0 for every function f that is analytic on Ω.

Proof. Let γ = k1γ1 + · · · + kmγm be a cycle in Ω. Suppose that wn(γ, z) = 0 for all z /∈ Ω,
and let f be analytic on Ω. Fix z ∈ C \ γ∗, and let ϕ : Ω→ C be the analytic function given by
ϕ(w) = (w − z)f(w). By Cauchy’s Integral Formula for Cycles, since ϕ(z) = 0,˛

γ

f =

˛
γ

(w − z)f(w)

w − z
dw =

˛
γ

ϕ(w)

w − z
dw = 2πiwn(γ, z)ϕ(z) = 0.

For the converse, suppose that
¸
γ
f = 0 for every analytic f : Ω→ C, and fix z /∈ Ω. Define

f by

f(w) =
1

w − z
,

which is analytic on Ω. Now, since each γj is a closed path such that z /∈ γ∗j , by Theorem 6.22
we obtain

0 =

˛
γ

f =
m∑
j=1

kj

˛
γj

1

w − z
dw = 2πi

m∑
j=1

kj wn(γj, z) = 2πiwn(γ, z),

and hence wn(γ, z) = 0. �

Corollary 6.32. Let γ1 and γ2 be cycles in Ω. Then wn(γ1, z) = wn(γ2, z) for all z /∈ Ω if and
only if ˛

γ1

f =

˛
γ2

f

for every function f that is analytic on Ω.

Proof. Consider the cycle γ1 − γ2: by Cauchy’s Theorem for Cycles wn(γ1 − γ2, z) = 0 for all
z /∈ Ω if and only if

¸
γ1−γ2 f = 0 for every function f that is analytic on Ω. By definition,

wn(γ1 − γ2, z) = 0 ⇔ wn(γ1, z)− wn(γ2, z) = 0 ⇔ wn(γ1, z) = wn(γ2, z)

and ˛
γ1−γ2

f = 0 ⇔
˛
γ1

f −
˛
γ2

f = 0 ⇔
˛
γ1

f =

˛
γ2

f,

and the desired conclusion readily follows. �

Theorem 6.33 (Generalized Cauchy’s Integral Formula). Let γ be a closed path in Ω
such that wn(γ, z) = 0 for all z /∈ Ω, and suppose f : Ω→ C is analytic. Show that

wn(γ, z)f (k)(z) =
k!

2πi

˛
γ

f(w)

(w − z)k+1
dw

for all z ∈ Ω \ γ∗ and k ≥ 0.
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Proof. By Cauchy’s Integral Formula

2πiwn(γ, z)f(z) =

˛
γ

f(w)

w − z
dw

for all z ∈ Ω \ γ∗, and since

F (z) =

˛
γ

f(w)

w − z
dw

is analytic on C \ γ∗ by Theorem 4.19, it follows that F |Ω\γ∗(z) = 2πiwn(γ, z)f(z) is analytic
on Ω \ γ∗. Since wn(γ, z) is constant on each component of C \ γ∗ by Proposition 6.21, we have

F |(k)
Ω\γ∗(z) = 2πiwn(γ, z)f (k)(z)

for each z ∈ Ω \ γ∗ and k ≥ 0, whereas Theorem 4.19 gives

F (k)(z) = k!

˛
γ

f(w)

(w − z)k+1
dw

for z ∈ C \ γ∗ and k ≥ 0. Therefore, for z ∈ Ω \ γ∗ and k ≥ 0,

2πiwn(γ, z)f (k)(z) = k!

˛
γ

f(w)

(w − z)k+1
dw,

from which comes the desired result. �

Exercise 6.34 (AN3.3.1). Let γ be a closed path in Ω. Suppose that
¸
γ
f = 0 for every

analytic f : Ω→ C. Without using Cauchy’s Integral Formula or Cauchy’s Theorem, show that
for all analytic f : Ω→ C and z ∈ Ω \ γ∗,

wn(γ, z)f(z) =
1

2πi

˛
γ

f(w)

w − z
dw.

Solution. Let f : Ω→ C be analytic, and fix z ∈ Ω \ γ∗. Define g : Ω× Ω→ C by (6.3). By
the remark following the proof of Lemma 6.26 the function ϕ : Ω→ C given by ϕ(w) = g(w, z)
is analytic on Ω, and so

¸
γ
ϕ = 0. Since w ∈ γ∗ implies w 6= z,

0 =

˛
γ

ϕ =

˛
γ

g(w, z)dw =

˛
γ

f(w)− f(z)

w − z
dw =

˛
γ

f(w)

w − z
dw −

˛
γ

f(z)

w − z
dw,

whence ˛
γ

f(w)

w − z
dw =

˛
γ

f(z)

w − z
dw.

Now, by Theorem 6.22,

wn(γ, z) =
1

2πi

˛
γ

1

w − z
dw,

and therefore

wn(γ, z)f(z) =
1

2πi

˛
γ

f(z)

w − z
dw =

1

2πi

˛
γ

f(w)

w − z
dw

as was to be shown. �
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Exercise 6.35 (AN3.3.4). Evaluate ˛
C2(0)

1

z2 − 1
dz

Solution. By partial fraction decomposition we obtain

1

z2 − 1
=

1/2

z − 1
− 1/2

z + 1
,

and so ˛
C2(0)

1

z2 − 1
dz =

1

2

˛
C2(0)

1

z − 1
dz − 1

2

˛
C2(0)

1

z + 1
dz. (6.6)

The path C2(0) may be parameterized by γ(t) = 2eit, t ∈ [0, 2π]. Let Γ = γ − 1, which is to say
Γ is a parameterization of the circle C2(−1). We have

Γ(t) = |Γ(t)|ei arg0(Γ(t))

for all t ∈ [0, 2π], and so α : [0, 2π] → R given by α = arg0 ◦Γ is a continuous argument of
Γ : [0, 2π]→ C2(−1). In particular4

α(0) = lim
t→0+

α(t) = 0 and α(2π) = lim
t→2π−

α(t) = 2π,

and hence

wn(γ, 1) =
α(2π)− α(0)

2π
= 1.

Now, by Theorem 6.22, ˛
C2(0)

1

z − 1
dz = 2πiwn(γ, 1) = 2πi,

and by a similar argument ˛
C2(0)

1

z + 1
dz = 2πiwn(γ,−1) = 2πi.

Therefore we obtain ˛
C2(0)

1

z2 − 1
dz = 0

by (6.6) above. �

Exercise 6.36 (AN3.3.5). Evaluate ˛
γj

ez + cos z

z4
dz,

for j = 1, 2, where γ1 and γ2 are the closed paths shown in Figure 15.

4One way to approach the construction of α is to define α(t) = arg0(Γ(t)) for t ∈ (0, 2π), and then observe
that we must define α(0) = 0 and α(2π) = 2π in order to secure continuity on [0, 2π].
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γ1 γ2

Figure 15.

Solution. Let r > 0 be sufficiently large so that Ω = Br(0) contains each γ∗j . Clearly
wn(γj, z) = 0 for all z /∈ Ω, and clearly f : Ω→ C given by f(z) = ez + cos z is analytic on Ω.
Since 0 /∈ Ω \ (γ∗1 ∪ γ∗2), by Theorem 6.33 we have

wn(γj, 0)f (3)(0) =
3!

2πi

˛
γj

f(z)

z4
dz =

3

πi

˛
γj

ez + cos z

z4
dz

for each j = 1, 2. Now, f (3)(z) = ez + sin z, so that f (3)(0) = 1 and˛
γj

ez + cos z

z4
dz =

πi

3
wn(γj, 0).

By inspection we have wn(γ1, 0) = −1 and wn(γ2, 0) = −2, and therefore˛
γ1

ez + cos z

z4
dz = −πi

3
and

˛
γ2

ez + cos z

z4
dz = −2πi

3
.

�

Exercise 6.37 (AN3.3.6). Consider γ : [0, 2π]→ C given by γ(t) = a cos t+ ib sin t for some
a, b ∈ R∗. Evaluate

¸
γ
dz/z, and use the result to show that

ˆ 2π

0

1

a2 cos2 t+ b2 sin2 t
dt =

2π

ab
.

Solution. The path γ is a positively oriented ellipse centered at the origin, and thus 0 /∈ γ∗
and wn(γ, 0) = 1. By Theorem 6.22˛

γ

1

z
dz = 2πiwn(γ, 0) = 2πi, (6.7)

whereas by definition˛
γ

1

z
dz =

˛
γ

z

|z|2
dz =

ˆ 2π

0

γ(t)

|γ(t)|2
γ′(t)dt =

ˆ 2π

0

(a cos t− ib sin t)(ib cos t− a sin t)

a2 cos2 t+ b2 sin2 t
dt
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=

ˆ 2π

0

(b2 − a2) cos t sin t

a2 cos2 t+ b2 sin2 t
dt+ i

ˆ 2π

0

ab

a2 cos2 t+ b2 sin2 t
dt (6.8)

Equating the imaginary parts of (6.7) and (6.8) yieldsˆ 2π

0

ab

a2 cos2 t+ b2 sin2 t
dt = 2π,

which readily delivers the desired result. �
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6.4 – The Extended Complex Plane

Let ‖ · ‖ be the usual euclidean norm in R3, and let | · | be the usual norm in C (the modulus).
The norms ‖ · ‖ and | · | induce euclidean metrics ρ and d in the customary way: for x,y ∈ R3

and z, w ∈ C we have

ρ(x,y) = ‖x− y‖ and d(z, w) = |z − w|.

With these metrics we construct the metric spaces (R3, ρ) and (C, d), and give each the customary
topology induced by the metric.

Define the Riemann sphere SR to be the sphere in R3 with center located at (0, 0, 1/2)
and radius 1/2:

SR =
{

(x1, x2, x3) : x2
1 + x2

2 + (x3 − 1/2)2 = 1/4
}
.

Let S ′R = SR \ {(0, 0, 1)}, and define h : R2 × {0} → S ′R by

h(x, y, 0) =

(
x

1 + x2 + y2
,

y

1 + x2 + y2
,

x2 + y2

1 + x2 + y2

)
.

As shown in [AN], h is a bijection such that

h−1(x1, x2, x3) =

(
x1

1− x3

,
x2

1− x3

, 0

)
,

and therefore h is a homeomorphism between the metric spaces (R2 × {0}, ρ) and (S ′R, ρ).
Next, define k : C→ R2 × {0} to be the natural identification

k(x+ iy) = (x, y, 0),

which is clearly a bijection. For x+ iy and u+ iv in C we have

d
(
(x+ iy), (u+ iv)

)
=
∣∣(x+ iy)− (u+ iv)

∣∣ =
√

(x− u)2 + (y − v)2

= ‖(x, y, 0)− (u, v, 0)‖ = ρ
(
(x, y, 0), (u, v, 0)

)
= ρ
(
k(x+ iy), k(u+ iv)

)
,

which shows that k, in addition to being a bijection, is also an isometry (i.e. it is a distance-
preserving map) between the metric spaces (C, d) and (R2 × {0}, ρ). If

Bε,ρ(x, y, 0) =
{

(u, v, 0) ∈ R2 × {0} : ρ
(
(u, v, 0), (x, y, 0)

)
< ε
}

and

Bε,d(x+ iy) =
{
u+ iv ∈ C : d

(
u+ iv, x+ iy

)
< ε
}
,

we find that

k−1
(
Bε,ρ(x, y, 0)

)
= Bε,d(x+ iy) and k

(
Bε,d(x+ iy)

)
= Bε,ρ(x, y, 0),

so that k is a continuous open map, and therefore k is a homeomorphism between the metric
spaces (C, d) and (R2 × {0}, ρ).
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Now, the map h ◦ k : C → S ′R is a homeomorphism between (C, d) and (S ′R, ρ). Let ∞
denote an object not belonging to C, and define C = C ∪ {∞}. Let g : C→ SR be given by

g(z) =

{
h(k(z)), z ∈ C
(0, 0, 1), z =∞

(6.9)

Clearly g is a bijection. If we define d̄ : C× C→ R by

d̄(z, w) = ρ
(
g(z), g(w)

)
(6.10)

for all z, w ∈ C, then (C, d̄ ) is in fact a metric space called the extended complex plane, and
the metric d̄, called the chordal metric, induces a topology on C that we’ll call the chordal
topology. From (6.10) it is immediate that g is an isometry, and therefore a homeomorphism,
between (C, d̄ ) and (SR, ρ). It is a simple matter of algebra to show that

d̄(z, w) =


|z−w|√

(1+|z|2)(1+|w|2)
, z, w ∈ C

1√
1+|z|2

, z ∈ C, w =∞
1√

1+|w|2
, w ∈ C, z =∞

(6.11)

Theorem 6.38. The metric space (C, d̄ ) is compact, connected, and complete.

Proof. The function g given by (6.9) is a homeomorphism between the metric spaces (C, d̄ )
and (SR, ρ), and since (SR, ρ) is compact, connected, and complete, it follows that (C, d̄ ) also
has these properties. �

Proposition 6.39. The identity map : (C, d) → (C, d̄ ) is a homeomorphism. Thus a set
S ⊆ C is open, closed, connected, or compact in (C, d) if and only if S is open, closed, connected,
or compact in (C, d̄ )

Proof. Certainly is a bijection. That and −1 are each open maps can be shown directly
using (6.11). �

This proposition relieves us of having to make a distinction between a set S ⊆ C being
connected or compact with respect to the metric d versus the metric d̄, since in fact S ⊆ C
is connected (resp. compact) in (C, d) iff it is connected (resp. compact) in (C, d̄ ) iff it is
connected (resp. compact) in (C, d̄ )! The second “iff” obtains from the fact that the topology
on C induced by the metric d̄ is the same as the subspace topology C inherits from (C, d̄ ).

Going forward, for any r > 0 and z ∈ C, we adhere to the convention that Br(z) represents
an open ball with center z ∈ C and radius r with respect to the euclidean metric d = | · | on
C, even if Br(z) is regarded as being in the metric space (C, d̄ ). The reason is that d is a
simpler metric to work with than d̄, and anyway Proposition 6.39 shows that “d-balls” in C are
homeomorphic to “d̄-balls” in C.

In the statement of the next proposition care should be taken to distinguish ∞ ∈ C from
+∞ ∈ R.



180

Proposition 6.40. Let f be a function, and let z0 ∈ C be a limit point of Dom(f). Then

lim
z→z0

f(z) =∞

if and only if
lim
z→z0
|f(z)| = +∞.

Proof. Suppose that f(z)→∞ as z → z0. Fix α > 0. Choose ε > 0 such that√
1/ε2 − 1 > α.

There is some δ > 0 such that, for all z ∈ Dom(f),

0 < |z − z0| < δ ⇒ d̄(f(z),∞) < ε.

Now,

d̄(f(z),∞) < ε ⇔ 1√
1 + |f(z)|2

< ε ⇔ |f(z)| >
√

1/ε2 − 1 > α, (6.12)

and so we see that for every α > 0 there exists some δ > 0 such that z ∈ B′δ(z0) ∩ Dom(f)
implies |f(z)| > α, which is to say |f(z)| → +∞ as z → z0.

Next, suppose that |f(z)| → +∞ as z → z0. Fix ε > 0. We can assume ε is sufficiently small
so that 1/ε2 > 1. Let α =

√
1/ε2 − 1. There is some δ > 0 such that, for all z ∈ Dom(f),

0 < |z − z0| < δ ⇒ |f(z)| > α,

Now, |f(z)| > α and (6.12) imply that d̄(f(z),∞) < ε. Therefore f(z)→∞ as z → z0. �

Remark. If (zn)n∈N is a sequence in C, then in fact

lim
n→∞

zn =∞ ∈ C ⇔ lim
n→∞

|zn| = +∞ ∈ R.

The proof may be done by applying an argument similar to that used in the proof of Proposition
6.40.

Proposition 6.41. If S is closed in (C, d̄ ) and ∞ /∈ S, then S is compact in (C, d).

Proof. Suppose S is closed in (C, d̄ ), with ∞ /∈ S. Then S is closed in (C, d) by Proposition
6.39. Suppose S is unbounded in (C, d). Then S /∈ Bn(0) for all n ∈ N, and so we can construct
a sequence (zn)n∈N in S such that |zn| > n for each n. Thus |zn| → +∞ as n→∞, and by the
above remark we have limn→∞ zn =∞ ∈ C. This shows that ∞ is a limit point of S, and since
S is closed in (C, d̄ ), we must conclude that ∞ ∈ S—a contradiction. Hence S is bounded as
well as closed in (C, d), and therefore is compact in (C, d) by Theorem 2.40. �

Let (X, T ) be a locally compact Hausdorff topological space, and let ∞ be some object not
belonging to X. Define X∞ = X ∪ {∞}. The one-point compactification of (X, T ) is the
topological space (X∞, T∞) with topology

T∞ = T ∪ {U ⊆ X∞ : X∞ \ U is a compact subset of X}.

For the next exercise a couple facts about compact sets must be recalled. First, if X is a
topological space, S ⊆ X has the subspace topology, and K ⊆ S is compact relative to S,
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then K is compact relative to X. Second, if X and Y are topological spaces, f : X → Y is
continuous, and K ⊆ X is compact, then f(K) ⊆ Y is compact.

Exercise 6.42 (AN3.4.4). Let T be the topology on C induced by the euclidean metric d,
and let T be the topology on C induced by the chordal metric d̄. Show that the topological
space (C, T ) is homeomorphic to (C∞, T∞), which is the one-point compactification of (C, T ).

Solution. It is natural to regard the object ∞ in C as being the same as that in C∞, and so
C∞ = C as sets. Let ¯ : (C, T )→ (C, T∞) be the identity map, so that ¯(z) = z for all z ∈ C
and ¯(∞) =∞. Clearly ¯ is a bijection.

Letting
T ′ = {U ⊆ C : C \ U is a compact subset of (C, d)},

then by definition T∞ = T ∪ T ′. Suppose that U ∈ T∞. If U ∈ T , then U is open in (C, d), and
since the identity map : (C, d)→ (C, d̄ ) is a homeomorphism by Proposition 6.39, it follows
that (U) = U is open in (C, d̄ ), and hence in (C, d̄ ),5 and therefore U ∈ T . If instead U ∈ T ′,
then K = C \ U is a compact subset of C. By Proposition 6.39 it follows that (K) = K is
compact in (C, d̄ ), and hence in (C, d̄ ). Since K = C \ U and C \ U is closed in (C, d̄ ), we
conclude that U is open in (C, d̄ ) and therefore U ∈ T . We have now shown that T∞ ⊆ T .

Next, suppose that U ∈ T . If ∞ /∈ U , then U is open in (C, d̄ ), and so is open in (C, d) by
Proposition 6.39, and thus U ∈ T ⊆ T∞. Suppose that ∞ ∈ U . Then U is open in (C, d̄ ), so
that K = C \ U is closed in (C, d̄ ). However, (C, d̄ ) is compact by Theorem 6.38, and since
closed subsets of compact sets are compact, we have that K is compact in (C, d̄ ). In fact, since
∞ /∈ K, we have K ⊆ C ⊆ C, and so K is compact in (C, d̄ ), and then by Proposition 6.39 we
find that K = −1(K) is compact in (C, d). That is K = C \U is a compact subset of (C, d), so
that U ∈ T ′ ⊆ T∞. We have now shown that T ⊆ T∞.

We now have T = T∞, which is to say the open subsets of (C, T ) are precisely the open
subsets of (C, T∞). Thus, for any open set U in (C, T ) we have ¯(U) = U is open in (C, T∞),

and for any open set U in (C, T∞) we have ¯−1
(U) = U is open in (C, T ). Therefore ¯ and ¯−1

are continuous and we conclude that ¯ is a homeomorphism. �

Theorem 6.43 (L’Hôpital’s Rule). Suppose f, g are analytic at z0 ∈ C, and not identically
zero on any neighborhood of z0. If

lim
z→z0

f(z) = lim
z→z0

g(z) = 0,

then limz→z0 f(z)/g(z) exists in C, and

lim
z→z0

f(z)

g(z)
= lim

z→z0

f ′(z)

g′(z)
. (6.13)

Proof. Since f and g are analytic at z0, there exists some r > 0 such that both functions are
analytic on Br(z0). By Theorem 4.29 there exist sequences (an)∞n=0 and (bn)∞n=0 such that

f(z) =
∞∑
n=0

an(z − z0)n and g(z) =
∞∑
n=0

bn(z − z0)n

5Observe that C is itself an open set in (C, d̄ ).
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for all z ∈ Br(z0). Since f and g are not identically zero on Br(z0),

k = min{n : an 6= 0} and m = min{n : bn 6= 0}

both exist in W. Indeed, f(z), g(z)→ 0 as z → z0 implies that f(z0) = a0 = 0 and g(z0) = b0 = 0,
and so k,m ≥ 1. By Exercise 5.10 there exist analytic functions ϕ, ψ : Br(z0)→ C such that
ϕ(z0), ψ(z0) 6= 0, and

f(z) = (z − z0)kϕ(z) and g(z) = (z − z0)mψ(z)

for all z ∈ Br(z0). We consider three cases: k = m, k > m, and k < m.
Suppose that k = m. Then

lim
z→z0

f(z)

g(z)
= lim

z→z0

(z − z0)mϕ(z)

(z − z0)mψ(z)
= lim

z→z0

ϕ(z)

ψ(z)
=
ϕ(z0)

ψ(z0)
∈ C,

while

lim
z→z0

f ′(z)

g′(z)
= lim

z→z0

(z − z0)mϕ′(z) +m(z − z0)m−1ϕ(z)

(z − z0)mψ′(z) +m(z − z0)m−1ψ(z)
= lim

z→z0

(z − z0)ϕ′(z) +mϕ(z)

(z − z0)ψ′(z) +mψ(z)
,

=
(z0 − z0)ϕ′(z0) +mϕ(z0)

(z0 − z0)ψ′(z0) +mψ(z0)
=
ϕ(z0)

ψ(z0)
,

thereby affirming (6.13).
Suppose that k > m, so that k = m+ ` for some ` > 0. Then

lim
z→z0

f(z)

g(z)
= lim

z→z0

(z − z0)m+`ϕ(z)

(z − z0)mψ(z)
= lim

z→z0

(z − z0)`ϕ(z)

ψ(z)
= 0 ∈ C,

while

lim
z→z0

f ′(z)

g′(z)
= lim

z→z0

(z − z0)m+`ϕ′(z) + (m+ `)(z − z0)m+`−1ϕ(z)

(z − z0)mψ′(z) +m(z − z0)m−1ψ(z)

= lim
z→z0

(z − z0)`+1ϕ′(z) + (m+ `)(z − z0)`ϕ(z)

(z − z0)ψ′(z) +mψ(z)
=

0

mψ(z0)
= 0,

again affirming (6.13).
Suppose that k < m, so that m = k + ` for some ` > 0. Then

lim
z→z0

f(z)

g(z)
= lim

z→z0

(z − z0)kϕ(z)

(z − z0)k+`ψ(z)
= lim

z→z0

ϕ(z)

(z − z0)`ψ(z)
=∞ ∈ C

since ∣∣∣∣ ϕ(z)

(z − z0)`ψ(z)

∣∣∣∣→ +∞

as z → z0, while

lim
z→z0

f ′(z)

g′(z)
= lim

z→z0

(z − z0)ϕ′(z) + kϕ(z)

(z − z0)`+1ψ′(z) + (k + `)(z − z0)`ψ(z)
=∞,

which affirms (6.13) once more.
We now have shown that, in all cases, limz→z0 f(z)/g(z) exists in C and (6.13) holds. �
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Exercise 6.44. Suppose f, g are analytic on a deleted neighborhood of z0 ∈ C. Show that if

lim
z→z0

f(z) = lim
z→z0

g(z) =∞,

then limz→z0 f(z)/g(z) exists in C.

Solution. By Proposition 6.40 we have |f(z)|, |g(z)| → +∞ as z → z0, so there exists some
ε > 0 such that f, g are analytic and nonvanishing on B′ε(z0), and thus 1/f, 1/g are analytic on
B′ε(z0). Since 1/f, 1/g → 0 as z → z0, if we define (1/f)(z0) = (1/g)(z0) = 0, then by Corollary
4.22 both functions are analytic on Bε(z0). Now, because 1/f, 1/g are analytic at z0 and not
identically zero on any neighborhood of z0, by L’Hôpital’s Rule

lim
z→z0

(1/g)(z)

(1/f)(z)

exists in C. But f, g are nonvanishing on B′ε(z0), so that

(1/g)(z)

(1/f)(z)
=

1/g(z)

1/f(z)
=
f(z)

g(z)

for all z ∈ B′ε(z0), and hence

lim
z→z0

(1/g)(z)

(1/f)(z)
= lim

z→z0

f(z)

g(z)
.

Therefore limz→z0 f(z)/g(z) exists in C. �
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6.5 – The Hexagon Lemma

Lemma 6.45 (Hexagon Lemma). Let Ω ⊆ C be an open set, and let K ⊆ Ω be a nonempty
compact set. Then there exist closed polygonal paths γ1, . . . , γm in Ω \K such that

m∑
j=1

wn(γj, z) =

{
1, z ∈ K
0, z /∈ Ω.

Proof. For arbitrary n ∈ N place a regular hexagon H with sides of length 1/n in the plane C so
that the interval [0, 1/n] forms the bottom side of H. The placement of H uniquely determines
a partition Pn of C into hexagonal tiles, each tile congruent to H, as in Figure 16. Since K is
compact and C \ Ω is closed, we have

dist(K,C \ Ω) = inf{|z − w| : z ∈ K, w ∈ C \ Ω} = ε > 0

by Theorem 2.45. Let n ∈ N be such that 1/n < ε/4, and let

Q = {H ∈ Pn : H ∩K 6= ∅}.
Then K ⊆

⋃
Q ⊆ Ω... �

Definition 6.46. An open set Ω ⊆ C is homologically simply connected if wn(γ, z) = 0
for every closed path γ in Ω and every z ∈ C \ Ω.

That the complex plane C is homologically simply connected obtains from Definition 6.46 as
a vacuous truth.

[
0, 1

n

]
H

Figure 16.
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Equivalent to the statement of Definition 6.46 is the statement in which “closed path” is
replaced with “cycle,” as is easily verified. Two closed curves γ0 and γ1 in an open set Ω are
Ω-homologous if wn(γ0, z) = wn(γ1, z) for all z ∈ C \ Ω. If γ is a closed curve in Ω that is
Ω-homologous to a point, which is a constant curve [a, b]→ {z0} for some z0 ∈ Ω, then we say
that γ is Ω-homologous to zero. It should be clear that a closed curve γ in Ω is Ω-homologous
to zero if and only if wn(γ, z) = 0 for all z ∈ C \Ω. Thus an open set Ω is homologically simply
connected if and only if every closed path in Ω is Ω-homologous to zero.

Proposition 6.47. Let Ω ⊆ C be an open set.

1. If C \ Ω is connected, then every closed curve in Ω is Ω-homologous to zero.
2. If every closed path in Ω is Ω-homologous to zero, then C \ Ω is connected.

Proof.
Proof of Part (1). Suppose C \ Ω is connected, and let γ be a closed curve in Ω. Define
wn(γ,∞) = 0, and also define

A = {z ∈ C \ Ω : wn(γ, z) = 0} and B = {z ∈ C \ Ω : wn(γ, z) 6= 0},

so∞ ∈ A. Since γ∗ is compact there exists some r ∈ R+ such that γ∗ ⊆ Br(0). Then wn(γ, z) = 0
for all z ∈ C \ Br(0) by Proposition 6.20(4), so that U∞ := C \ Br(0) ⊆ C \ Br(0) ⊆ A with
U∞ ∩B = ∅. Note that U∞ is open in (C, d̄ ).

If z ∈ A \ {∞}, then z ∈ C \Ω ⊆ C \ γ∗ with wn(γ, z) = 0, and so z lies in some component
Uz of C \ γ∗ on which wn(γ, ·) is identically zero by Proposition 6.21. If z ∈ B, then z 6=∞ with
wn(γ, z) 6= 0, and so z lies in some component Vz of C \ γ∗ on which wn(γ, ·) is nonvanishing
by Proposition 6.21. Clearly the collection of components Uz is disjoint from the collection of
components Vz. Moreover each Uz and Vz is open in (C, d) by Proposition 2.35, hence open in
(C, d̄ ) by Proposition 6.39.

We now see that

A ⊆ U :=
⋃
z∈A

Uz and B ⊆ V :=
⋃
z∈B

Vz,

with U and V open in (C, d̄ ), and U ∩ V = ∅. Thus A = C \ Ω ∩ U and B = C \ Ω ∩ V , which
is to say A and B are both open in C \Ω such that A∩B = ∅ and A∪B = C \Ω. Since C \Ω
is connected and A is nonempty (it contains all points outside Br(0)), we conclude that B = ∅.
Hence A = C \ Ω, so that wn(γ, z) = 0 for all z ∈ C \ Ω. Therefore Ω is Ω-homologous to zero.

Proof of Part (2). Suppose C \ Ω is not connected, so there exist disjoint nonempty sets
K,L ⊆ C \ Ω, closed in (C, d̄ ), such that K ∪ L = C \ Ω. Assume ∞ ∈ L, so that ∞ /∈ K and
we have K ⊆ C \ Ω. Then K is compact in (C, d) by Proposition 6.41.

Now, L closed in (C, d̄ ) implies C \ L is open in (C, d̄ ), and since C \ L = C ∩ (C \ L), it
follows that C \ L is open in (C, d̄ ) as well, and therefore is open in (C, d) by Proposition 6.39.
Noting that C \ L = C \ L, we see Ω′ := C \ L is open in (C, d), and moreover K ⊆ Ω′. By the
Hexagon Lemma there exist closed paths γ1, . . . , γm in Ω′ \K such that

∑m
j=1 wn(γj, z) = 1 if

z0 ∈ K. From the chain of equivalencies

w ∈ Ω′ \K ⇔ w ∈ C \ L & w /∈ K ⇔ w /∈ K ∪ L ⇔ w /∈ C \ Ω ⇔ w ∈ Ω
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we find that Ω′ \K = Ω, and so γ1, . . . , γm are closed paths in Ω. Recalling that C \Ω = K 6= ∅,
let z0 ∈ C \ Ω. Then

∑m
j=1 wn(γj, z0) = 1, and so there exists some 1 ≤ k ≤ m such that

wn(γk, z0) 6= 0. Thus γk is a closed path in Ω that is not Ω-homologous to zero. �

We now collect many of our results into a single theorem, which will be expanded considerably
in §11.3.

Theorem 6.48 (Second Cauchy Theorem). Let Ω ⊆ C be an open set. Then the following
statements are equivalent.

1. C \ Ω is connected.
2. Every closed curve in Ω is Ω-homologous to zero.
3. Ω is homologically simply connected.
4. For every closed path γ in Ω and every analytic function f on Ω,˛

γ

f = 0.

5. Every analytic function on Ω has a primitive on Ω.
6. Every nonvanishing analytic function on Ω has an analytic logarithm on Ω.
7. Every nonvanishing analytic function on Ω has an analytic nth root for all n ∈ N.

Proof. That (1) implies (2) is given by Proposition 6.47(1). That (2) implies (3) follows from
the remarks after Definition 6.46 and the observation that every closed path is a closed curve.
That (3) implies (1) follows from the remarks after Definition 6.46 and Proposition 6.47(2).
The equivalency of (3) and (4) follows from Cauchy’s Theorem. The equivalency of (4) and (5)
follows from Theorem 3.41 and the Fundamental Theorem of Path Integrals. That (4) implies
(6) is a consequence of Corollary 6.12. Exercise 6.25 gives the equivalency of (6) and (7).

To complete the proof we show that (6) implies (3). Suppose every nonvanishing analytic
function on Ω has an analytic logarithm on Ω. Let γ be any closed path in Ω, and let z ∈ C \Ω
be arbitrary. Define f : Ω→ C by f(w) = w − z. Then f is a nonvanishing analytic function
on Ω, and so has an analytic function on Ω. By Theorem 6.11 it follows that

¸
γ
f ′/f = 0. Since

f ◦ γ = γ − z and 0 /∈ (f ◦ γ)∗, by Corollary 6.23 we obtain

wn(γ − z, 0) = wn(f ◦ γ, 0) =
1

2πi

˛
γ

f ′

f
= 0,

and hence wn(γ, z) = 0 by Proposition 6.20(2). Therefore Ω is homologically simply connected.
�

Exercise 6.49 (AN3.4.1a). Let Ω ⊆ C be the open annulus

Ω = {z ∈ C : 1/2 < |z| < 2},

which clearly is an open connected set. Now, C \Ω is the set in the metric space (C, d̄ ) given by

C \ Ω = B1/2(0) ∪ (C \B2(0)).
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To show that Ω is not homologically simply connected, let γ : [0, 2π]→ Ω be the closed path
in Ω given by γ(t) = eit, and let f : Ω→ C be given by f(z) = 1/z. Since f is analytic on Ω,
0 /∈ γ∗, and wn(γ, 0) = 1, we have˛

γ

f =

˛
γ

1

z
dz = 2πiwn(γ, 0) = 2πi

by Theorem 6.22. Thus
¸
γ
f 6= 0, and the Second Cauchy Theorem implies that Ω is not

homologically simply connected. �

Exercise 6.50 (AN3.4.1b). Let Ω = B1(−2) ∪ B1(2), which is a disjoint union of two open
balls of radius 1 in C. Then Ω is a homologically simply connected subset of (C, d) since C \ Ω
is connected in (C, d̄ ). However, it is clear that Ω is not connected in (C, d) (or equivalently in
(C, d̄ ), owing to Proposition 6.39). �



188

7
Residue Theory

7.1 – Laurent Series

Given a two-tailed sequence (zn)n∈Z in C, the associated infinite series is the ordered formal
sum ∑

n∈Z

zn = · · ·+ z−3 + z−2 + z−1 + z0 + z1 + z2 + z3 + · · · , (7.1)

here denoted by ΣZ for brevity. We say the series ΣZ is convergent if the series

Σ+ :=
∞∑
n=0

zn and Σ− :=
∞∑
n=1

z−n

both converge, in which case we define ΣZ := Σ− + Σ+; that is,∑
n∈Z

zn :=
∞∑
n=1

z−n +
∞∑
n=0

zn.

Otherwise ΣZ is divergent. The series Σ− is known as the principal part of ΣZ.
We define ΣZ to be absolutely convergent (resp. uniformly convergent) if the series

Σ+ and Σ− are both absolutely convergent (resp. uniformly convergent).

Definition 7.1. Given c ∈ C and sequence (an)n∈Z in C, the Laurent series with center c
and coefficients an is the infinite series∑

n∈Z

an(z − c)n.

For any 0 ≤ s1 < s2 ≤ ∞ we define

As1,s2(z0) = {z ∈ C : s1 < |z − z0| < s2},

the open annulus with center z0, and inner and outer radii s1, s2, respectively.
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Proposition 7.2. Let f be analytic on Ω, and let 0 < r1 < r2 <∞ be such that Ar1,r2(z0) ⊆ Ω.
If γ1 and γ2 are paths such that γ∗j = Crj(z0) and wn(γj, z0) = 1, then

f(z) =
1

2πi

˛
γ2

f(w)

w − z
dw − 1

2πi

˛
γ1

f(w)

w − z
dw

for all z ∈ Ar1,r2(z0).

Unless otherwise stated, we assume that any path Cr(z0) has the positive (i.e. counter-
clockwise) orientation, and completes precisely one circuit. That is, wn(Cr(z0), z) = 1 for any
z ∈ Br(z0).

Theorem 7.3. If f is analytic on Ω = As1,s2(z0), then there exists a unique sequence (an)n∈Z
such that

f(z) =
∑
n∈Z

an(z − z0)n (7.2)

for all z ∈ Ω. Moreover, the series converges absolutely on Ω and uniformly on compact subsets
of Ω, and for any r ∈ (s1, s2) the coefficients an are given by

an =
1

2πi

˛
Cr(z0)

f(w)

(w − z0)n+1
dw (7.3)

for all n ∈ Z.

Proof. Suppose that f is analytic on Ω = As1,s2(z0). Fix r1, r2 ∈ (s1, s2) with r1 < r2. Define
Φ2 : Br2(z0)→ C by

Φ2(z) =
1

2πi

˛
Cr2 (z0)

f(w)

w − z
dw.

For fixed z ∈ Br2(z0) and varying w ∈ Cr2(z0) we have

f(w)

w − z
=

f(w)

(w − z0)− (z − z0)
=

f(w)

w − z0

· 1

1− z − z0

w − z0

=
∞∑
n=0

f(w)(z − z0)n

(w − z0)n+1
,

which the Weierstrass M-Test easily shows is a uniformly convergent series on Cr2(z0), and so
by Corollary 3.38,

Φ2(z) =
1

2πi

˛
Cr2 (z0)

[
∞∑
n=0

f(w)(z − z0)n

(w − z0)n+1

]
dw =

1

2πi

∞∑
n=0

[˛
Cr2 (z0)

f(w)(z − z0)n

(w − z0)n+1
dw

]

=
∞∑
n=0

[(
1

2πi

˛
Cr2 (z0)

f(w)

(w − z0)n+1
dw

)
(z − z0)n

]
=
∞∑
n=0

an(z − z0)n, (7.4)

where for n ≥ 0 we define

an =
1

2πi

˛
Cr2 (z0)

f(w)

(w − z0)n+1
dw.

For arbitrary z ∈ Br2(z0) we have |z − z0| = ρ < r2. Letting

M = max
w∈Cr2 (z0)

|f(w)|,
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Theorem 3.23 gives

|an(z − z0)n| ≤ ρn

2π

∣∣∣∣∣
˛
Cr2 (z0)

f(w)

(w − z0)n+1
dw

∣∣∣∣∣ =
ρn

2π

(
M

rn+1
2

· 2πr2

)
= M

(
ρ

r2

)n
,

and since the series
∑
M(ρ/r2)n converges in R, by the Direct Comparison Test we conclude

that the series
∑
an(z − z0)n converges absolutely on z ∈ Br2(z0).

Now suppose K ⊆ Br2(z0) is compact, and let

ρ = max
z∈K
|z − z0|.

Then ρ < r2, and by Theorem 3.23,

‖an(z − z0)n‖K =
ρn

2π
sup
z∈K

∣∣∣∣∣
˛
Cr2 (z0)

f(w)

(w − z0)n+1
dw

∣∣∣∣∣ ≤M

(
ρ

r2

)n
.

It follows by the Weierstrass M-test that
∑
an(z−z0)n converges uniformly on K. To summarize,∑

an(z − z0)n converges absolutely on Br2(z0) and uniformly on compact subsets of Br2(z0).
Now, define Φ1 : Ar1,∞(z0)→ C by

Φ1(z) = − 1

2πi

˛
Cr1 (z0)

f(w)

w − z
dw.

For fixed z ∈ Ar1,∞(z0) and varying w ∈ Cr1(z0) we have

− f(w)

w − z
=

f(w)

(z − z0)

(
1− w − z0

z − z0

)=
∞∑
n=1

f(w)(w − z0)n−1

(z − z0)n
,

which is a uniformly convergent series on Cr1(z0), and so

Φ1(z) =
1

2πi

˛
Cr1 (z0)

[
∞∑
n=1

f(w)(w − z0)n−1

(z − z0)n

]
dw =

1

2πi

∞∑
n=1

[˛
Cr1 (z0)

f(w)(w − z0)n−1

(z − z0)n
dw

]

=
∞∑
n=1

[(
1

2πi

˛
Cr1 (z0)

f(w)

(w − z0)−n+1
dw

)
(z − z0)−n

]
=
∞∑
n=1

bn(z − z0)−n, (7.5)

where for n ≥ 1 we define

bn =
1

2πi

˛
Cr1 (z0)

f(w)

(w − z0)−n+1
dw.

It is straightforward to show that
∑
bn(z − z0)−n converges absolutely on Ar1,∞(z0), so the

details are omitted. Let K ⊆ Ar1,∞(z0) be compact, and let

1

ρ
= max

z∈K

1

|z − z0|
and M = max

w∈Cr1 (z0)
|f(w)|.

Then 1/ρ < 1/r1, and by Theorem 3.23,

‖bn(z − z0)−n‖K =
1

2πρn
sup
z∈K

∣∣∣∣∣
˛
Cr1 (z0)

f(w)

(w − z0)−n+1
dw

∣∣∣∣∣
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≤ 1

2πρn

(
M

r−n+1
1

· 2πr1

)n
= M

(
r1

ρ

)n
,

where r1/ρ < 1. By the Weierstrass M-Test
∑
bn(z − z0)

−n converges uniformly on K. To
summarize,

∑
bn(z− z0)−n converges absolutely on Ar1,∞(z0) and uniformly on compact subsets

of Ar1,∞(z0).
Let a−n = bn for n ≥ 1. Fix r ∈ (s1, s2). By Corollary 6.32

an =
1

2πi

˛
Cr2 (z0)

f(w)

(w − z0)n+1
dw =

1

2πi

˛
Cr(z0)

f(w)

(w − z0)n+1
dw

for all n ≥ 0, and

a−n =
1

2πi

˛
Cr1 (z0)

f(w)

(w − z0)−n+1
dw =

1

2πi

˛
Cr(z0)

f(w)

(w − z0)−n+1
dw

for all n ≥ 1. Therefore

an =
1

2πi

˛
Cr(z0)

f(w)

(w − z0)n+1
dw

for all n ∈ Z.
Define the Laurent series ΣZ by∑

n∈Z

an(z − z0)n =
∞∑
n=0

an(z − z0)n +
∞∑
n=1

a−n(z − z0)−n.

Both series on the right converge absolutely on Ar1,r2(z0) = Br2(z0)∩Ar1,∞(z0) and uniformly on
compact subsets of Ar1,r2(z0), and therefore so too does ΣZ. Since r1, r2 ∈ (s1, s2) are arbitrary,
we conclude that ΣZ converges absolutely on Ω and uniformly on compact subsets of Ω.

Next, by Proposition 7.2,

f(z) =
1

2πi

˛
Cr2 (z0)

f(w)

w − z
dw − 1

2πi

˛
Cr1 (z0)

f(w)

w − z
dw = Φ2(z) + Φ1(z)

for all z ∈ Ar1,r2(z0). Recalling (7.4) and (7.5),

f(z) =
∞∑
n=0

an(z − z0)n +
∞∑
n=1

a−n(z − z0)−n =
∑
n∈Z

an(z − z0)n (7.6)

for all z ∈ Ar1,r2(z0). Again, r1, r2 ∈ (s1, s2) are arbitrary, and so (7.6) holds for all z ∈ Ω. All
aspects of the theorem have now been proved except for the uniqueness of (an)n∈Z.

Suppose that (ân)n∈Z is such that

f(z) =
∑
n∈Z

ân(z − z0)n

for all z ∈ Ω. The existence part of Theorem 7.3, which has just been proven, implies that the
Laurent series ΣZ converges absolutely on Ω and uniformly on compact subsets of Ω, and so for
any s1 < r < s2 it converges uniformly on Cr(z0). Now, for any k ∈ Z,

ak =
1

2πi

˛
Cr(z0)

f(w)

(w − z0)k+1
dw =

1

2πi

˛
Cr(z0)

[
1

(w − z0)k+1

∑
n∈Z

ân(w − z0)n

]
dw
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=
1

2πi

˛
Cr(z0)

[∑
n∈Z

ân(w − z0)n−k−1

]
dw =

1

2πi

∑
n∈Z

[˛
Cr(z0)

ân(w − z0)n−k−1dw

]
,

where the last equality is obtained by applying Corollary 3.38 to the Σ+ and Σ− components of
ΣZ. For n− k− 1 6= −1 (i.e. n 6= k), the function fn(z) = ân(z − z0)n−k−1 has a primitive on Ω,
and so the Fundamental Theorem of Path Integrals implies that˛

Cr(z0)

ân(w − z0)n−k−1dw = 0,

and so by Theorem 6.22

ak =
1

2πi

∑
n∈Z

[˛
Cr(z0)

ân(w − z0)n−k−1dw

]
=

1

2πi

˛
Cr(z0)

âk(w − z0)−1dw

=
âk
2πi

˛
Cr(z0)

1

w − z0

dw = âk wn(Cr(z0), z0) = âk.

Since k ∈ Z is arbitrary we conclude that (ân)n∈Z = (an)n∈Z, proving uniqueness. �

The series at right in (7.2) is called the Laurent series representation of f on As1,s2(z0),
which Theorem 7.3 makes clear is unique on a given annulus As1,s2(z0) of analyticity. However,
Exercise 7.19 in the next section shows how the Laurent series representation of a given function
f may vary on different annuli of analyticity.

Theorem 7.4. Suppose that f is analytic on Ω = As1,s2(z0), with Laurent series representation

f(z) =
∑
n∈Z

an(z − z0)n

for all z ∈ As1,s2(z0). Then f has derivatives of all orders on Ω, with

f (k)(z) =
∑
n∈Z

[
n(n− 1)(n− 2) · · · (n− k + 1)an

]
(z − z0)n−k

for all k ∈ N and z ∈ Ω.

Proof. That f has derivatives of all orders on Ω is assured by Corollary 4.20. We have

f(z) =
∞∑
n=0

an(z − z0)n +
∞∑
n=1

a−n(z − z0)−n,

where Theorem 7.3 and the remarks following Definition 7.1 imply that the two series at right
are each absolutely convergent on Ω, and also each converges uniformly on compact subsets of
Ω. Let σ, τ : Ω→ C be given by

σ(z) =
∞∑
n=0

an(z − z0)n and τ(z) =
∞∑
n=1

a−n(z − z0)−n,
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so that f = σ + τ , and thus f (k) = σ(k) + τ (k) for all k ∈ N. Define the sequences (σn)∞n=0 and
(τn)∞n=1 of analytic functions Ω→ C by

σn(z) =
n∑
k=0

an(z − z0)n and τn(z) =
n∑
k=1

a−n(z − z0)−n.

Then (σn)∞n=0 and (τn)∞n=1 converge uniformly to σ and τ on compact subsets of Ω, respectively,
and hence by Theorem 4.30 both σ and τ are analytic on Ω (and hence have derivatives of all
orders on Ω), and moreover

σ(k)
n −→u σ(k) and τ (k)

n −→u τ (k)

on compact subsets of Ω. Thus for any r1, r2 > 0 such that s1 < r1 < r2 < s2, we have

σ(k)(z) =
∞∑
n=0

[n(n− 1)(n− 2) · · · (n− k + 1)an](z − z0)n−k

and

τ (k)(z) =
∞∑
n=1

[−n(−n− 1)(−n− 2) · · · (−n− k + 1)a−n](z − z0)−n−k

for all k ∈ N and z ∈ Ar1,r2(z0). That is,

f (k)(z) = σ(k)(z) + τ (k)(z) =
∑
n∈Z

[n(n− 1)(n− 2) · · · (n− k + 1)an](z − z0)n−k (7.7)

for all k ∈ N and z ∈ Ar1,r2(z0), and since r1, r2 ∈ (s1, s2) are arbitrary, we may finally conclude
that (7.7) holds for all z ∈ Ω. �
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7.2 – Singularities

A function f has a singularity at a point z0 ∈ C if f is not analytic at z0. Strictly speaking
this means that any point not in the domain of f is a singularity of f , but in practice the only
singularities of f that are of interest are those that are limit points of the domain of f . In the
definition that follows recall that B′ε(z0) = Bε(z0) \ {z0} is a deleted neighborhood of z0.

Definition 7.5. A function f has an isolated singularity at z0 ∈ C if f ′(z0) does not exist
and f is analytic on B′ε(z0) for some ε > 0. We say that f has an isolated singularity at ∞ if f
is analytic on Ar,∞(0) for some r > 0.

A function f has a nonisolated singularity at z0 ∈ C if f ′(z0) does not exist and f is
not analytic on B′ε(z0) for any ε > 0. We say that f has a nonisolated singularity at ∞ if f is
not analytic on Ar,∞(0) for any r > 0.

Proposition 7.6. Let f be a function, and define g(z) = f(1/z). Then f has an isolated (resp.
nonisolated) singularity at ∞ if and only if g has an isolated (resp. nonisolated) singularity at 0.

Proof. Suppose that f has an isolated singularity at ∞, so there exists some r > 0 such that
f is analytic on Ar,∞(0). Define h : B′1/r(0) → Ar,∞(0) by h(z) = 1/z. Since h is analytic on

B′1/r(0) and f is analytic on h(B′1/r(0)) = Ar,∞(0), by the Chain Rule it follows that g = f ◦ h
is analytic on B′1/r(0), and so g has an isolated singularity at 0.

Now suppose that g has an isolated singularity at 0, so there exists some ε > 0 such that g is
analytic on B′ε(0). Define h : A1/ε,∞(0)→ B′ε(0) by h(z) = 1/z. Since h is analytic on A1/ε,∞(0)
and g is analytic on B′ε(0), by the Chain Rule it follows that f = g ◦ h is analytic on A1/ε,∞(0).

The proof of the proposition’s parallel statement concerning nonisolated singularities is much
the same. �

If f has an isolated singularity at z0 ∈ C, so that f is given to be analytic on some deleted
neighborhood B′r(z0), then Theorem 7.3 implies that f has a Laurent series representation∑

n∈Z

an(z − z0)n (7.8)

on B′r(z0). We classify isolated singularities based on particular attributes of this representation.

Definition 7.7. Suppose that f has an isolated singularity at z0 ∈ C, and let (7.8) be the
Laurent series representation of f on some deleted neighborhood of z0.

1. If an = 0 for all n ≤ −1, then f has a removable singularity at z0.
2. If m ∈ N is such that a−m 6= 0 and an = 0 for all n < −m, then f has a pole of order m

at z0. A pole of order 1 is also called a simple pole.
3. If an 6= 0 for infinitely many n ≤ −1, then f has an essential singularity at z0.

Definition 7.8. Suppose f has an isolated singularity at ∞, and define g(z) = f(1/z). We
say f has a removable singularity, pole of order m, or essential singularity at ∞ if
g has a removable singularity, pole of order m, or essential singularity at 0, respectively.
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It should be clear that any isolated singularity of a function f at some point z0 ∈ C must
be precisely one of the three types of isolated singularity defined above. Thus, if an isolated
singularity is found to not be two of the three types given in Definition 7.7, then it must be the
third type.

Theorem 7.9. Suppose f has an isolated singularity at z0 ∈ C. Then the following statements
are equivalent.

1. f has a removable singularity at z0.
2. There exists some a ∈ C such that f(z)→ a as z → z0.
3. There exists some δ > 0 such that f is bounded on B′δ(z0).

Proof.
(1) → (2). Suppose f has a removable singularity at z0. There exists some r > 0 such that f is
analytic on B′ = B′r(z0), and so by Theorem 7.3 there exists a unique sequence (an)n∈Z such
that

f(z) =
∑
n∈Z

an(z − z0)n (7.9)

for all z ∈ B′. However, an = 0 for all n ≤ −1, and so

f(z) =
∞∑
n=0

an(z − z0)n

on B′. Define ϕ on B = Br(z0) by

ϕ(z) =
∞∑
n=0

an(z − z0)n

for all z ∈ B. Then ϕ is analytic (and hence continuous) on B by Proposition 4.31, and since
ϕ|B′ = f we have

lim
z→z0

f(z) = lim
z→z0

ϕ(z) = ϕ(z0) = a0 ∈ C

as desired.

(2) → (3). Suppose that f(z)→ a ∈ C as z → z0. Then there exists some δ ∈ (0, r) such that
z ∈ B′δ(z0) implies that |f(z)− a| < 1, and hence |f(z)| < |a|+ 1 for all z ∈ B′δ(z0); that is, f is
bounded on B′δ(z0).

(3) → (1). Suppose that f is bounded on B′δ(z0), where we can assume that 0 < δ < r. Define
ϕ : B → C by

ϕ(z) =

{
(z − z0)f(z), z ∈ B′

0, z = z0

(7.10)

Certainly ϕ is analytic on B′, and since f is bounded on a deleted neighborhood of z0 the
Squeeze Theorem can readily be used to obtain

lim
z→z0

ϕ(z) = lim
z→z0

(z − z0)f(z) = 0 = ϕ(z0),
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which shows that ϕ is continuous at z0, and hence ϕ is analytic on B by Corollary 4.22. By
Theorem 4.29 there exists a sequence (bn)∞n=0 in C such that

ϕ(z) =
∞∑
n=0

bn(z − z0)n (7.11)

for all z ∈ B.
On the other hand, for all z ∈ B′ we have

f(z) =
ϕ(z)

z − z0

=
1

z − z0

∞∑
n=0

bn(z − z0)n =
∞∑
n=0

bn(z − z0)n−1,

and since the sequence (an)n∈Z for which (7.9) holds is unique, we conclude that an = 0 for all
n ≤ −2, and a−1 = b0. However, from (7.10) and (7.11) we find that b0 = ϕ(z0) = 0, and so
an = 0 for n ≤ −1. Therefore f has a removable singularity at z0. �

Theorem 7.10. Suppose f has an isolated singularity at z0 ∈ C. Then

1. For all m ∈ N, f has a pole of order m at z0 if and only if there exists some a ∈ C∗ such that

lim
z→z0

(z − z0)mf(z) = a.

2. f has a pole at z0 if and only if |f(z)| → +∞ as z → z0.
3. f has an essential singularity at z0 if and only if limz→z0 f(z) does not exist in C.

Proof.
Proof of Part (1): Suppose f has a pole of order m at z0. Then there exists some r > 0 such
that f is analytic on B′ = B′r(z0), and

f(z) =
m∑
n=1

a−n(z − z0)−n +
∞∑
n=0

an(z − z0)n :=
∞∑

n=−m

an(z − z0)n,

for all z ∈ B′, where a−m 6= 0. The series converges absolutely on B′, so

g(z) := (z − z0)mf(z) =
∞∑

n=−m

an(z − z0)m+n =
∞∑
n=0

an−m(z − z0)n (7.12)

for all z ∈ B′. Define ϕ on B = Br(z0) by

ϕ(z) =
∞∑
n=0

an−m(z − z0)n

for all z ∈ B. Then ϕ is analytic (and hence continuous) on B by Proposition 4.31, and since
ϕ|B′ = g we have

lim
z→z0

(z − z0)mf(z) = lim
z→z0

g(z) = lim
z→z0

ϕ(z) = ϕ(z0) = a−m ∈ C∗

as desired.
For the converse, suppose that

lim
z→z0

(z − z0)mf(z) = a ∈ C∗.
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There exists a unique sequence (an)∞n=−∞ and r > 0 such that

f(z) =
∞∑

n=−∞

an(z − z0)n (7.13)

for all z ∈ B′ = B′r(z0). Define ϕ on B = Br(z0) by

ϕ(z) =

{
(z − z0)mf(z), z 6= z0

a, z = z0

Then ϕ is analytic on B′ and continuous on B, so by Corollary 4.22 ϕ is analytic on B. By
Theorem 4.29 there exists a sequence (bn)∞n=0 such that

ϕ(z) =
∞∑
n=0

bn(z − z0)n

on B, and so

(z − z0)mf(z) =
∞∑
n=0

bn(z − z0)n

on B′, which implies that

f(z) =
1

(z − z0)m

∞∑
n=0

bn(z − z0)n =
∞∑
n=0

bn(z − z0)n−m (7.14)

on B′. Comparing (7.13) with (7.14) informs us that an = 0 for all n < −m, and a−m = b0.
However, ϕ(z0) = a by the definition of ϕ, and ϕ(z0) = b0 by the series representation of ϕ,
whence a−m = b0 = a ∈ C∗. Therefore a−m 6= 0 and we conclude that f has a pole of order m
at z0.

Proof of Part (2). Suppose that f has a pole at z0, so there exists some m ≥ 1 and a ∈ C∗ such
that

lim
z→z0

(z − z0)mf(z) = a,

and hence
lim
z→z0
|z − z0|m|f(z)| = |a| > 0.

Since

lim
z→z0

1

|z − z0|m
= +∞,

it follows readily that

lim
z→z0
|f(z)| = lim

z→z0

(
1

|z − z0|m
· |z − z0|m|f(z)|

)
= +∞ · |a| = +∞.

Conversely, suppose that
lim
z→z0
|f(z)| = +∞.

By Theorem 7.9 it is clear that f cannot have a removable singularity at z0, and by the
Casorati-Weierstrass Theorem below it’s seen that f also cannot have an essential singularity at
z0 since, for instance, there exists some δ > 0 such that |f(z)| > 1 for all z ∈ B′δ(z0).
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Proof of Part (3). Suppose that limz→z0 f(z) = a for some a ∈ C. If a ∈ C, then f has a
removable singularity at z0 by Theorem 7.9; and if a =∞, then |f(z)| → +∞ as z → z0 and so
f has a pole at z0 by Part (2). Hence f does not have an essential singularity at z0.

Conversely, suppose that limz→z0 f(z) does not exist in C. Then f does not have a removable
singularity at z0 by Theorem 7.9, and f does not have a pole at z0 by Part (2). Hence f must
have an essential singularity at z0. �

The manipulations in (7.12) are based on the understanding that an absolutely convergent
Laurent series may be multiplied by a polynomial and reindexed in the same fashion as an
absolutely convergent power series. In this case the Laurent series is a finite sum added to a
power series:

(z − z0)mf(z) = (z − z0)m

(
m∑
n=1

a−n(z − z0)−n +
∞∑
n=0

an(z − z0)n

)

=
m∑
n=1

a−n(z − z0)−n+m +
∞∑
n=0

an(z − z0)n+m

= a−m + a−m+1(z − z0) + · · ·+ a−1(z − z0)m−1 +
∞∑
n=m

an−m(z − z0)n

=
∞∑
n=0

an−m(z − z0)n.

Lemma 7.11. Let f have an essential singularity at z0 ∈ C. If f is nonvanishing on some
deleted neighborhood of z0, then 1/f also has an essential singularity at z0 ∈ C.

Proof. Suppose f is nonvanishing on some deleted neighborhood of z0. Then there exists some
r > 0 such that f is both analytic and nonvanishing on B′r(z0), and hence 1/f is analytic on
B′r(z0).

Suppose 1/f is analytic at z0. Then 1/f is continuous onBδ(z0), implying that limz→z0(1/f)(z)
exists in C and hence limz→z0 f(z) ∈ C \ {0}. But limz→z0 f(z) /∈ C by Theorem 7.10(3), which
leaves us with a contradiction. Hence 1/f cannot be analytic at z0, and so 1/f has an isolated
singularity there.

Now, since limz→z0 f(z) /∈ C, it follows (recall Proposition 6.40) that limz→z0(1/f)(z) /∈ C
also. Therefore 1/f has an essential singularity at z0 by Theorem 7.10(3). �

Theorem 7.12 (Casorati-Weierstrass Theorem). Let f have an essential singularity at
z0 ∈ C, and let r > 0 such that f is analytic on B′r(z0). Then f(B′δ(z0)) is dense in C for all
0 < δ ≤ r.

Proof. Fix δ ∈ (0, r]. Suppose f(B′δ(z0)) is not dense in C. Thus there exists some w ∈ C
and ε > 0 such that Bε(w) ∩ f(B′δ(z0)) = ∅, which is to say f(z) /∈ Bε(w) for all z ∈ B′δ(z0),
and hence f − w is a nonvanishing analytic function on B′δ(z0) with essential singularity at z0.
Define g = 1/(f − w). Then g is analytic on B′δ(z0), and also g has an essential singularity at
z0 by Lemma 7.11. On the other hand |f(z) − w| ≥ ε for all z ∈ B′δ(z0), so g is bounded on
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B′δ(z0), and by Theorem 7.9 it follows that g has a removable singularity at z0. Having arrived
at a contradiction, we conclude that f(B′δ(z0)) is dense in C. �

Definition 7.13. A function f is analytic at infinity if f has a removable singularity at ∞.

Definition 7.5 certainly makes clear that in order for f to have a removable singularity at ∞,
it must first be analytic on an annulus Ar,∞(0) for some r > 0. In fact, by Proposition 7.6 and
Definition 7.7, f has a removable singularity at ∞ iff g(z) = f(1/z) has a removable singularity
at 0. Now, by Theorem 7.9, g has a removable singularity at 0 iff there exists some a ∈ C
such that defining g(0) = a results in g being continuous at 0, in which case g is continuous on
Bε(0) and analytic on B′ε(0) for some ε > 0, and thus g is analytic on Bε(0) by Corollary 4.22.
Assuming that f is analytic at infinity, we may now meaningfully define

f(∞) = lim
z→0

f(1/z),

where the limit is guaranteed to exist in C.
An entire function that is analytic at infinity is said to be analytic on C, the extended

complex plane.

Exercise 7.14 (AN4.1.2(a)). Consider the function

f(z) =
z

sin z
.

For any n ∈ Z \ {0} we have, by L’Hôpital’s Rule (Theorem 6.43),

lim
z→nπ

(z − nπ)
z

sin z
= lim

z→nπ

2z − nπ
cos z

=
nπ

cosnπ
=

nπ

(−1)n
= nπ(−1)n,

and so by Theorem 7.10(1) f has a pole of order 1 at nπ for each integer n 6= 0. As for n = 0,
since

lim
z→0

z

sin z
= lim

z→0

1

cos z
=

1

cos 0
= 1,

we conclude that f has a removable singularity at 0 by Theorem 7.9.
Finally, define

g(z) = f(1/z) =
1/z

sin(1/z)
.

At each z = 1/nπ the function g fails to be analytic, and since 0 is a limit point of (1/nπ)n∈N, we
conclude that g has a nonisolated singularity at 0, and therefore f has a nonisolated singularity
at ∞ by Definition 7.7. �

Exercise 7.15 (AN4.1.2(b)). Consider the function f(z) = exp(1/z). Let ε > 0 be arbitrary.
For sufficiently large n ∈ N we have zn = −i/nπ ∈ B′ε(0), where

e1/zn = e−nπ/i = enπi = cos(nπ) + i sin(nπ) = (−1)n =

{
1, n even

−1, n odd

shows that limz→0 f(z) cannot exist in C, and so by Theorem 7.10(3) we conclude that f has
an essential singularity at 0 by Theorem 7.10(3).
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Next, define g(z) = f(1/z) = exp(z). Since

lim
z→0

g(z) = lim
z→0

exp(z) = e0 = 1,

g has a removable singularity at 0, and therefore f has a removable singularity at ∞. �

Exercise 7.16 (AN4.1.2(c)). Consider the function f(z) = z cos(1/z). Let ε > 0 be arbitrary.
For sufficiently large n ∈ N we have

zn =
2

(2n+ 1)π
∈ B′ε(0),

where

f(zn) =
2

(2n+ 1)π
cos

(
(2n+ 1)π

2

)
= 0.

On the other hand, for n sufficiently large we have en/2n > 1 and wn = i/n ∈ B′ε(0), and then

f(wn) = wn cos(1/wn) = wn

(
ei/wn + e−i/wn

2

)
=

i

2n

(
en + e−n

)
implies that

|f(wn)| = en + e−n

2n
>
en

2n
> 1.

This makes it clear that limz→0 f(z) cannot exist in C, and so by Theorem 7.10(3) we conclude
that f has an essential singularity at 0.

Next, define g(z) = f(1/z) for all z ∈ C∗. Since

lim
z→0

zg(z) = lim
z→0

zf(1/z) = lim
z→0

(
z · 1

z
cos z

)
= lim

z→0
cos z = cos(0) = 1,

g has a pole of order 1 at 0, and therefore f has a pole of order 1 at ∞. �

Exercise 7.17 (AN4.1.2(d)). Consider the function

f(z) =
1

z(ez − 1)
,

which is not analytic at 2nπi for any n ∈ Z. Using L’Hôpital’s Rule,

lim
z→0

z2f(z) = lim
z→0

z

ez − 1
= lim

z→0

1

ez
= 1,

so f has a pole of order 2 at 0. For n 6= 0 we have, again using L’Hôpital’s Rule,

lim
z→2nπi

(z − 2nπi)f(z) = lim
z→2nπi

z − 2nπi

z(ez − 1)
= lim

z→2nπi

1

(z + 1)ez − 1

=
1

e2nπi(2nπi+ 1)− 1
=

1

2nπi
6= 0,

and thus f has a pole of order 1 at 2nπi for all n ∈ Z \ {0}.
Next, define

g(z) = f(1/z) =
z

e1/z − 1
.
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For each n ∈ N let zn = −i/2nπ. Since

e1/zn − 1 = e2nπi − 1 = 1− 1 = 0,

g is not analytic on Z = {zn : n ∈ N}; and since 0 is a limit point of Z, it follows that g has a
nonisolated singularity at 0. Therefore f has a nonisolated singularity at ∞. �

Exercise 7.18 (AN4.1.2(e)). Consider the function

f(z) = cot z :=
cos z

sin z
,

which is not analytic at nπ for any n ∈ Z. Using L’Hôpital’s Rule,

lim
z→nπ

(z − nπ)f(z) = lim
z→nπ

cos z − (z − nπ) sin z

cos z
=

cosnπ

cosnπ
= 1,

so f has a pole of order 1 at nπ for all n ∈ Z.
Next, define

g(z) = f(1/z) =
cos(1/z)

sin(1/z)
.

It can be seen that g is not analytic at 1/nπ for all n ∈ Z, and so g has a nonisolated singularity
at 0. Therefore f has a nonisolated singularity at ∞. �

Exercise 7.19 (AN4.1.3). Find Laurent expansions of

f(z) =
7z − 2

z(z + 1)(z − 2)

in the regions Ω1 = A0,1(−1), Ω2 = A1,3(−1), and Ω3 = A3,∞(−1).

Solution. Partial fraction decomposition gives

f(z) = − 3

z + 1
+

1

z
+

2

z − 2

for all z ∈ C \ {−1, 0, 2}.
Let f1(z) = 1/z, which is analytic on Ω1. It is good practice to use the results of Chapter 6

and §7.1 to determine the Laurent expansion of f1 on Ω1. By Theorem 7.3,

f1(z) =
∑
n∈Z

an(z + 1)n, an =
1

2πi

˛
C1/2(−1)

f1(w)

(w + 1)n+1
dw

for all z ∈ Ω1. In fact, since f1 is analytic on B1(−1) ⊇ Ω1, and γ = C1/2(−1) is a closed path
in B1(−1) such that wn(γ, z) = 0 for all n /∈ B1(−1), by Exercise 6.34 (setting z = −1) we have

an =
wn(γ,−1)f

(n)
1 (−1)

n!
=

(1)(−n!)

n!
= −1

for n ≥ 0. As for n = −1,

a−1 =
1

2πi

˛
γ

1

w
dw = wn(γ, 0) = 0
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by Theorem 6.22. Finally for n ≤ −2, by Cauchy’s Integral Formula and the observation that
z 7→ (z + 1)−n−1 is entire,

an =
1

2πi

˛
γ

1/w

(w + 1)n+1
dw =

1

2πi

˛
γ

(w + 1)−n−1

w
dw = (0 + 1)−n−1 wn(γ, 0) = 0.

Therefore
1

z
=
∑
n∈Z

an(z + 1)n = −
∞∑
n=0

(z + 1)n. (7.15)

Next, let f2(z) = 2/(z − 2), which is also analytic on B1(−1). We will determine the Laurent
expansion of f2 on Ω1 more quickly using geometric series:

f(z) =
2

z − 2
=

−2

3− (z + 1)
= −2

3
· 1

1− z+1
3

= −2

3

∞∑
n=0

(
z + 1

3

)n
. (7.16)

We now have

f(z) = − 3

z + 1
−
∞∑
n=0

(z + 1)n − 2

3

∞∑
n=0

(
z + 1

3

)n
= − 3

z + 1
−
∞∑
n=0

(
2

3n+1
+ 1

)
(z + 1)n

as the Laurent expansion of f in Ω1.
In the region Ω2 where 1 < |z + 1| < 3, the series in (7.15) no longer converges, and so a

different series representation for 1/z is necessary:

1

z
=

1

(z + 1)− 1
=

1
z+2

1− 1
z+1

=
1

z + 1

∞∑
n=0

(
1

z + 1

)n
,

and thus

f(z) = − 3

z + 1
+
∞∑
n=0

(
1

z + 1

)n+1

− 2

3

∞∑
n=0

(
z + 1

3

)n
is the Laurent expansion of f in Ω2.

Finally, in the region Ω3 where |z+ 1| > 3, the series in (7.16) is divergent, and so a different
series representation for 2/(z − 2) must be found:

2

z − 2
=

2

(z + 1)− 3
=

2
z+1

1− 3
z+1

=
2

z + 1

∞∑
n=0

(
3

z + 1

)n
,

and thus

f(z) = − 3

z + 1
+
∞∑
n=0

(
1

z + 1

)n+1

+
2

z + 1

∞∑
n=0

(
3

z + 1

)n
is the Laurent expansion of f in Ω3. �

Exercise 7.20 (AN4.1.5). Find the first few terms of the Laurent expansion of

f(z) =
1

z2(ez − e−z)
on B′π(0).
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Solution. Clearly f is analytic on B′π(0), and since (using L’Hôpital’s Rule)

lim
z→0

z3f(z) = lim
z→0

z

ez − e−z
= lim

z→0

1

ez + e−z
=

1

2
,

f has a pole of order 3 at 0. Define ϕ : Bπ(0)→ C by

ϕ(z) =

{
z3f(z), z ∈ B′π(0)

1/2, z = 0

so ϕ is analytic on Bπ(0) by Corollary 4.22. By Theorem 4.29

ϕ(z) =
∞∑
n=0

anz
n

for all z ∈ Bπ(0), where an = ϕ(n)(0)/n! for all n ≥ 0. Since determining ϕ(n)(0) is increasingly
labor-intensive for higher values of n, we proceed as follows: for 0 < |z| < π,

z

ez − e−z
=
∞∑
n=0

anz
n,

and hence

(ez − e−z)
∞∑
n=0

anz
n = z.

Recalling that

ez =
∞∑
n=0

zn

n!
,

we obtain

(a0 + a1z + a2z
2 + · · · )

(
2z +

2z3

3!
+

2z5

5!
+ · · ·

)
= z,

and finally

(a0 + a1z + a2z
2 + · · · )

(
1 +

z2

3!
+
z4

5!
+ · · ·

)
=

1

2
.

The first few coefficient values are

a0 =
1

2
, a1 = 0, a2 +

c0

6
= 0, a3 = 0,

c0

120
+
c2

6
+ a4 = 0.

Solving, we have a0 = 1/2, a1 = 0, a2 = −1/12, a3 = 0, a4 = 7/720, so that

ϕ(z) =
1

2
− 1

12
z2 +

7

720
z4 + · · ·

for all z ∈ Bπ(0). Since f(z) = ϕ(z)/z3 on B′π(0), it follows that

f(z) =
1

2z3
− 1

12z
+

7

720
z + · · ·

for all z ∈ B′π(0). �

Exercise 7.21 (AN4.1.9(a)). Show that if f is analytic on C, then f is constant.
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Solution. Suppose that f is analytic on C, so by Definition 7.13 f is analytic on C and has a
removable singularity at ∞. Define the function g : C∗ → C by g(z) = f(1/z), which is analytic
on C∗ by the Chain Rule. By Proposition 7.6 g has a removable singularity at 0, and so there
exists some a ∈ C such that

ĝ(z) =

{
g(z), z ∈ C∗
a, z = 0

is analytic on C by Corollary 4.22. It follows that ĝ is bounded on B1/r(0) for any r > 0, which

is to say there exists some M > 0 such that |ĝ(z)| ≤M for all z ∈ B1/r(0). Now,

z ∈ Ar,∞(0) ⇒ |z| > r ⇒ 0 <

∣∣∣∣1z
∣∣∣∣ < 1

r
⇒ 1

z
∈ B′1/r(0),

so

z ∈ Ar,∞(0) ⇒ |f(z)| = |g(1/z)| ≤M

and we find that f is bounded on Ar,∞(0). Therefore f is a bounded entire function, and
Liouville’s Theorem implies there exists some constant z0 such that f ≡ z0 on C. Since

f(∞) = lim
z→0

f(1/z) = lim
z→0

z0 = z0

as well, we conclude that f is constant on C. (Indeed, since g(z)→ a as z → 0, it can be seen
that f ≡ a on C.) �

Exercise 7.22 (AN4.1.9(b)). Suppose f is entire and there exist some k,M,R > 0 such that
|f(z)| ≤M |z|k for all z ∈ AR,∞(0). Show that f is a polynomial function of degree at most k.

Solution. By Theorem 4.29,

f(z) =
∞∑
n=0

f (n)(0)

n!
zn

for all z ∈ C. Let r > R be arbitrary. According to Cauchy’s Estimate,

|f (n)(0)| ≤ n!

rn
max
z∈Cr(0)

|f(z)| ≤ n!

rn
max
z∈Cr(0)

M |z|k =
n!

rn
·Mrk =

n!M

rn−k
.

If n > k, then n!M/rn−k → 0 as r →∞, and then the Squeeze Theorem implies that |f (n)(0)| = 0.
Hence

f(z) =
k∑

n=0

f (n)(0)

n!
zn

and we conclude that f is a polynomial function such that deg(f) ≤ k. �

Exercise 7.23 (AN4.1.9(c)). Prove that if f is entire and has a nonessential singularity at
∞, then f is a polynomial function.
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Solution. Suppose that f is entire and has a nonessential singularity at ∞. It follows imme-
diately that f cannot have a nonisolated singularity at ∞, and so either f has a removable
singularity or a pole at ∞.

If f has a removable singularity at ∞, then by definition f is analytic on C and so must be
constant on C by Exercise 7.21. That is, f is a polynomial function of degree at most 0.

Suppose f has a pole of order k at∞, where of course k ≥ 1. Then the function g(z) = f(1/z)
is analytic on C∗ and has a pole of order k at 0, so that

lim
z→0

zkf(1/z) = lim
z→0

zkg(z) = a

for some a ∈ C∗. Thus there exists some r > 0 such that

z ∈ B′1/r(0) ⇒ |zkf(1/z)− a| < 1.

Since z ∈ Ar,∞(0) implies that 1/z ∈ B′1/r(0), we find

z ∈ Ar,∞(0) ⇒

∣∣∣∣∣
(

1

z

)k
f(z)− a

∣∣∣∣∣ < 1 ⇒ |z|−k|f(z)| < |a|+ 1 ⇒ |f(z)| < (|a|+ 1)|z|k,

where |a| + 1 > 0. That is, there exist some k,M, r > 0 such that |f(z)| ≤ M |z|k for all
z ∈ Ar,∞(0), and therefore f is a polynomial function of degree at most k by Exercise 7.22. �

Exercise 7.24 (AN4.1.12). If f is entire and f(C) is not dense in C, then f is constant.

Solution. Suppose f has an essential singularity at ∞, so that g(z) = f(1/z) has an essential
singularity at 0. By the Casorati-Weierstrass Theorem g(B′1(0)) is dense in C. But z ∈ B′1(0) if
and only if 1/z ∈ A1,∞(0), so that

w ∈ g(B′1(0)) ⇔ ∃z ∈ B′1(0)
(
g(z) = w

)
⇔ ∃z−1 ∈ A1,∞(0)

(
f(z−1) = w

)
⇔ w ∈ f(A1,∞(0)),

and hence f(A1,∞(0)) = g(B′1(0)). It follows that f(A1,∞(0)) is dense in C, and since
f(A1,∞(0)) ⊆ f(C), we are forced to conclude that f(C) is dense in C as well, which is a
contradiction. Therefore f cannot have an essential singularity at ∞, and since f is entire, by
Exercise 7.23 we conclude that f is a polynomial function.

Suppose that f is not a constant function. Fix w ∈ C, and define ϕ : C → C by ϕ(z) =
f(z)− w. Then ϕ is a non constant polynomial function, and by the Fundamental Theorem of
Algebra there exists some z0 ∈ C such that ϕ(z0) = 0, and thus f(z0) = w. Since w is arbitrary,
it follows that f(C) = C, which certainly implies that f(C) is dense in C, a contradiction.
Therefore f must be constant.6 �

6The solution given in [AN] employs Liouville’s Theorem and turns out to be somewhat slicker.
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7.3 – Meromorphic Functions

Given an analytic function f : Ω→ C, we let P (f) ⊆ Ω denote the set of complex-valued
poles of f , and P (f) ⊆ Ω ∪ {∞} denote the set of poles of f on the extended complex plane C.
Given an arbitrary set S, we also define P (f, S) = P (f)∩S and P (f, S) = P (f)∩S. Henceforth
we let ord(f, z) denote the order of either a zero or pole of f at z.

Definition 7.25. Let Ω be open in C. A function f is meromorphic on Ω if f is analytic
on Ω \ P (f,Ω), where P (f,Ω) has no limit points in Ω.

Let Ω be open in C. A function f is meromorphic on Ω if f is analytic on Ω \ P (f,Ω),
where P (f,Ω) has no limit points in Ω.

In particular a function f is meromorphic on C if it is meromorphic on C and has either a
pole at ∞ or is analytic at ∞ (i.e. has a removable singularity at ∞).

Proposition 7.26. Let Ω ⊆ C be a region. If f and g are meromorphic and not identically
zero on Ω, then f + g, f − g, fg, and f/g have no essential singularities in Ω.

Proof. The analysis of f + g, f − g, and fg can be done using Taylor and Laurent series
representations and Definition 7.7. Only f/g seems better handled by a different approach
involving cases.

Suppose f and g are meromorphic and not identically zero on Ω. Fix z0 ∈ Ω. Then

Lf = lim
z→z0

f(z) and Lg = lim
z→z0

g(z)

exist in C by Theorem 7.10(2). Let L = limz→z0 f(z)/g(z).
If Lf = Lg = 0, then f and g are analytic at z0, and since f and g are not identically zero

on any neighborhood of z0 (otherwise one or the other would be identically zero on Ω by the
Identity Theorem), by L’Hôpital’s Rule L exists in C.

If Lf = Lg =∞, then f and g each have a pole at z0, hence are each analytic on a deleted

neighborhood of z0, and therefore L exists in C by Exercise 6.44.
If Lf =∞ and Lg ∈ C, then L =∞; and if Lf ∈ C and Lg =∞, then L = 0.
Finally, suppose that Lf , Lg ∈ C. If Lg 6= 0, then L ∈ C; and if Lg = 0 and Lf 6= 0, then

L =∞.
We see that L ∈ C in all possible cases. Therefore f/g has no essential singularity at z0 by

Theorem 7.10(3). �

Proposition 7.27. If f is meromorphic on C, then f has a finite number of poles.

Proof. Suppose f is meromorphic on C, so that f has a pole at∞ or is analytic at∞. In either
case f has an isolated singularity at ∞, and so there exists some r > 0 such that f is analytic
on Ar,∞(0). Hence P (f) ⊆ Br(0), and so if P (f) is an infinite set, then since Br(0) is compact
it follows that P (f) has a limit point w ∈ Br(0). But then f has a nonisolated singularity at w
since f is not analytic on any deleted neighborhood of w (every deleted neighborhood contains
a pole), which contradicts the hypothesis that f is meromorphic on C. Therefore P (f) must be
a finite set. �
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Exercise 7.28 (AN4.1.9(d)). Prove that if f is meromorphic on C, then f is a rational
function.

Solution. By Proposition 7.27 the set P (f) is finite. If P (f) = ∅, then f is entire with
nonessential singularity at ∞, and so we conclude by Exercise 7.23 that f is a polynomial
function, and hence also a rational function.

Suppose that P (f) 6= ∅, so that P (f) = {z1, . . . , zm} for some m ∈ N. For each 1 ≤ k ≤ m
let nk be the order of the pole at zk, so that

lim
z→zk

(z − zk)nkf(z) = ak ∈ C∗.

Let Ω = C \ P (f), and define ϕ : Ω→ C by

ϕ(z) =
m∏
k=1

(z − zk)nkf(z),

which is analytic on Ω with nonessential singularity at ∞, seeing as limz→0 f(1/z) exists in C,
as does

lim
z→0

(
1

z
− zk

)
for each 1 ≤ k ≤ m. Now, ϕ has a removable singularity at each zk since

bk := lim
z→zk

ϕ(z) = lim
z→zk

[∏
6̀=k

(z − z`)n` · (z − zk)nkf(z)

]
=
∏
`6=k

(zk − z`)n` · ak ∈ C,

so if we define p : C→ C by

p(z) =

{
ϕ(z), z ∈ Ω

bk, z = zk

then p is continuous on C and analytic on Ω, and therefore p is entire by Corollary 4.22. Moreover
p has a nonessential singularity at ∞ since

lim
z→0

p(1/z) = lim
z→0

ϕ(1/z) ∈ C.

(Note: there exists some r > 0 such that Ar,∞(0) ⊆ Ω, so p(z) = ϕ(z) for z ∈ Ar,∞(0), and
hence p(1/z) = ϕ(1/z) for z ∈ B′1/r(0). Now recall that ϕ(z) has a nonessential singularity at

∞ iff ϕ(1/z) has a nonessential singularity at 0 iff limz→0 ϕ(1/z) exists in C.) By Exercise 7.23
it follows that p is a polynomial function on C. Now, for z ∈ Ω,

p(z) = ϕ(z) =
m∏
k=1

(z − zk)nkf(z),

and since
m∏
k=1

(z − zk)nk 6= 0

we obtain

f(z) =
p(z)∏m

k=1(z − zk)nk
,

which is a rational function on Ω. �
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Theorem 7.29 (Cauchy’s Theorem on Partial Fraction Expansions). Let f be mero-
morphic on C, let (γn)n∈N be a sequence of simple closed paths, and for each n let Ωn be the
homologically simply connected region for which ∂Ωn = γn. Suppose that:

1. wn(γn, 0) = 1, γ∗n ∩ P (f) = ∅, and Ωn ⊆ Ωn+1 for each n.
2. limn→∞ dist(0, γ∗n) =∞.

Let P (f) = {bk : k ∈ W} be ordered so b0, b1, . . . , bmn ∈ Ωn for each n ∈ N, with mn ≤ mn+1.
Denote the principal part of the Laurent representation of f at bk by Gk for each k ∈W, and
suppose

lim sup
n→∞

˛
γn

|f(z)|
|z|p+1

|dz| <∞

for some integer p ≥ −1. If f is analytic at z, then there exists a sequence of polynomials
(Pk)k∈W with deg(Pk) ≤ p such that (

mn∑
k=0

(Gk + Pk)

)
n∈N

converges uniformly to f on compact subsets of C \ P (f). If p = −1, then Pk = 0 for all k ∈W.

Thus we have

f(z) = lim
n→∞

mn∑
k=0

[
Gk(z) + Pk(z)

]
pointwise on C \ P (f), so that

f(z) =
∞∑
k=0

[
Gk(z) + Pk(z)

]
in the case when the set P (f) is unbounded. In particular

f(z) =
∞∑
k=0

res(f, bk)

z − bk
when

lim sup
n→∞

˛
γn

|f(z)||dz| = lim sup
n→∞

ˆ b

a

|f(γ(t))||γ′(t)|dt <∞

and f has only simple poles, assuming γn : [a, b]→ C for each n ∈ N .
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7.4 – The Residue Theorem

Definition 7.30. Let f have an isolated singularity at z0, so that f(z) =
∑

n∈Z an(z − z0)n in
some deleted neighborhood of z0. The residue of f at z0 is res(f, z0) = a−1.

The uniqueness provision in Theorem 7.3 guarantees that the residue of f at an isolated
singularity z0 is well-defined.

Proposition 7.31. Let f have an isolated singularity at z0, so that f is analytic on B′ρ(z0) for
some ρ > 0. If γ is a closed path or cycle in B′ρ(z0) such that wn(γ, z0) = 1, then˛

γ

f = 2πi res(f, z0).

Proof. Suppose that γ is a closed path or cycle in B′ρ(z0) such that wn(γ, z0) = 1. Fix

r ∈ (0, ρ), and let Cr(z0) ⊆ B′ρ(z0) be parameterized by t 7→ reit for t ∈ [0, 2π]. Since
wn(Cr(z0), z0) = wn(γ, z0) = 1, and wn(Cr(z0), z) = wn(γ, z) = 0 for all z /∈ Bρ(z0) by
Proposition 6.20(4), it follows that ˛

Cr(z0)

f =

˛
γ

f

by Corollary 6.32. On the other hand ˛
Cr(z0)

f = 2πia−1

obtains by setting n = −1 in the equation (7.3) in Theorem 7.3, and therefore˛
γ

f = 2πia−1 = 2πi res(f, z0)

by Definition 7.30. �

Proposition 7.32. Let f have an isolated singularity at z0, so that f is analytic on B′ρ(z0) for
some ρ > 0. For fixed k ∈ C, define ϕk : B′ρ(z0)→ C by

ϕk(z) = f(z)− k

z − z0

.

Then ϕk has a primitive on B′ρ(z0) if and only if k = res(f, z0).

Proof. Suppose that ϕk has a primitive on B′ρ(z0). For 0 < r < ρ we have, by Proposition 7.31
and Theorem 6.22, ˛

Cr(z0)

ϕk =

˛
Cr(z0)

f(z)dz − k
˛
Cr(z0)

1

z − z0

dz

= 2πi res(f, z0)− 2πikwn(Cr(z0), z0)

= 2πi res(f, z0)− 2πik.
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On the other hand, since ϕk is continuous and has a primitive on B′ρ(z0), the Fundamental
Theorem of Path Integrals implies that ˛

Cr(z0)

ϕk = 0.

Therefore 2πi res(f, z0)− 2πik = 0, giving k = res(f, z0).
For the converse, suppose that k = res(f, z0). Let

f(z) =
∑
n∈Z

an(z − z0)n

for all z ∈ B′ρ(z0). Then, since k = a−1,

ϕk(z) = f(z)− k

z − z0

=
∑

n∈Z\{−1}

an(z − z0)n

for all z ∈ B′ρ(z0), where the Laurent series is absolutely convergent on B′ρ(z0) by Theorem 7.3.
It follows that the series

Φk(z) =
∑

n∈Z\{−1}

an
n+ 1

(z − z0)n+1

is likewise absolutely convergent on B′ρ(z0), and so

Φ′k(z) =
∑

n∈Z\{−1}

d

dz

[
an

n+ 1
(z − z0)n+1

]
=

∑
n∈Z\{−1}

an(z − z0)n = ϕk(z)

by Theorem 7.4. That is, Φk is a primitive for ϕk on B′ρ(z0). �

Proposition 7.33. Suppose f has a pole of order m at z0. Then

res(f, z0) =
1

(m− 1)!
lim
z→z0

(
dm−1

dzm−1

[
(z − z0)mf(z)

])
,

and res(f ′/f, z0) = −m.

Proof. Suppose that f has a pole of order m at z0. Thus there exists some r > 0 such that f
is analytic on B′r(z0) and

lim
z→z0

(z − z0)mf(z) = α ∈ C∗.

Define ϕ : Br(z0)→ C by

ϕ(z) =

{
(z − z0)mf(z), z ∈ B′r(z0)

α, z = z0

Since ϕ is analytic on Br(z0) by Corollary 4.22, it follows by Theorem 4.29 that ϕ has a Taylor
series representation

ϕ(z) =
∞∑
n=0

ϕ(n)(z0)

n!
(z − z0)n
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on Br(z0). On the other hand, by Theorem 7.3 and Definition 7.7(2), f has a Laurent series
representation

f(z) =
∞∑

n=−m

an(z − z0)n =
∞∑
n=0

an−m(z − z0)n−m (7.17)

on B′r(z0), where a−m 6= 0. Now,

(z − z0)mf(z) = ϕ(z) =
∞∑
n=0

ϕ(n)(z0)

n!
(z − z0)n

for all z ∈ B′r(z0), and so

f(z) =
1

(z − z0)m

∞∑
n=0

ϕ(n)(z0)

n!
(z − z0)n =

∞∑
n=0

ϕ(n)(z0)

n!
(z − z0)n−m. (7.18)

for all z ∈ B′r(z0). Comparing (7.17) and (7.18) and recalling that the Laurent series of an
analytic function on a punctured disc is unique, we conclude that

res(f, z0) = a−1 =
ϕ(m−1)(z0)

(m− 1)!
,

and therefore

res(f, z0) =
1

(m− 1)!
lim
z→z0

ϕ(m−1)(z) =
1

(m− 1)!
lim
z→z0

[
(z − z0)mf(z)

](m−1)

since the analyticity of ϕ on Br(z0) implies the continuity of ϕ(m−1) on Br(z0).
Next, for z ∈ B′r(z0) we have f(z) = (z − z0)−mϕ(z), and so

(f ′/f)(z) =
(z − z0)−mϕ′(z)−m(z − z0)−m−1ϕ(z)

(z − z0)−mϕ(z)
=
ϕ′(z)

ϕ(z)
− m

z − z0

.

Since ϕ(z0) 6= 0 and ϕ is analytic on Br(z0), there exists some 0 < ρ ≤ r such that ϕ(z) 6= 0 for
all z ∈ Bρ(z0), so that ϕ′/ϕ is analytic on Bρ(z0) and by Theorem 4.29

(ϕ′/ϕ)(z) =
∞∑
n=0

bn(z − z0)n

for all z ∈ Bρ(z0). In particular res(ϕ′/ϕ, z0) = b−1 = 0, and since

(f ′/f)(z) =
∞∑
n=0

bn(z − z0)n −m(z − z0)−1

for all z ∈ B′ρ(z0), we conclude that res(f ′/f, z0) = −m. �

If f has a simple pole (i.e. a pole of order 1) at z0, then

res(f, z0) = lim
z→z0

(z − z0)f(z)

in particular.

Proposition 7.34. If f has a zero of order m at z0, then f ′/f has a simple pole at z0 and
res(f ′/f, z0) = m.
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Proof. Suppose that f has a zero of order m at z0. Then f(z0) = 0, there exists some r > 0
such that f is analytic on Br(z0), and there exists some analytic function g : Br(z0)→ C such
that g(z0) 6= 0 and f(z) = (z − z0)mg(z) for all z ∈ Br(z0). By the continuity of g there is some
0 < ρ ≤ r such that g(z) 6= 0 for all z ∈ Bρ(z0), and hence f(z) 6= 0 for all z ∈ B′ρ(z0). This
implies that f ′/f is analytic on B′ρ(z0) and has an isolated singularity at z0. Indeed, since

lim
z→z0

(z − z0)(f ′/f)(z) = lim
z→z0

[
(z − z0) · (z − z0)mg′(z) +m(z − z0)m−1g(z)

(z − z0)mg(z)

]
= lim

z→z0

(z − z0)g′(z) +mg(z)

g(z)
= m · g(z0)

g(z0)
= m,

where m 6= 0 since m ∈ N, it follows that f ′/f has a pole of order 1 at z0. By Proposition 7.33

res(f ′/f, z0) =
1

0!
lim
z→z0

[
(z − z0)(f ′/f)(z)

](0)
= lim

z→z0
(z − z0)(f ′/f)(z),

and therefore res(f ′/f, z0) = m. �

Theorem 7.35 (Residue Theorem). Let f be analytic on Ω \ S(f), where Ω is some open
set and S(f) ⊆ Ω consists of isolated singularities of f . If γ is a closed cycle in Ω \ S(f) such
that wn(γ, z) = 0 for all z /∈ Ω, then˛

γ

f = 2πi
∑
z∈S(f)

res(f, z) wn(γ, z).

Theorem 7.36 (Argument Principle). Let f be analytic on Ω, with f not identically zero
on any component of Ω. If γ is a closed path in Ω \ Z(f) such that wn(γ, z) = 0 for all z /∈ Ω,
then

wn(f ◦ γ, 0) =
∑
z∈Z(f)

ord(f, z) wn(γ, z).

Proof. Suppose γ is a closed path in Ω \ Z(f) such that wn(γ, z) = 0 for all z /∈ Ω. Since f is
analytic on Ω \ Z(f), γ∗ ⊆ Ω \ Z(f), and 0 /∈ (f ◦ γ)∗, Corollary 6.23 implies that

wn(f ◦ γ, 0) =
1

2πi

˛
γ

f ′/f. (7.19)

Now, f ′/f is analytic on Ω \ Z(f). The set Z(f) has no limit point in Ω, for if it did,
then by the Identity Theorem f must be identically zero on the component of Ω containing
the limit point. Thus, for each z ∈ Z(f), there exists some ε > 0 such that B′ε(z) ⊆ Ω and
B′ε(z) ∩ Z(f) = ∅, and we see that Z(f) consists of isolated singularities of f ′/f . Therefore, by
the Residue Theorem, ˛

γ

f ′/f = 2πi
∑
z∈Z(f)

res(f ′/f, z) wn(γ, z), (7.20)

and combining (7.19) and (7.20) yields

wn(f ◦ γ, 0) =
∑
z∈Z(f)

res(f ′/f, z) wn(γ, z).
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Finally, fix z ∈ Z(f), and let Ω′ be the component of Ω that contains z. Since f is analytic
and not identically zero on the open connected set Ω′, z ∈ Ω′, and f(z) = 0, it follows by
Proposition 5.15 that ord(f, z) = m for some m ∈ N, and hence res(f ′/f, z) = m = ord(f, z) by
Proposition 7.34. Therefore

wn(f ◦ γ, 0) =
∑
z∈Z(f)

res(f ′/f, z) wn(γ, z) =
∑
z∈Z(f)

ord(f, z) wn(γ, z)

as was to be shown. �

Theorem 7.37. Let f be meromorphic on Ω, with f not identically zero on any component of
Ω. If γ is a closed path in Ω \ (Z(f) ∪ P (f)) such that wn(γ, z) = 0 for all z /∈ Ω, then

wn(f ◦ γ, 0) =
∑
z∈Z(f)

ord(f, z) wn(γ, z)−
∑
z∈P (f)

ord(f, z) wn(γ, z).

Proof. Let S = Z(f)∪P (f) and suppose γ is a closed path in Ω \ S such that wn(γ, z) = 0 for
all z /∈ Ω. Since f is analytic on Ω \ S, γ∗ ⊆ Ω \ S, and 0 /∈ (f ◦ γ)∗, Corollary 6.23 implies that

wn(f ◦ γ, 0) =
1

2πi

˛
γ

f ′/f. (7.21)

Now, f ′/f is analytic on Ω \ S. As shown in the proof of the Argument Principle, Z(f) has
no limit point in Ω, and also P (f) has no limit point in Ω since poles are a type of isolated
singularity. Hence S has no limit point in Ω and so is precisely the set of isolated singularities
of f ′/f . By the Residue Theorem,˛

γ

f ′/f = 2πi
∑
z∈S

res(f ′/f, z) wn(γ, z), (7.22)

and combining (7.21) and (7.22) yields

wn(f ◦ γ, 0) =
∑
z∈S

res(f ′/f, z) wn(γ, z).

If z ∈ Z(f), then ord(f, z) ∈ N by Proposition 5.15, and res(f ′/f, z) = ord(f, z) by
Proposition 7.34. If z ∈ P (f), then res(f ′/f, z) = − ord(f, z) by Proposition 7.33. From

wn(f ◦ γ, 0) =
∑
z∈Z(f)

res(f ′/f, z) wn(γ, z) +
∑
z∈P (f)

res(f ′/f, z) wn(γ, z)

the desired result now readily obtains. �

Theorem 7.38 (Rouché’s Theorem). Suppose f and g are analytic on Ω, with neither f nor
g identically zero on any component of Ω. Let γ be a closed path in Ω such that wn(γ, z) = 0
for all z /∈ Ω. If |f + g| < |f |+ |g| on γ∗, then∑

z∈Z(f)

ord(f, z) wn(γ, z) =
∑
z∈Z(g)

ord(g, z) wn(γ, z).
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Remark. Note that if |f + g| < |f |+ |g| on γ∗, then neither f nor g can have any zeros on γ∗.
If the closed path γ : [a, b]→ C in Rouché’s Theorem is a simple curve—meaning γ(t1) 6= γ(t2)
for all t1, t2 ∈ (a, b) such that t1 6= t2, and hence the curve does not cross itself—then there
is a clearly defined region S ⊆ Ω such that ∂S = γ∗, and moreover wn(γ, z) ∈ {0, 1} for all
z ∈ Z(f) ∪ Z(g). Thus, in the case when γ is a simple closed path, Rouché’s Theorem may
be accurately interpreted as saying that f and g have the same number of zeros in the region
bounded by γ, counting multiplicities. Many authors insert the requirement that γ be simple
in the statement of Rouché’s Theorem. Also there is a version of the theorem adapted for
meromorphic functions.7

Exercise 7.39 (AN4.2.1). Let

f(z) =
(z − 1)(z − 3 + 4i)

(z + 2i)2
,

and let γ : [a, b]→ C be the path shown in Figure 17. Find wn(f ◦ γ, 0).

Solution. We see that f is meromorphic on C, with a single pole of order 2 at −2i, and zeros
of order 1 at 1 and 3− 4i. Since γ∗ ⊆ C \ [Z(f) ∪ P (f)], Theorem 7.37 yields

wn(f ◦ γ, 0) = ord(f, 1) wn(γ, 1) + ord(f, 3− 4i) wn(γ, 3− 4i)− ord(f,−2i) wn(γ,−2i)

= (1)(1) + (1)(0)− (2)(1) = −1.

There is an alternate method for computing wn(f ◦ γ, 0). Define γ1 = γ − 1, γ2 = γ − 3 + 4i,
and γ3 = γ + 2i. Since 0 /∈ γ∗1 ∪ γ∗2 ∪ γ∗3 , we have 0 /∈ (γ1γ2)

∗ ∪ (γ2
3)∗, where γ1γ2 and γ2

3 are
closed curves. For any t ∈ [a, b],

(f ◦ γ)(t) =
[γ(t)− 1][γ(t)− 3 + 4i]

[γ(t) + 2i]2
=
γ1(t)γ2(t)

γ2
3(t)

= (γ1γ2/γ
2
3)(t),

so that f ◦ γ = γ1γ2/γ
2
3 . By Proposition 6.20(3),

wn(f ◦ γ, 0) = wn(γ1γ2/γ
2
3 , 0) = wn(γ1γ2, 0)− wn(γ2

3 , 0) = wn(γ1, 0) + wn(γ2, 0)− 2 wn(γ3, 0),

and since −2i, 1, 3− 4i /∈ γ∗, Proposition 6.20(2) implies that

wn(γ1, 0) = wn(γ − 1, 0) = wn(γ, 1), wn(γ2, 0) = wn(γ − 3 + 4i, 0) = wn(γ, 3− 4i),

and
wn(γ3, 0) = wn(γ + 2i, 0) = wn(γ,−2i),

and so

wn(f ◦ γ, 0) = wn(γ, 1) + wn(γ, 3− 4i)− 2 wn(γ,−2i) = 1 + 0− 2(1) = −1

obtains once more. �

Exercise 7.40 (AN4.2.3). Prove that any polynomial function of degree n ≥ 1 has exactly n
zeros, counting multiplicities.

7See Conway’s Functions of One Complex Variable I.
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γ

1

−2i

3− 4i

Figure 17.

Solution. Let f be a polynomial function of degree n ≥ 1, so f is entire with

f(z) =
n∑
k=0

akz
k

for all z ∈ C, where an 6= 0. Define g by g(z) = −anzn for all z ∈ C, also an entire function.
Now, since

1

|an|
·
∣∣∣an−1

z
+ · · ·+ a1

zn−1
+
a0

zn

∣∣∣ ≤ 1

|an|
·
(
|an−1|
|z|

+ · · ·+ |a1|
|z|n−1

+
|a0|
|z|n

)
,

for z 6= 0, it is straightforward to show that

lim
z→∞

|f(z) + g(z)|
|g(z)|

= lim
z→∞

|an−1z
n−1 + · · ·+ a1z + a0|
|anzn|

= lim
z→∞

(
1

|an|
·
∣∣∣an−1

z
+ · · ·+ a1

zn−1
+
a0

zn

∣∣∣) = 0,

and so there exists some r > 0 such that

|f(z) + g(z)|
|g(z)|

< 1,

and hence |f(z) + g(z)| < |g(z)|, for all z ∈ Ar,∞(0). If γ is any closed path in Ar,∞(0) such
that wn(γ, 0) = 1. Then

|f(z) + g(z)| < |f(z)|+ |g(z)|

for all z ∈ γ∗. By Rouché’s Theorem, since g has just a single zero of order n at 0,∑
z∈Z(f)

ord(f, z) wn(γ, z) =
∑
z∈Z(g)

ord(g, z) wn(γ, z) = ord(g, 0) wn(γ, 0) = (n)(1) = n,

and therefore f has n zeros, counting multiplicities. �

Exercise 7.41 (AN4.2.6a). Find the residue at z = 0 of csc2 z.
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Solution. Applying L’Hôpital’s Rule twice,

lim
z→0

z2 csc2 z = lim
z→0

z2

sin2 z
= lim

z→0

2z

2 sin z cos z
= lim

z→0

1

cos2 z − sin2 z
= 1,

and so csc2 z has a pole of order 2 at z = 0 by Theorem 7.10(1). Thus, by Proposition 7.33,

res(csc2, 0) = lim
z→0

d

dz
(z2 csc2 z) = lim

z→0

2z − 2z2 cot z

sin2 z
= 0,

which may be obtained by applying L’Hôpital’s Rule thrice. �

Exercise 7.42 (AN4.2.6c). Find the residue at z = 0 of z cos(1/z).

Solution. In Exercise 7.16 it was found that z cos(1/z) has an essential singularity at z = 0,
and thus Proposition 7.33 may not be used to find the residue as in previous exercise. Instead
we take a direct approach:

z cos(1/z) = z
∞∑
n=0

(−1)n

(2n)!z2n
=
∞∑
n=0

(−1)n

(2n)!z2n−1
= z − 1

2
z−1 +

1

24
z−3 − · · · .

Therefore res(z cos(1/z), 0) = −1/2. �

Exercise 7.43 (AN4.2.10). Prove that all zeros of f(z) = z4 + 6z + 3 are in B2(0), and three
of them are in A1,2(0).

Solution. Let g(z) = −z4, and define γ : [0, 2π]→ C by γ(t) = 2eit. For z ∈ γ∗ we have |z| = 2,
so that

|f(z) + g(z)| = |6z + 3| ≤ |6z|+ 3 = 15 < 16 = 24 = |z4| = |g(z)|,

and hence |f + g| < |f | + |g| on γ∗. Observing that f and g are analytic and not identically
zero on C, and γ is a closed path in C, by Rouché’s Theorem∑

z∈Z(f)

ord(f, z) wn(γ, z) =
∑
z∈Z(g)

ord(g, z) wn(γ, z) = ord(g, 0) wn(γ, 0) = (4)(1) = 4,

and therefore f has four zeros in B2(0), counting multiplicities. Since f has exactly four zeros
in all by Exercise 7.40, we conclude that all zeros of f are in B2(0).

Next, let h(z) = −6z− 3, and define ξ : [0, 2π]→ C by ξ(t) = eit. For z ∈ ξ∗ we have |z| = 1,
so that

|f(z) + h(z)| = |z4| = |z|4 = 1 < 3 =
∣∣|6z| − 3

∣∣ ≤ |6z + 3| = |h(z)|,

and hence |f + h| < |f |+ |h| on ξ∗. By Rouché’s Theorem∑
z∈Z(f)

ord(f, z) wn(γ, z) =
∑
z∈Z(h)

ord(h, z) wn(γ, z) = ord(h,−1/2) wn(γ,−1/2) = (1)(1) = 1,

and therefore f has one zero in B.
It remains to verify that f cannot have a zero on ∂B. For any z ∈ ∂B we have z = eit for

some t ∈ [0, 2π], so that

|f(z)| = |ei4t + 6eit + 3| ≥
∣∣|6eit + 3| − |ei4t|

∣∣ =
∣∣3|2eit + 1| − 1

∣∣



217

≥ 3|2eit + 1| − 1 ≥ 3
∣∣|2eit| − 1

∣∣− 1 = 3(2− 1)− 1 = 2,

which shows that f(z) 6= 0. Hence f has exactly one zero in B and four zeros in B2(0), which
implies that f has three zeros in B2(0) \ B = A1,2(0). �

Exercise 7.44 (AN4.2.11). Suppose f is analytic on an open set Ω ⊃ B, and |f(z)| < 1 for
all z ∈ ∂B. Show that for each n ∈ N, the function ϕ(z) = f(z)− zn has exactly n zeros in B,
counting multiplicities. In particular, f has exactly one fixed point in B.

Solution. Fix n ∈ N, let ψ(z) = zn, and let γ : [0, 2π] → C be given by γ(t) = eit. For each
z ∈ γ∗,

|ϕ(z) + ψ(z)| = |f(z)| < 1 = |z|n = |zn| = |ψ(z)|,

and so |ϕ+ ψ| < |ϕ|+ |ψ| on γ∗. Discounting any components of Ω that are disjoint from B,
we can assume that Ω is connected. It is clear that ϕ and ψ are analytic on Ω, and ψ is not
identically zero on Ω. Moreover, |f | < 1 on ∂B implies that ϕ 6= 0 on ∂B, and thus ϕ is also
not identically zero on Ω. Since γ is a closed path in Ω and wn(γ, z) = 0 for any z /∈ Ω (since
B ⊆ Ω), by Rouché’s Theorem∑

z∈Z(ϕ)

ord(ϕ, z) wn(γ, z) =
∑

z∈Z(ψ)

ord(ψ, z) wn(γ, z) = ord(ψ, 0) wn(γ, 0) = (n)(1) = n.

Thus ϕ has exactly n zeros in B, counting multiplicities. In the case when n = 1, we conclude
that ϕ(z) = f(z) − z has exactly one zero in B; that is, there exists exactly one z0 ∈ B such
that ϕ(z0) = 0, which is to say there exists exactly one z0 ∈ B such that f(z0) = z0. �

Exercise 7.45 (AN4.2.16). Show that the equation 3z = e−z has exactly one root in B.

Solution. Let f(z) = 3z− e−z, and let g(z) = −3z. If z ∈ ∂B, then |z| = 1 and Re(z) ∈ [−1, 1],
and so

|f(z) + g(z)| = | − e−z| = 1

|ez|
=

1

eRe(z)
≤ e < 3 = | − 3z| = |g(z)|.

Thus, if γ : [0, 2π]→ C is given by γ(t) = eit, then |f + g| < |f |+ |g| on γ∗. Since f and g are
analytic on C, by Rouché’s Theorem∑

z∈Z(f)

ord(f, z) wn(γ, z) =
∑
z∈Z(g)

ord(g, z) wn(γ, z) = ord(g, 0) wn(γ, 0) = (1)(1) = 1.

Therefore f has exactly one zero in B, which implies that 3z = e−z has exactly one root in
B. �

Exercise 7.46 (AN4.2.17). Let f be analytic on B with f(0) = 0. Show that if

min
z∈Cr(0)

|f(z)| ≥ ε

for some ε > 0 and 0 < r < 1, then Bε(0) ⊆ f(Br(0)).
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Solution. Since |f(z)| ≥ ε for all z ∈ Cr(0), it is clear that f is not identically zero on B. Let
z0 ∈ Bε(0), and define the analytic function g : B→ C by g(z) = z0 − f(z), which is also not
identically zero on B. Also define the path γ : [0, 2π] → C by γ(t) = reit, so that γ∗ = Cr(0)
and wn(γ, 0) = 1. Since

|f(z) + g(z)| = |z0| < ε ≤ min
w∈Cr(0)

|f(w)| ≤ |f(z)| ≤ |f(z)|+ |g(z)|

for every z ∈ γ∗, by Rouché’s Theorem∑
z∈Z(g)

ord(g, z) wn(γ, z) =
∑
z∈Z(f)

ord(f, z) wn(γ, z) ≥ ord(f, 0) wn(γ, 0) ≥ 1.

Thus there exists some w ∈ Z(g) such that ord(g, w) wn(γ, w) ≥ 1, which implies ord(g, w) ≥ 1
and wn(γ, w) = 1. Thus w ∈ Br(0) is such that g(w) = 0, giving f(w) = z0 and hence
z0 ∈ f(Br(0)). Since z0 ∈ Bε(0) is arbitrary, it follows that Bε(0) ⊆ f(Br(0)). �

Exercise 7.47 (AN4.2.20). Prove the equation ez − 3z7 = 0 has seven roots in B. More
generally, show that if |a| > e and n ∈ N, then ez − azn = 0 has exactly n roots in B.

Solution. Define f(z) = ez − 3z7 and g(z) = 3z7, and let γ : [0, 2π]→ C be given by γ(t) = eit.
Since Re(z) ∈ [−1, 1] and |z| = 1 for any z ∈ γ∗,

|f(z) + g(z)| = |ez| = eRe(z) ≤ e < 3 = 3|z|7 = |3z7| = |g(z)| ≤ |g(z)|+ |f(z)|,

and so |f + g| < |f |+ |g| on γ∗. Observing that f and g are analytic on C, and neither f nor g
is identically zero on C, by Rouché’s Theorem∑

z∈Z(f)

ord(f, z) wn(γ, z) =
∑
z∈Z(g)

ord(g, z) wn(γ, z) = ord(g, 0) wn(γ, 0) = (7)(1) = 7,

which implies that f has exactly seven zeros in B, and therefore ez − 3z7 = 0 has exactly seven
roots in B.

Now suppose that |a| > e, n ∈ N, f(z) = ez − azn, and g(z) = azn. Define the path γ as
before. For any z ∈ γ∗ = ∂B,

|f(z) + g(z)| = |ez| = eRe(z) ≤ e < |a| = |a||z|n = |azn| = |g(z)| ≤ |g(z)|+ |f(z)|,

and so |f + g| < |f |+ |g| on γ∗. by Rouché’s Theorem∑
z∈Z(f)

ord(f, z) wn(γ, z) =
∑
z∈Z(g)

ord(g, z) wn(γ, z) = ord(g, 0) wn(γ, 0) = (n)(1) = n,

which implies that f has exactly n zeros in B, and therefore ez − azn = 0 has exactly n roots in
B. �

Exercise 7.48 (AN4.2.22). Show that f(z) = z7 − 5z4 + z2 − 2 has exactly 4 zeros in B.

Solution. Let g(z) = −z7 + 5z4, and let γ : [0, 2π] → C be given by γ(t) = eit. For any
z ∈ γ∗ = ∂B we have |z| = 1, so

|f(z) + g(z)| = |z2 − 2| ≤ |z|2 + 2 = 3 < 4 =
∣∣|z|3 − 5

∣∣
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≤ |z3 − 5| = |z|4|z3 − 5| = |z7 − 5z4| = |g(z)|,

and hence |f + g| < |f |+ |g| on γ∗. Since f and g are analytic on C, by Rouché’s Theorem∑
z∈Z(f)

ord(f, z) wn(γ, z) =
∑
z∈Z(g)

ord(g, z) wn(γ, z) = ord(g, 0) wn(γ, 0) = (4)(1) = 4.

(Since g(z) = z4(5− z3), any zero z0 of g besides 0 will be such that |z0| = 3
√

5 > 1, and hence
wn(γ, z0) = 0.) Therefore f has exactly 4 zeros in B, counting multiplicities. �

Exercise 7.49 (AN4.2.25). Let Ω be an open connected set, and let (fn : Ω → C)n∈N be a
sequence of analytic functions that converges uniformly to f : Ω→ C on compact subsets of Ω.
Assume that f is not identically zero, and let z0 ∈ Ω. Prove that f(z0) = 0 if and only if there
exists a sequence (zn)n∈N and subsequence (fnk)k∈N such that zn → z0 and fnk(zk) = 0 for all k.

Solution. Suppose that f(z0) = 0. Let r > 0 be such that Br(z0) ⊆ Ω. Since Z(f) has no limit
points in Ω by the Identity Theorem, there exists some 0 < ε < r/2 such that B′2ε(z0)∩Z(f) = ∅.
For each k ∈ N let γk : [0, 2π]→ Ω be given by γk(t) = εk−1eit, so that

γ∗k = Cε/k(z0) ⊆ B′2ε(z0) ⊆ Br(z0) ⊆ Ω

and wn(γk, z0) = 1. Since f(z) 6= 0 for all z ∈ γ∗k and f is continuous on the compact set γ∗k,

mk = min
z∈γ∗k
|f(z)| > 0.

Now, fn−→u f on γ∗k, and so there exists some nk ∈ N such that |fn(z) − f(z)| < mk for all
n ≥ nk and z ∈ γ∗k. In particular∣∣f(z) + [−fnk(z)]

∣∣ = |f(z)− fnk(z)| < mk ≤ |f(z)| ≤ |f(z)|+ | − fnk(z)|

for all z ∈ γ∗k. Since fn → f pointwise on Ω and f is not identically zero, we can assume nk is
sufficiently large that fnk is also not identically zero. Therefore by Rouché’s Theorem,∑
z∈Z(−fnk )

ord(fnk , z) wn(γk, z) =
∑
z∈Z(f)

ord(f, z) wn(γk, z) ≥ ord(f, z0) wn(γk, z0) = ord(f, z0) ≥ 1,

which implies that −fnk , and hence fnk , has at least one zero zk ∈ Bε/k(z0). In this way we
construct a sequence (zn)n∈N and subsequence (fnk)k∈N such that zn → z0 and fnk(zk) = 0 for
all k ∈ N.

Conversely, suppose there’s a sequence (zn)n∈N and subsequence (fnk)k∈N such that zn → z0

and fnk(zk) = 0 for all k. Let ε > 0. The function f is continuous at z0 by Theorem 2.54, so
there exists some δ > 0 such that |z − z0| ≤ δ implies |f(z) − f(z0)| < ε/2. Let S = Bδ(z0),
which is a compact subset of Ω. Since fnk −→u f on S, there exists some k0 ∈ N such that

|fnk(z)− f(z)| < ε/2

for all k ≥ k0 and z ∈ S. Since zk → z0, there exists some k1 ∈ N such that k ≥ k1 implies
|zk − z0| < δ. Suppose that k ≥ max{k0, k1}. Then |zk − z0| < δ, so that zk ∈ S, and we obtain

|f(zk)− f(z0)| < ε/2 and |fnk(zk)− f(zk)| < ε/2,
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and thus by the Triangle Inequality,

|fnk(zk)− f(z0)| < ε.

However, fnk(zk) = 0, which implies that |f(z0)| < ε. Since ε > 0 is arbitrary, we conclude that
f(z0) = 0. �
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7.5 – Improper Integrals

In this section we employ residue theory to compute various kinds of proper and improper
Riemann integrals of both real- and complex-valued functions. If ϕ : [a,∞)→ C, we defineˆ ∞

a

ϕ =

ˆ ∞
a

Reϕ+ i

ˆ ∞
a

Imϕ, (7.23)

provided the integrals at right exist (i.e. converge) in R. Similarly, if ϕ : (−∞, b]→ C, we defineˆ b

−∞
ϕ =

ˆ b

−∞
Reϕ+ i

ˆ b

−∞
Imϕ, (7.24)

provided the integrals at right exist in R. Finally, if ϕ : R→ C, we defineˆ ∞
−∞

ϕ =

ˆ ∞
−∞

Reϕ+ i

ˆ ∞
−∞

Imϕ. (7.25)

The improper Riemann integrals on the right-hand sides of equations (7.23), (7.24), and (7.25)
are taken to be either of the “first kind” or “mixed,” as defined in §8.7 of the Calculus Notes.
Similar definitions are made for integrals of complex-valued functions that are improper integrals
of the “second kind.”

As the next two propositions show, many of the properties of real-valued improper integrals
known from calculus and elementary analysis carry over to complex-valued improper integrals.

Proposition 7.50. Let s, t ∈ R.

1. Suppose ϕ : [a,∞)→ C. Then

lim
r→∞

ˆ r

a

ϕ = s+ it iff

ˆ ∞
a

Reϕ = s and

ˆ ∞
a

Imϕ = t.

2. Suppose ϕ : (−∞, b]→ C. Then

lim
r→−∞

ˆ b

r

ϕ = s+ it iff

ˆ b

−∞
Reϕ = s and

ˆ b

−∞
Imϕ = t.

Proof. We prove only the first part, for the proof of the second part is similar. Suppose
limr→∞

´ r
a
ϕ = s+ it, so

lim
r→∞

(ˆ r

a

Reϕ+ i

ˆ r

a

Imϕ

)
= s+ it

by the definition of
´ r
a
ϕ. Then

lim
r→∞

ˆ r

a

Reϕ = s and lim
r→∞

ˆ r

a

Imϕ = t (7.26)

by Proposition 2.16, and so
´∞
a

Reϕ = s and
´∞
a

Imϕ = t by definition.

Now suppose
´∞
a

Reϕ = s and
´∞
a

Imϕ = t. By definition this means (7.26) holds, and so

lim
r→∞

ˆ r

a

ϕ = lim
r→∞

(ˆ r

a

Reϕ+ i

ˆ r

a

Imϕ

)
=

ˆ ∞
a

Reϕ+ i

ˆ ∞
a

Imϕ = s+ it

by Theorem 2.15. �
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From (7.23) and Proposition 7.50 we see that

lim
r→∞

ˆ r

a

ϕ =

ˆ ∞
a

ϕ

whenever either side of the equation is known to exist in C, and similarly

lim
r→−∞

ˆ b

r

ϕ =

ˆ b

−∞
ϕ.

Proposition 7.51. Suppose ϕ : R→ C is such that
´∞
−∞ ϕ converges.

1. If c ∈ R, then ˆ ∞
−∞

ϕ =

ˆ c

−∞
ϕ+

ˆ ∞
c

ϕ.

2. Then ˆ ∞
−∞

ϕ = lim
r→∞

ˆ r

−r
ϕ.

Proof.
Proof of Part (1). Fix c ∈ R. The convergence of

´∞
−∞ ϕ implies the convergence of

´∞
−∞Reϕ

and
´∞
−∞ Imϕ, withˆ ∞

−∞
ϕ =

ˆ c

−∞
Reϕ+ i

ˆ c

−∞
Reϕ and

ˆ ∞
−∞

ϕ =

ˆ c

−∞
Imϕ+ i

ˆ c

−∞
Imϕ

from elementary analysis. Now,ˆ ∞
−∞

ϕ =

ˆ ∞
−∞

Reϕ+ i

ˆ ∞
−∞

Imϕ

=

(ˆ c

−∞
Reϕ+

ˆ ∞
c

Reϕ

)
+ i

(ˆ c

−∞
Imϕ+

ˆ ∞
c

Imϕ

)
=

(ˆ c

−∞
Reϕ+ i

ˆ c

−∞
Imϕ

)
+

(ˆ ∞
c

Reϕ+ i

ˆ ∞
c

Imϕ

)
=

ˆ c

−∞
ϕ+

ˆ ∞
c

ϕ

by equation (7.25).

Proof of Part (2). The convergence of
´∞
−∞Reϕ and

´∞
−∞ Imϕ implies thatˆ ∞

−∞
Reϕ = lim

r→∞

ˆ r

−r
Reϕ ∈ R and

ˆ ∞
−∞

Imϕ = lim
r→∞

ˆ r

−r
Imϕ ∈ R

from elementary analysis. Now,ˆ ∞
−∞

ϕ =

ˆ ∞
−∞

Reϕ+ i

ˆ ∞
−∞

Imϕ = lim
r→∞

ˆ r

−r
Reϕ+ i lim

r→∞

ˆ r

−r
Reϕ

= lim
r→∞

(ˆ r

−r
Reϕ+ i

ˆ r

−r
Reϕ

)
= lim

r→∞

ˆ r

−r
ϕ,

as desired. �
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Example 7.52. Suppose a, b ∈ R with a > 0. Show thatˆ ∞
0

e−(a+ib)tdt =
1

a+ ib
.

Solution. By Example 3.25 we haveˆ r

0

e−(a+ib)tdt =
1− e−(a+ib)r

a+ ib
.

Now, since a > 0,
|e−(a+ib)r| = |e−are−ibr| = e−ar → 0

as r →∞, and soˆ ∞
0

e−(a+ib)tdt = lim
r→∞

ˆ r

0

e−(a+ib)tdt = lim
r→∞

1− e−(a+ib)r

a+ ib
=

1

a+ ib

by Proposition 7.50 and limit laws. �

Theorem 7.53. If ϕ : R→ C is such that
´∞
−∞ |ϕ| converges, then

´∞
−∞ ϕ also converges.

Proof. Suppose ϕ : R→ C is such that
´∞
−∞ |ϕ| converges. Since |Reϕ| ≤ |ϕ| and | Imϕ| ≤ |ϕ|,

the Comparison Test for Integrals known from calculus implies that
´∞
−∞ |Reϕ| and

´∞
−∞ | Imϕ|

converge, and hence
´∞
−∞Reϕ and

´∞
−∞ Imϕ converge by a result analogous to Theorem 7.53

established in calculus for integrals of real-valued functions. Now it is clear from (7.25) that´∞
−∞ ϕ converges in C. �

Similar theorems could be stated for integrals of the form
´∞
a
ϕ and

´ b
−∞ ϕ, and they would be

proven just as easily using analogous theorems established in elementary analysis for real-valued
functions. Alternatively one could employ Theorem 7.53 in every instance by noting thatˆ ∞

a

ϕ =

ˆ ∞
−∞

ϕχ(a,∞) and

ˆ b

−∞
ϕ =

ˆ ∞
−∞

ϕχ(−∞,b),

recalling the indicator function

χA(x) =

{
1, x ∈ A
0, x /∈ A

from measure theory.
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7.6 – The Calculus of Residues

The calculus of residues consists in large part of the evaluation of Riemann integrals of
real- or complex-valued functions using the Residue Theorem and related tools.

Exercise 7.54 (AN4.2.4a). Evaluateˆ ∞
−∞

x sin ax

x4 + 4
dx.

Solution. Let f be given by

f(z) =
zeiaz

z4 + 4

for all z ∈ C such that z4 6= −4, and let

S = {π/4, 3π/4, 5π/4, 7π/4}.

Since

f(z) =
zeiaz(

z −
√

2eiπ/4
)(
z −
√

2ei3π/4
)(
z −
√

2ei5π/4
)(
z −
√

2ei7π/4
) ,

it is seen that f is meromorphic on C, with simple poles at
√

2eiθ for each θ ∈ S. For convenience
define

zk =
√

2ei(2k−1)π/4

for k = 1, 2, 3, 4.
For r >

√
2, define γ1 : [−r, r]→ C by γ1(t) = t, and define γ2 : [0, π]→ C by γ2(t) = reit,

and let γ : [0, 1]→ C be the concatenation γ = γ1 ∗ γ2. As shown in Figure 18, the path γ is
closed, and by Proposition 3.28 we have˛

γ

f =

ˆ
γ1

f +

ˆ
γ2

f.

By Proposition 7.33 and L’Hôpital’s Rule,

res(f, zk) = lim
z→zk

(z − zk)f(z) = lim
z→zk

(z − zk)zeiaz

z4 + 4

= lim
z→zk

(2z − zk)eiaz + ia(z − zk)zeiaz

4z3
=
eiazk

4z2
k

.

Since wn(γ, zk) = 1 for k ∈ {1, 2}, and wn(γ, zk) = 0 for k ∈ {3, 4}, we apply the Residue
Theorem with Ω = C and S(f) = {z1, z2, z3, z4} to obtain

˛
γ

f = 2πi
4∑

k=1

res(f, zk) wn(γ, zk) = 2πi
[

res(f, z1) + res(f, z2)
]

=
πi

4

[
exp

(
ia
√

2eiπ/4
)

eiπ/2
+

exp
(
ia
√

2ei3π/4
)

ei3π/2

]
=
π

2
ie−a sin a.
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γ1

γ2

z1z2

z3 z4

r−r

Figure 18.

By Theorem 3.23, noting that r4 > 4 and iareit = −ar sin t+ iar cos t,∣∣∣∣ˆ
γ2

f

∣∣∣∣ ≤ L(γ2) sup
z∈γ∗2
|f(z)| = πr sup

t∈[0,π]

|f(reit)| = πr sup
t∈[0,π]

|reit||eiareit|
|r4ei4t + 4|

= πr sup
t∈[0,π]

reRe(iareit)

|r4ei4t + 4|
= sup

t∈[0,π]

πr2e−ar sin t

|r4ei4t + 4|
≤ sup

t∈[0,π]

πr2

|r4ei4t + 4|

≤ sup
t∈[0,π]

πr2∣∣|r4ei4t| − 4
∣∣ = sup

t∈[0,π]

πr2

r4 − 4
=

πr2

r4 − 4
,

and hence

lim
r→∞

ˆ
γ2

f = 0.

Next, ˆ
γ1

f =

ˆ r

−r
f(t)dt =

ˆ r

−r

teiat

t4 + 4
dt =

ˆ r

−r

t cos at

t4 + 4
dt+ i

ˆ r

−r

t sin at

t4 + 4
dt.

Performing the substitution u = t2, we haveˆ r

0

t

t4 + 4
dt =

1

2

ˆ r2

0

1

u2 + 4
du =

[
1

4
tan−1

(u
2

)]r2
0

=
1

4
tan−1

(
r2

2

)
for all r > 0, and so ˆ ∞

0

t

t4 + 4
dt = lim

r→∞

1

4
tan−1

(
r2

2

)
=
π

8
.

Since

0 ≤
∣∣∣∣t cos at

t4 + 4

∣∣∣∣ ≤ t

t4 + 4

for all t ∈ [0,∞), it follows by the Comparison Test for Integrals in §8.8 of the Calculus Notes
that ˆ ∞

0

∣∣∣∣t cos at

t4 + 4

∣∣∣∣ dt
converges, and hence ˆ ∞

0

t cos at

t4 + 4
dt
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converges by Proposition 8.36 in the Calculus Notes. Similar arguments will show thatˆ 0

−∞

t cos at

t4 + 4
dt,

ˆ ∞
0

t sin at

t4 + 4
dt, and

ˆ 0

−∞

t sin at

t4 + 4
dt

also converge, so that ˆ ∞
−∞

t cos at

t4 + 4
dt =

ˆ 0

−∞

t cos at

t4 + 4
dt+

ˆ ∞
0

t cos at

t4 + 4
dt

and ˆ ∞
−∞

t sin at

t4 + 4
dt =

ˆ 0

−∞

t sin at

t4 + 4
dt+

ˆ ∞
0

t sin at

t4 + 4
dt

converge, and therefore ˆ ∞
−∞

f(t)dt =

ˆ ∞
−∞

Re f(t)dt+ i

ˆ ∞
−∞

Im f(t)dt

converges since

Re f(t) =
t cos at

t4 + 4
and Im f(t) =

t sin at

t4 + 4
.

By Proposition 7.51,

lim
r→∞

ˆ
γ1

f = lim
r→∞

ˆ r

−r
f(t)dt =

ˆ ∞
−∞

f(t)dt ∈ C.

Now,

π

2
ie−a sin a = lim

r→∞

π

2
ie−a sin a = lim

r→∞

˛
γ

f = lim
r→∞

(ˆ
γ1

f +

ˆ
γ2

f

)
= lim

r→∞

ˆ
γ1

f + lim
r→∞

ˆ
γ2

f =

ˆ ∞
−∞

f(t)dt,

and thus ˆ ∞
−∞

Re f(t)dt+ i

ˆ ∞
−∞

Im f(t)dt =
π

2
ie−a sin a.

Equating imaginary parts finally yieldsˆ ∞
−∞

t sin at

t4 + 4
dt =

ˆ ∞
−∞

Im f(t)dt =
π

2
e−a sin a

at last. �

Exercise 7.55 (AN4.2.4b). Evaluateˆ ∞
−∞

x

(x2 + 1)(x2 + 2x+ 2)
dx.

Solution. Let f be given by

f(z) =
z

(z2 + 1)(z2 + 2z + 2)
,

a function that is meromorphic on C with simple poles in the set S = {±i,−1 ± i}. For
r >
√

2, define γ1 : [−r, r]→ C by γ1(t) = t, and define γ2 : [0, π]→ C by γ2(t) = reit, and let
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γ1

γ2

−1 + i i

−1− i −i
r−r

Figure 19.

γ : [0, 1] → C be the concatenation γ = γ1 ∗ γ2. As shown in Figure 19, the path γ is closed,
with wn(γ,−1 + i) = 1, wn(γ,−1 − i) = 0, wn(γ, i) = 1, and wn(γ,−i) = 0. By Proposition
7.33 and L’Hôpital’s Rule,

res(f, i) = lim
z→i

(z − i)f(z) = lim
z→i

(
z2 − iz

z4 + 2z3 + 3z2 + 2z + 2

)
= lim

z→i

(
2z − i

4z3 + 6z2 + 6z + 2

)
=

i

4i3 + 6i2 + 6i+ 2
=

1

10
− 1

5
i,

and

res(f,−1 + i) = lim
z→−1+i

(
z2 + z − iz

z4 + 2z3 + 3z2 + 2z + 2

)
= lim

z→−1+i

(
2z + 1− i

4z3 + 6z2 + 6z + 2

)
= − 1

10
+

3

10
i.

Now, by the Residue Theorem,˛
γ

f = 2πi
[

res(f, i) + res(f,−1 + i)
]

= 2πi · 1

10
i = −π

5

for all r >
√

2. On the other hand, ˛
γ

f =

ˆ
γ1

f +

ˆ
γ2

f

for all r >
√

2, where by Theorem 3.23∣∣∣∣ˆ
γ2

f

∣∣∣∣ ≤ L(γ2) sup
z∈γ∗2
|f(z)| = πr sup

t∈[0,π]

|reit|
|r4e4it + 2r3e3it + 3r2e2it + 2reit + 2|

= sup
t∈[0,π]

πr2

|r4e4it + 2r3e3it + 3r2e2it + 2reit + 2|
,

and hence

lim
r→∞

ˆ
γ2

f = 0.
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We also have

lim
r→∞

ˆ
γ1

f = lim
r→∞

ˆ r

−r

t

t4 + 2t3 + 3t2 + 2t+ 2
dt =

ˆ ∞
−∞

t

t4 + 2t3 + 3t2 + 2t+ 2
dt,

where the last equality is justified since bothˆ 0

−∞

t

t4 + 2t3 + 3t2 + 2t+ 2
dt and

ˆ ∞
0

t

t4 + 2t3 + 3t2 + 2t+ 2
dt

can be shown to converge by the Comparison Test for Integrals. (For instance,

t

t4 + 2t3 + 3t2 + 2t+ 2
≤ t

t4 + 2

on [0,∞), and ˆ ∞
0

t

t4 + 2
dt

can be shown to converge by direct evaluation—see the previous exercise.) Finally,

−π
5

= lim
r→∞
−π

5
= lim

r→∞

˛
γ

f = lim
r→∞

ˆ
γ1

f + lim
r→∞

ˆ
γ2

f =

ˆ ∞
−∞

t

t4 + 2t3 + 3t2 + 2t+ 2
dt,

which shows that ˆ ∞
−∞

x

(x2 + 1)(x2 + 2x+ 2)
dx = −π

5

and we’re done. �

Exercise 7.56 (AN4.2.4e). Evaluate ˆ ∞
0

1

x4 + a4
dx,

where a > 0.

Solution. Define f by

f(z) =
1

z4 + a4
,

which is meromorphic on C with simple poles at

zk = aei(2k−1)π/4, k = 1, 2, 3, 4.

Thus, if we let S = {z1, z2, z3, z4}, then f is analytic on C \ S. Note f(−x) = f(x) for any

x ∈ R, so that
´∞

0
f =
´ 0

−∞ f , and therefore
ˆ ∞
−∞

f =

ˆ 0

−∞
f +

ˆ ∞
0

f = 2

ˆ ∞
0

f.

For this reason we may achieve our objective by evaluating
´∞
−∞ f .

For r > a define γ1 : [−r, r] → C by γ1(t) = t, and define γ2 : [0, π] → C by γ2(t) = reit,
and let γ = γ1 ∗ γ2. The path γ is closed (see Figure 18), with wn(γ, zk) = 1 for k = 1, 2, and
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wn(γ, zk) = 0 for k = 3, 4. We apply Proposition 7.33 and L’Hôpital’s Rule to obtain necessary
residues:

res(f, zk) = lim
z→zk

(z − zk)f(z) = lim
z→zk

z − zk
z4 + a4

= lim
z→zk

1

4z3
=

1

4z3
k

,

and so by the Residue Theorem˛
γ

f = 2πi
[

res(f, z1) + res(f, z2)
]

=
2πi

4a3

(
e−i3π/4 + e−i9π/4

)
=

πi

2a3

[(
− 1√

2
− i 1√

2

)
+

(
1√
2
− i 1√

2

)]
=

π

a3
√

2
.

On the other hand, ∣∣∣∣ˆ
γ2

f

∣∣∣∣ ≤ L(γ2) sup
t∈[0,π]

|f(γ2(t))| = πr sup
t∈[0,π]

1

|r4ei4t + a4|

for all large r, implying that
´
γ2
f → 0 as r →∞, and so

π

a3
√

2
= lim

r→∞

˛
γ

f = lim
r→∞

ˆ
γ1

f + lim
r→∞

ˆ
γ2

f = lim
r→∞

ˆ r

−r

1

t4 + a4
dt =

ˆ ∞
−∞

1

t4 + a4
dt,

where the last equality holds since the improper integral is known to converge by the Comparison
Test for Integrals. Thereforeˆ ∞

0

1

x4 + a4
dx =

1

2

ˆ ∞
−∞

1

x4 + a4
dx =

π
√

2

4a3

for all a > 0. �

Exercise 7.57 (AN4.2.4f). Evaluate ˆ ∞
0

cosx

x2 + 1
dx.

Solution. Define f by

f(z) =
eiz

z2 + 1
,

which is meromorphic on C with simple poles at ±i. Note f(−x) = f(x) for any x ∈ R, so that´∞
0
f =
´ 0

−∞ f , and therefore
ˆ ∞
−∞

f =

ˆ 0

−∞
f +

ˆ ∞
0

f = 2

ˆ ∞
0

f.

The exercise can be done by evaluating
´∞
−∞ f .

For r > 1 define γ1 : [−r, r]→ C by γ1(t) = t, and define γ2 : [0, π]→ C by γ2(t) = reit, and
let γ = γ1 ∗ γ2. The path γ is closed, with wn(γ, i) = 1 and wn(γ,−i) = 0. By Proposition 7.33
and L’Hôpital’s Rule,

res(f, i) = lim
z→i

(z − i)f(z) = lim
z→i

(z − i)eiz

z2 + 1
= lim

z→i

(z − i)ieiz + eiz

2z
=
ei

2

2i
= − 1

2e
i,
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and so by the Residue Theorem ˛
γ

f = 2πi res(f, i) =
π

e
.

On the other hand, since∣∣∣∣ˆ
γ2

f

∣∣∣∣ ≤ πr sup
t∈[0,π]

∣∣∣∣∣ eire
it

r2ei2t + 1

∣∣∣∣∣ ≤ sup
t∈[0,π]

πr

|r2ei2t + 1|
≤ sup

t∈[0,π]

πr

r2 − 1
,

it is clear that
´
γ2
f → 0 as r →∞, and so

π

e
= lim

r→∞

˛
γ

f = lim
r→∞

ˆ
γ1

f + lim
r→∞

ˆ
γ2

f = lim
r→∞

ˆ r

−r

eit

t2 + 1
dt =

ˆ ∞
−∞

eit

t2 + 1
dt

=

ˆ ∞
−∞

cos t

t2 + 1
dt+ i

ˆ ∞
−∞

sin t

t2 + 1
dt.

Comparing real parts yields ˆ ∞
−∞

cos t

t2 + 1
dt =

π

e
,

and therefore ˆ ∞
0

cosx

x2 + 1
dx =

1

2

ˆ ∞
−∞

cosx

x2 + 1
dx =

π

2e
.

�

Exercise 7.58 (AN4.2.8a). Show that for any r > 0,ˆ π/2

0

e−r sin θdθ ≤ π

2r
(1− e−r) and

ˆ π

π/2

e−r sin θdθ ≤ π

2r
(1− e−r).

Solution. Let r > 0. For all θ ∈ [0, π/2] we have sin θ ≥ 2θ/π, where

sin θ ≥ 2θ

π
⇒ −r sin θ ≤ −2θ

π
r ⇒ e−r sin θ ≤ e−

2θ
π
r.

Thus ˆ π/2

0

e−r sin θdθ ≤
ˆ π/2

0

e−2rθ/πdθ =
[
− π

2r
e−2rθ/π

]π/2
0

=
π

2r
(1− e−r).

Next, make the substitution u = π − θ and use the fact that sin(π − u) = sinu to obtainˆ π

π/2

e−r sin θdθ = −
ˆ 0

π/2

e−r sin(π−u)du =

ˆ π/2

0

e−r sinudu ≤ π

2r
(1− e−r),

as desired. �

The two results of Exercise 7.58 taken together yieldˆ π

0

e−r sin θdθ =

ˆ π/2

0

e−r sin θdθ +

ˆ π

π/2

e−r sin θdθ ≤ π

r
(1− e−r), (7.27)

itself a potentially useful result.
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Exercise 7.59 (AN4.2.8b). Suppose f has a simple pole at z0, and for ε > 0 and α ∈ (0, 2π]
let γε : [α0, α0 + α]→ C be given by γε(t) = z0 + εeit. Prove that

lim
ε→0+

ˆ
γε

f = αi res(f, z0).

Solution. The function f is analytic on B′r(z0) for some r > 0. Let k = res(f, z0). By
Proposition 7.33,

lim
z→z0

(z − z0)f(z) = k.

Let µ > 0 be arbitrary. There exists some δ > 0 sufficiently small that 0 < |z − z0| < δ implies∣∣(z − z0)f(z)− k
∣∣ < µ

α
.

Thus, if 0 < ε < δ, then ∣∣εeitf(z0 + εeit)− k
∣∣ < µ

α
holds for all t ∈ [α0, α0 + α]. Now,∣∣∣∣ˆ

γε

f − αik
∣∣∣∣ =

∣∣∣∣ˆ α0+α

α0

iεeitf(z0 + εeit)dt−
ˆ α0+α

α0

ik dt

∣∣∣∣
=

∣∣∣∣ˆ α0+α

α0

(
εeitf(z0 + εeit)− k

)
dt

∣∣∣∣
≤
ˆ α0+α

α0

∣∣εeitf(z0 + εeit)− k
∣∣dt ≤ ˆ α0+α

α0

µ

α
dt = µ,

which shows that

lim
ε→0+

ˆ
γε

f = αik = αi res(f, z0),

as desired.
If we let α = π (so that γε is a semicircular arc of radius ε), then

lim
ε→0+

ˆ
γε

f = αik = πi res(f, z0)

in particular. �

Exercise 7.60 (AN4.2.9a). Show thatˆ ∞
−∞

sinx

x
dx = π.

Solution. In Example 8.39 of the Calculus Notes it was shown that the mixed improper integralˆ ∞
0

sinx

x
dx

is convergent, which implies that the limitsˆ 1

0

sinx

x
dx = lim

r→∞

ˆ 1

1/r

sinx

x
dx and

ˆ ∞
1

sinx

x
dx = lim

r→∞

ˆ r

1

sinx

x
dx
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γ1

γ2

γ3

γ4

0

r−r r−1−r−1

Figure 20.

exist in R, and ˆ ∞
0

sinx

x
dx =

ˆ 1

0

sinx

x
dx+

ˆ ∞
1

sinx

x
dx

Hence

lim
r→∞

ˆ r

1/r

sinx

x
dx = lim

r→∞

(ˆ 1

1/r

sinx

x
dx+

ˆ r

1

sinx

x
dx

)
=

ˆ 1

0

sinx

x
dx+

ˆ ∞
1

sinx

x
dx =

ˆ ∞
0

sinx

x
dx,

a fact we will need before the end.
Let f(z) = eiz/z, which has a simple pole at 0 and is analytic on C∗. For r > 1 define the

closed path γr = γ1 ∗ γ2 ∗ γ3 ∗ γ4, where

γ1(t) = t, r−1 ≤ t ≤ r

γ2(t) = reit, 0 ≤ t ≤ π

γ3(t) = t, −r ≤ t ≤ −r−1

γ4(t) = r−1ei(π−t), 0 ≤ t ≤ π.

This is an indented semicircle, as shown in Figure 20. By the Residue Theorem, since wn(γr, 0) =
0, ˛

γr

f = 2πi res(f, 0) wn(γr, 0) = 0. (7.28)

On the other hand, for any r > 1,˛
γr

f =

ˆ r

1/r

eit

t
dt+

ˆ π

0

ieire
it

dt+

ˆ −1/r

−r

eit

t
dt−

ˆ π

0

ie−ir
−1e−itdt. (7.29)

Now,∣∣∣∣ˆ
γ2

f

∣∣∣∣ =

∣∣∣∣ˆ π

0

ieire
it

dt

∣∣∣∣ ≤ ˆ π

0

∣∣eireit∣∣dt =

ˆ π

0

eRe(ireit)dt =

ˆ π

0

e−r sin tdt ≤ π

r
(1− e−r)

by (7.27), which shows that

lim
r→∞

ˆ
γ2

f = 0.
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Also, for γ4(t) = γ4(π − t) for t ∈ [0, π], we have

lim
r→∞

ˆ
γ4

f = πi res(f, 0) = πi lim
z→0

zf(z) = πi lim
z→0

eiz = πi,

by Exercise 7.59, and thus by Proposition 3.27 (since r →∞ iff r−1 → 0+),

lim
r→∞

ˆ
γ4

f = −πi.

Finally,ˆ
γ1

f +

ˆ
γ3

f =

ˆ r

1/r

eit

t
dt+

ˆ −1/r

−r

eit

t
dt =

ˆ r

1/r

eit

t
dt+

ˆ r

1/r

e−it

t
dt = 2i

ˆ r

1/r

sin t

t
dt,

so that

lim
r→∞

(ˆ
γ1

f +

ˆ
γ3

f

)
= 2i

ˆ ∞
0

sin t

t
dt.

Recalling (7.28) and (7.29), we have

0 = lim
r→∞

ˆ
γr

f = lim
r→0

ˆ
γ2

f + lim
r→0

ˆ
γ4

f + lim
r→∞

(ˆ
γ1

f +

ˆ
γ3

f

)
= −πi+ 2i

ˆ ∞
0

sin t

t
dt,

giving ˆ ∞
0

sin t

t
dt =

π

2
.

By Example 8.40 of the Calculus Notes, then,ˆ ∞
−∞

sinx

x
dx = 2

ˆ ∞
0

sinx

x
dx = π.

�

Exercise 7.61 (AN4.2.9b). Show thatˆ ∞
0

cos(x2)dx =

ˆ ∞
0

sin(x2)dx =
1

2

√
π

2

Solution. Let f(z) = eiz
2
, and take ˆ ∞

0

e−x
2

dx =

√
π

2

as given. Define the closed path γ = γ1 ∗ γ2 ∗ γ3, where

γ1(t) = t, 0 ≤ t ≤ r

γ2(t) = reit, 0 ≤ t ≤ π/4

γ3(t) = (r − t)eiπ/4, 0 ≤ t ≤ r

Since f is analytic on C, by Cauchy’s Theorem (Theorem 6.29)˛
γ

f =

ˆ
γ1

f +

ˆ
γ2

f +

ˆ
γ3

f = 0

http://faculty.bucks.edu/erickson/math242/Calculus.pdf
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for all r > 0.
Now, making the substitution θ = 2t and applying∣∣∣∣ˆ

γ2

f

∣∣∣∣ ≤ ˆ π/4

0

∣∣eir2ei2t · ireit∣∣dt =

ˆ π/4

0

reRe(ir2ei2t)dt = r

ˆ π/4

0

e−r
2 sin 2tdt

=
r

2

ˆ π/2

0

e−r
2 sin θdθ ≤ r

2
· π

2r2
(1− e−r2) =

π

4r
(1− e−r2),

it is clear that

lim
r→∞

ˆ
γ2

f = 0.

Next, making the substitution τ = r − t,ˆ
γ3

f = −
ˆ r

0

ei(r−t)
2eiπ/2eiπ/4dt = −eiπ/4

ˆ r

0

e−(r−t)2dt = −eiπ/4
ˆ r

0

e−τ
2

dτ

and so

lim
r→∞

ˆ
γ3

f = −eiπ/4
ˆ ∞

0

e−τ
2

dτ = −
√
π

2
eiπ/4.

Thus,

lim
r→∞

ˆ
γ1

f = lim
r→∞

ˆ
γ

f − lim
r→∞

ˆ
γ2

f − lim
r→∞

ˆ
γ3

f =

√
π

2
eiπ/4 =

√
π

2

(
1√
2

+ i
1√
2

)
,

whence

lim
r→∞

(ˆ r

0

cos(t2)dt+

ˆ r

0

sin(t2)dt

)
=

√
2π

4
+ i

√
2π

4
.

It follows by (a minor variant of) Proposition 2.16 that

lim
r→∞

ˆ r

0

cos(t2)dt =

√
2π

4
and lim

r→∞

ˆ r

0

sin(t2)dt =

√
2π

4
.

Therefore ˆ ∞
0

cos(t2)dt =

ˆ ∞
0

sin(t2)dt =
1

2

√
π

2

and the fun is done. �

For the next exercise, recall from §6.1 that Log = log−π : C∗ → H−π is analytic on C\(−∞, 0],
and for all z ∈ C \ (−∞, 0],

Log′(z) = log′−π(z) =
1

z
.

Letting ϕ(z) = z+ i, then Log ◦ϕ : C\{−i} → H−π is given by (Log ◦ϕ)(z) = Log(z+ i), which
is analytic on Ω = C\ (−∞, 0]− i shown in Figure 21. By the Chain Rule, Log′(z+ i) = (z+ i)−1

for all z ∈ Ω.

Exercise 7.62 (AN4.2.9c). Evaluateˆ ∞
0

ln(x2 + 1)

x2 + 1
dx.
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Solution. Let

f(z) =
Log(z + i)

z2 + 1
,

which has simple poles at i and −i. For r > 2, define γ1 : [−r, r]→ C by γ1(t) = t, and define
γ2 : [0, π] → C by γ2(t) = reit, and let γ : [0, 1] → C be the concatenation γ = γ1 ∗ γ2. As
shown in Figure 22, the path γ is closed, with wn(γ, i) = 1 and wn(γ,−i) = 0. By Proposition
7.33 and L’Hôpital’s Rule, making use of the fact that Log(z + i) is continuous on the region Ω
shown in Figure 21, we have

res(f, i) = lim
z→i

(z − i)f(z) = lim
z→i

(z − i) Log(z + i)

z2 + 1
= lim

z→i

z − i
z + i

+ Log(z + i)

2z

=
Log(2i)

2i
=

exp−1
−π(2i)

2i
=

ln 2 + πi/2

2i
=
π

4
− ln 2

2
i,

and thus by the Residue Theorem˛
γ

f = 2πi res(f, i) wn(γ, i) = 2πi

(
π

4
− ln 2

2
i

)
= π ln 2 +

π2

2
i. (7.30)

On the other hand,˛
γ

f =

ˆ
γ1

f +

ˆ
γ2

f =

ˆ r

−r

Log(t+ i)

t2 + 1
dt+

ˆ π

0

Log(i+ reit)

r2ei2t + 1
ireitdt (7.31)

for all r > 2.
By Proposition 6.2,

Log(i+ reit) = ln |i+ reit|+ iArg(i+ reit)

=
1

2
ln(r2 + 2r sin t+ 1) + iArg(i+ reit),

and thus for t ∈ [0, π], since Arg : C∗ → [−π, π),

|Log(i+ reit)| ≤ 1

2
ln(r2 + 2r sin t+ 1) + π ≤ 1

2
ln(r2 + 2r + 1) + π = ln(r + 1) + π.

From this we then obtain, for t ∈ [0, π] and r > 2,∣∣∣∣ireit Log(i+ reit)

r2ei2t + 1

∣∣∣∣ ≤ r ln(r + 1) + πr

r2 − 1
,

x

y

−i
Ω

Figure 21.
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γ1

γ2

i

−i
r−r

Figure 22.

and therefore∣∣∣∣ˆ
γ2

f

∣∣∣∣ ≤ ˆ π

0

∣∣∣∣Log(i+ reit)

r2ei2t + 1
ireit

∣∣∣∣ dt ≤ ˆ π

0

r ln(r + 1) + πr

r2 − 1
dt =

πr ln(r + 1) + π2r

r2 − 1

for all r > 2. This shows that

lim
r→∞

ˆ
γ2

f = lim
r→∞

ˆ π

0

Log(i+ reit)

r2ei2t + 1
ireitdt = 0. (7.32)

Next, by Proposition 6.2,ˆ r

−r

Log(t+ i)

t2 + 1
dt =

ˆ r

−r

ln
√
t2 + 1

t2 + 1
dt+ i

ˆ r

−r

Arg(t+ i)

t2 + 1
dt,

and since the Comparison Test for Integrals can be applied to show thatˆ ∞
0

ln
√
t2 + 1

t2 + 1
dt and

ˆ ∞
0

Arg(t+ i)

t2 + 1
dt

converge (as do the corresponding
´ 0

−∞ integrals), it follows that

lim
r→∞

ˆ r

−r

ln
√
t2 + 1

t2 + 1
dt =

ˆ ∞
−∞

ln
√
t2 + 1

t2 + 1
dt

and

lim
r→∞

ˆ ∞
0

Arg(t+ i)

t2 + 1
dt =

ˆ ∞
−∞

Arg(t+ i)

t2 + 1
dt.

With these considerations, together with (7.30), (7.31), and (7.32), we obtain

π ln 2 +
π2

2
i = lim

r→∞

˛
γ

f = lim
r→∞

ˆ r

−r

Log(t+ i)

t2 + 1
dt

=

ˆ ∞
−∞

ln
√
t2 + 1

t2 + 1
dt+ i

ˆ ∞
−∞

Arg(t+ i)

t2 + 1
dt,

which shows that ˆ ∞
−∞

ln
√
t2 + 1

t2 + 1
dt = π ln 2.
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Since the integrand is an even function,ˆ ∞
0

ln
√
t2 + 1

t2 + 1
dt =

π ln 2

2
,

and therefore ˆ ∞
0

ln(t2 + 1)

t2 + 1
dt = π ln 2. (7.33)

Note that we also obtain ˆ ∞
−∞

Arg(t+ i)

t2 + 1
dt =

π2

2

as an added bonus. �

Exercise 7.63 (AN4.2.9d). Derive formulas forˆ π/2

0

ln(cos θ)dθ and

ˆ π/2

0

ln(sin θ)dθ.

Solution. Let t = tan θ in (7.33) to obtain

π ln 2 =

ˆ ∞
0

ln(t2 + 1)

t2 + 1
dt = lim

r→∞

ˆ r

0

ln(t2 + 1)

t2 + 1
dt = lim

r→∞

ˆ tan−1 r

0

ln(sec2 θ)dθ

=

ˆ π/2

0

ln(cos−2 θ)dθ = −2

ˆ π/2

0

ln(cos θ)dθ,

and hence ˆ π/2

0

ln(cos θ)dθ = −π
2

ln 2.

Next, with the substitution u = π/2− θ, we haveˆ π/2

0

ln(sin θ)dθ =

ˆ π/2

0

ln
(

cos(π/2− θ)
)
dθ = lim

ε→0+

ˆ π/2

ε

ln
(

cos(π/2− θ)
)
dθ

= lim
ε→0+

ˆ 0

π/2−ε
− ln(cosu)du = lim

ε→0+

ˆ π/2−ε

0

ln(cosu)du

=

ˆ π/2

0

ln(cosu)du,

and therefore ˆ π/2

0

ln(sin θ)dθ = −π
2

ln 2

also. �
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8
Conformal Mappings

8.1 – Open Mappings

As in the past, we define a region to be a nonempty open connected subset of C. It is a
fact that any open set Ω ⊆ C that is not connected is a disjoint union of regions.

Lemma 8.1. Let f be a nonconstant analytic function on a region Ω. Let z0 ∈ Ω, w0 = f(z0),
and k = ord(f − w0, z0).

1. There exists ε > 0 such that B′ε(z0) ⊆ Ω, and f(z) 6= w0 and f ′(z) 6= 0 for all z ∈ B′ε(z0).
2. Let γ be a path such that γ∗ = Cε(z0) and wn(γ, z0) = 1, let W0 be the component of C\(f ◦γ)∗

containing w0, and let Ω′ = B′ε(z0) ∩ f−1(W0). Then f : Ω′ → W0 \ {w0} is a surjective
k-to-one map.

3. The map f : Ω′ ∪ {z0} → W0 is a bijection if and only if f ′(z0) 6= 0.

Proof.
Proof of Part (1). Let ε0 > 0 such that B2ε0(z0) ⊆ Ω. The analytic function f−w0 is nonconstant,
and hence not identically zero, on the region Ω; and so by the Identity Theorem Z(f − w0) has
no limit point in Ω and there exists some ε1 > 0 such that Z(f − w0) ∩B′ε1(z0) = ∅. Similarly,
f ′ is not identically zero on Ω by Theorem 3.26, and so there exists some ε2 > 0 such that
Z(f ′) ∩B′ε2(z0) = ∅. Setting ε = min{ε0, ε1, ε2}, we conclude that B′ε(z0) ⊆ Ω, and f(z) 6= w0

and f ′(z) 6= 0 for all z ∈ B′ε(z0).

Proof of Part (2). Since f − w0 is not identically zero on Ω, we have k ∈ N by Proposition 5.15.
Take ε > 0 to be as defined in Part (1). Fix w ∈ W0 \ {w0}. Since f ◦ γ is a closed curve, by
Proposition 6.21 the function z 7→ wn(f ◦ γ, z) constant on W0, and so

wn(f ◦ γ, w) = wn(f ◦ γ, w0). (8.1)

Since (f − w0)′ = f ′ 6= 0 on B′ε(z0), by Proposition 5.11 any zero for f − w0 in B′ε(z0) must be
of order 1, and by hypothesis ord(f − w0, z0) = k. Now, w0 ∈ W0 ⊆ C \ (f ◦ γ)∗ makes clear
that w0 /∈ (f ◦ γ)∗, so

wn(f ◦ γ, w0) = wn(f ◦ γ − w0, 0) = wn((f − w0) ◦ γ, 0) (8.2)
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by Proposition 6.20(2), and then by the Argument Principle, recalling that f − w0 6= 0 on the
set

B′ε(z0) = B′ε(z0) ∪ Cε(z0),

we obtain

wn((f − w0) ◦ γ, 0) =
∑

z∈Z(f−w0)

ord(f − w0, z) wn(γ, z) = ord(f − w0, z0) wn(γ, z0) = (k)(1) = k.

Hence by (8.1) and (8.2) we obtain wn(f ◦ γ, w) = k.
Since (f −w)′ = f ′ 6= 0 on B′ε(z0), by Proposition 5.11 any zero for f −w in B′ε(z0) must be

of order 1. Moreover w 6= w0 implies that f(z0) − w 6= 0, which is to say z0 is not a zero for
f − w. Thus, noting that w /∈ (f ◦ γ)∗, we have

k = wn(f ◦ γ, w) = wn(f ◦ γ − w, 0) = wn((f − w) ◦ γ, 0)

=
∑

z∈Z(f−w)

ord(f − w, z) wn(γ, z) =
∑

z∈Z(f−w)

wn(γ, z)

by the Argument Principle. Since z0 /∈ Z(f−w) and wn(γ, z) ∈ {0, 1} for all z ∈ Z(f−w), there
exist distinct points z1, . . . , zk ∈ B′ε(z0) such that (f − w)(zj) = 0, and hence f(zj) = w ∈ W0,
for 1 ≤ j ≤ k.

We conclude that, for each w ∈ W0 \ {w0}, there exist precisely k distinct elements of B′ε(z0)
which f maps to w. Therefore f : Ω′ → W0 \ {w0} is a surjective k-to-one map.

Proof of Part (3). Suppose that f : Ω′ ∪ {z0} → W0 is a bijection. By Proposition 5.15
ord(f − w0, z0) = k for some k ∈ N, but because f : Ω′ → W0 \ {w0} is a surjective one-to-one
map, by Part (2) it must be that k = 1. Hence (f − w0)′(z0) 6= 0 by Proposition 5.11, and since
(f − w0)′ = f ′, we obtain f ′(z0) 6= 0.

For the converse, suppose that f ′(z0) 6= 0. Then (f−w0)′(z0) 6= 0, so that ord(f−w0, z0) = 1
by Proposition 5.11, and we conclude that f : Ω′ → W0 \ {w0} is a bijection by Part (2). By
Part (1), f(z) 6= w0 for all z ∈ B′ε(z0), and since

Ω′ = B′ε(z0) ∩ f−1(W0) ⊆ B′ε(z0),

it is clear that f(z) 6= w0 for all z ∈ Ω′, and therefore f : Ω′ ∪ {z0} → W0 is a bijection. �

Given topological spaces X and Y , a map f : X → Y is said to be an open map if, for any
set U that is open in X, the set f(U) is open in V .

Theorem 8.2 (Open Mapping Theorem). If Ω is a region and f : Ω→ C is a nonconstant
analytic function, then f is an open map.

Proof. Suppose Ω is a region and f : Ω→ C is a nonconstant analytic function. We will first
show that f(Ω) is open. Let w0 ∈ f(Ω), so there exists some z0 ∈ Ω such that f(z0) = w0.
Define ε > 0 as in Lemma 8.1(1), and define the path γ and sets Ω′ and W0 as in Lemma 8.1(2).
Then f : Ω′ → W0 \ {w0} is surjective by Lemma 8.1(2), and hence f : Ω′ ∪ {z0} → W0 is also
surjective. That is, f(Ω′ ∪ {z0}) = W0, so W0 ⊆ f(Ω). Since w0 ∈ W0 and W0 is an open set
(W0 is a component of the open set C \ (f ◦ γ)∗, and components of an open set in the complex
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plane are always open), it follows that w0 is an interior point of f(Ω). Thus f(Ω) consists
entirely of interior points and is therefore open.

Next, let U ⊆ Ω be a region. Suppose that f ≡ w on U for some w ∈ C. Then the analytic
function f −w : Ω→ C is identically zero on U , implying that Z(f −w) has a limit point in U ,
and hence in Ω. The Identity Theorem now leads to the conclusion that f − w ≡ 0 (i.e. f ≡ w)
on Ω, in contradiction to the hypothesis that f is nonconstant on Ω. Therefore f must be
nonconstant on U , and it follows that f(U) is open by the argument of the previous paragraph.

Finally, let U ⊆ Ω be an open set, not necessarily connected. Then U is expressible as a
disjoint union of regions,

U =
⊔
α∈I

Uα,

where I is an index set, so that

f(U) =
⋃
α∈I

f(Uα).

Since f(Uα) is an open set for each α ∈ I, we conclude that f(U) is open also. �

Corollary 8.3. Let Ω be open. If f : Ω→ C is analytic and nonconstant on each component
of Ω, then f is an open map.

Theorem 8.4 (Inverse Function Theorem). Let Ω and S be nonempty open sets in C. If
f : Ω→ S is an analytic bijection, then f−1 : S → Ω is also analytic, with

(f−1)′(w) =
1

f ′(f−1(w))

for all w ∈ S.

Proof. Suppose f : Ω→ S is an analytic bijection. Assume that Ω is a region. Since f(Ω) = S
and S is open, it is clear that f is nonconstant. For any open set U ⊆ Ω we have

(f−1)−1(U) = {w ∈ S : f−1(w) ∈ U} = {w ∈ S : w ∈ f(U)} = f(U)

is open by the Open Mapping Theorem, implying that the nonconstant bijection f−1 : S → Ω
is continuous.

Let z0 ∈ Ω and w0 = f(z0), and define the path γ and sets Ω′ and W0 as in Lemma 8.1(2).
Then f : Ω′ → W0 \ {w0} is surjective by Lemma 8.1(2), so that f : Ω′ ∪ {z0} → W0 is also
surjective and hence a bijection. Thus f ′(z0) 6= 0 by Lemma 8.1(3), and since z0 ∈ Ω is arbitrary
it follows that f ′ 6= 0 on Ω. This result, coupled with the knowledge that f : Ω→ S is analytic,
f−1 : S → Ω is continuous, and f(f−1(z)) = z for all z ∈ S, leads via Theorem 3.6 to the
conclusion that f−1 is analytic on S, and

(f−1)′ =
1

f ′ ◦ f−1

on S.
Now assume that Ω is not connected. Then there exists a family of disjoint regions

{Ωα : α ∈ I} in Ω such that Ω =
⊔
α∈I Ωα. For each α ∈ I let Sα = f(Ωα). Then f : Ωα → Sα

is an analytic bijection, and since Ωα is a region and f is nonconstant on Ωα (owing to it being
injective), the Open Mapping Theorem implies that f(Ωα) = Sα is open. Now the argument
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above (when Ω was assumed to be a region) may be applied here to conclude that f−1 is analytic
on Sα, and

(f−1)′(w) =
1

f ′(f−1(w))
(8.3)

for all w ∈ Sα. This holds for all α ∈ I, and since

S =
⊔
α∈I

Sα,

we conclude that f−1 is analytic on S and (8.3) holds for all w ∈ S. �

Proposition 8.5. Suppose f and g are analytic on Ω and f is injective. Then for each z0 ∈ Ω
and r > 0 such that Br(z0) ⊆ Ω,

g(f−1(w)) =
1

2πi

˛
Cr(z0)

g(z)f ′(z)

f(z)− w
dw

for all w ∈ Br(z0).

Exercise 8.6 (AN4.3.1). Suppose that g is analytic at z0 and f has a simple pole at z0. Show
that res(fg, z0) = g(z0) res(f, z0). Also show that the result is false if the word “simple” is
omitted.

Solution. By Theorem 7.9(1) there exists some a ∈ C∗ such that

lim
z→z0

(z − z0)f(z) = a,

and in fact a = res(f, z0) by Proposition 7.31. Of course, the analyticity of g at z0 implies that
g(z)→ g(z0) as z → z0, and hence

lim
z→z0

(z − z0)(fg)(z) = lim
z→z0

[
(z − z0)f(z) · g(z)

]
= lim

z→z0
(z − z0)f(z) · lim

z→z0
g(z) = ag(z0)

by a law of limits. If g(z0) 6= 0 then ag(z0) ∈ C∗, so that Theorem 7.9(1) implies fg has a
simple pole at z0, and then by Proposition 7.31 we conclude that

res(fg, z0) = ag(z0) = g(z0) res(f, z0)

as desired.
Suppose that g(z0) = 0. There exists some r > 0 such that g is analytic on Br(z0), and so

by Proposition 5.15 either g is identically zero on Br(z0), or there exists some m ∈ N such that
ord(g, z0) = m. In the former case we easily find that fg → 0 as z → z0; and in the latter case
there exists some analytic function h : Br(z0)→ C such that h(z0) 6= 0 and g(z) = (z− z0)mh(z)
for all z ∈ Br(z0), and thus

lim
z→z0

(fg)(z) = lim
z→z0

(z − z0)mf(z)h(z) =

{
ah(z0), m = 1

0, m > 1

In either case the limit exists in C, so that fg has a removable singularity at z0 by Theorem 7.9,
and therefore res(fg, z0) = 0 by Definition 7.7(1). We have

g(z0) res(f, z0) = 0 · res(f, z0) = 0 = res(fg, z0)
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once again.
Suppose g(z) = z and f(z) = 1/z2, so g is analytic at 0 while f has a pole of order 2 at 0.

Clearly res(f, 0) = 0, and since (fg)(z) = 1/z we have res(fg, 0) = 1. Now,

res(fg, 0) = 1 6= 0 = g(0) res(f, 0),

which shows that “simple” may not be omitted in the statement of the result. �

Exercise 8.7 (AN4.3.3). Let f be meromorphic on an open set Ω ⊆ C, and let P (f) ⊆ Ω be
the set of poles for f . Define f(z) = ∞ for each z ∈ P (f), so as to define a continuous map
f : (Ω, d)→ (C, d̄ ) that is analytic on Ω′ = Ω \ P (f). Prove that if f is nonconstant on each
component of Ω, then f(Ω) is open in (C, d̄ ).

Solution. First assume that Ω is connected (hence a region), and P (f) = {z0} for some some
z0 ∈ Ω. Choose r > 0 such that |f(z)| > 1 for all z ∈ B′r(z0), which implies that B′r(z0) ⊆ Ω′,
and define g : Br(z0)→ C by

g(z) =

{
1/f(z), z ∈ B′r(z0)

0, z = z0

Since g is analytic on B′r(z0) and continuous on Br(z0), Corollary 4.22 implies that g is analytic
on Br(z0). By Lemma 8.1(1) there’s some ε > 0 such that Bε(z0) ⊆ Br(z0), and g(z), g′(z) 6= 0
for all z ∈ Bε(z0) \ {z0}. Let γ be a path such that γ∗ = Cε(z0) and wn(γ, z0) = 1, let W be
the component of C \ (g ◦ γ)∗ containing 0, and let Ω0 = Bε(z0) ∩ g−1(W ). By Lemma 8.1(2)
the map g : Ω0 → W is surjective.

Let ρ > 0 such that Bρ(0) ⊆ W , so for any w ∈ Bρ(0) there exists some z ∈ Ω0 with
g(z) = w. Let α = 1/ρ, and suppose w ∈ Aα,∞(0). Since

w ∈ Aα,∞(0) ⇔ |w| > α > 0 ⇔ 0 < |1/w| < ρ ⇔ 1/w ∈ B′ρ(0),

there exists some z ∈ Ω0 \{z0} ⊆ Ω′ such that g(z) = 1/w, and thus f(z) = w. Hence w ∈ f(Ω′)
and we obtain Aα,∞(0) ⊆ f(Ω′).

Let δ = (α2 + 1)−1/2 > 0. Suppose

w ∈ B#,δ(∞) = {ζ ∈ C : d̄(ζ,∞) < δ}.

It is clear that ∞ ∈ f(Ω), so assume w 6=∞. Now,

d̄(w,∞) < δ ⇒ 1√
|w|2 + 1

<
1√

α2 + 1
⇒ |w| > α ⇒ w ∈ Aα,∞(0),

so there exists some z ∈ Ω′ such that f(z) = w, which shows w ∈ f(Ω′) ⊆ f(Ω), and thus
B#,δ(∞) ⊆ f(Ω). Hence ∞ is an interior point of f(Ω).

Since Ω′ is open in (C, d), and f : Ω′ → C is analytic and nonconstant on Ω′, we find by
Corollary 8.3 that f(Ω′) is open in (C, d), and hence open in (C, d̄ ) by Proposition 6.39. Let
w ∈ f(Ω) = f(Ω′) ∪ {∞}. If w =∞, then w is an interior point of f(Ω) with respect to d̄ as
shown above. If w ∈ f(Ω′), then w is an interior point of f(Ω′) since f(Ω′) is open in (C, d̄ ),
and thus w is again an interior point of f(Ω) with respect to d̄. Therefore f(Ω) is comprised
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entirely of interior points with respect to d̄, which leads us to conclude that f(Ω) is open in
(C, d̄ ).

As the next case, suppose that P (f) contains more than one point in Ω. For each zp ∈ P (f)
there exists some ε > 0 such that B′ε(zp) ⊆ Ω′. We may carry out the same analysis with zp as
was done for z0 above to determine that Aα,∞(0) ⊆ f(Ω′) for some α > 0. Once again this will
imply that ∞ is an interior point of f(Ω), and since f(Ω′) is again open in (C, d) by Corollary
8.3 and f(Ω) = f(Ω′) ∪ {∞}, we are led once more to conclude that f(Ω) is open in (C, d̄ ).

The general case in which Ω is not connected, f is nonconstant on each component of Ω,
and |P (f)| ≥ 1 is now easily treated. Let Ωc be a component of Ω, and let Pc(f) = P (f) ∩ Ωc.
If Pc(f) = ∅ then f(Ωc) is open in (C, d) by the Open Mapping Theorem, hence open in (C, d̄ );
and if |Pc(f)| ≥ 1, then again f(Ωc) is open in (C, d̄ ) by the arguments above. Since f(Ω) is
the union of all f(Ωc), it follows that f(Ω) is also open in (C, d̄ ). �

Proposition 8.8. Let f have a pole at z0, and let r > 0 be such that f is analytic and |f | > 1
on B′r(z0).

1. There exists ε > 0 such that Bε(z0) ⊆ Br(z0) and (1/f)′(z) 6= 0 for all z ∈ B′ε(z0).
2. For any 0 < δ < ε there exists α > 0 such that Aα,∞(0) ⊆ f(B′δ(z0)).

Proof. Suppose f has a pole at z0, so there exists some s > 0 such that f is meromorphic on
Ω = Bs(z0) and analytic on Ω′ = B′s(z0). Since |f(z)| → +∞ as z → z0 by Theorem 7.9(2),
it is clear that f is nonconstant on Ω. Taking 0 < r < s, we may now apply verbatim the
arguments made in the first two paragraphs of the solution to Exercise 8.7 above. The proof of
Part (1) derives directly from the first paragraph. The proof of Part (2) follows from the last
two sentences of the first paragraph and all of the second paragraph, only we replace ε with an
arbitrary δ ∈ (0, ε). Noting that Ω0 \ {z0} ⊆ B′δ(z0), we obtain the chain of implications

w ∈ Aα,∞(0) ⇒ ∃z ∈ Ω0 \ {z0}
(
g(z) =

1

w

)
⇒ ∃z ∈ B′δ(z0)

(
f(z) = w

)
⇒ w ∈ B′δ(z0),

and hence Aα,∞(0) ⊆ f(B′δ(z0)) as desired. �

Exercise 8.9 (AN4.3.5). Let f be a nonconstant analytic function on a region Ω. Show that
the functions Re f and Im f can have no local maximum in Ω.

Solution. Fix z0 ∈ Ω, and let ε > 0 be such that Bε(z0) ⊆ Ω. By the Open Mapping Theorem
S = f(Bε(z0)) is open, and since f(z0) = u0 + iv0 ∈ S, there exists some δ > 0 such that
B2δ(u0 + iv0) ⊆ S. Then (u0 + δ) + iv0 ∈ S, which implies there exists some z ∈ Bε(z0) such
that f(z) = (u0 + δ) + iv0, and moreover

(Re f)(z) = u0 + δ > u0 = (Re f)(z0).

Since ε > 0 is arbitrary it follows that Re f does not have a local maximum at z0, and therefore
Re f has no local maximum in Ω since z0 ∈ Ω is arbitrary. The argument that Im f has no local
maximum in Ω is much that same. �



244

8.2 – Möbius Transformations

Definition 8.10. Let a, b, c, d ∈ C such that ad − bc 6= 0. The Möbius transformation
associated with a, b, c, d is the mapping T : C→ C given by

T (z) =


az+b
cz+d

, z 6= −d
c
,∞

a
c
, z =∞, c 6= 0

∞, z =∞, c = 0

∞, z = −d
c
, c 6= 0

The condition ad− bc 6= 0 prevents two situations from occurring: first, there is no z ∈ C
such that T (z) becomes a 0/0 indeterminate form; and second, T cannot be a constant function.
The ∞/∞ form can arise if a, c 6= 0 and z =∞, but Definition 8.10 makes clear that in such an
instance we take T (∞) = a/c. If we subscribe to the conventions

a ∈ C
∞

= 0,
∞

a ∈ C
=∞, a ∈ C∗

0
=∞, (a ∈ C∗)(∞) =∞, (a ∈ C) +∞ =∞,

then we may write simply

T (z) =


az + b

cz + d
, z 6=∞

a

c
, z =∞

without ambiguity.
To see that the 0/0 form is unattainable, note that if z =∞, then T (∞) = a/c only if c 6= 0,

otherwise T (∞) =∞. If z = 0, then 0/0 can only arise if b = d = 0, which is not possible given
ad − bc 6= 0. Suppose that z ∈ C∗ is such that az + b = 0 and cz + d = 0. Then a 6= 0 since
otherwise a = b = 0 in violation of ad− bc 6= 0, and c 6= 0 since otherwise c = d = 0 in violation
of ad− bc 6= 0. Thus z = −b/a and z = −d/c, which yields b/a = d/c and finally ad = bc, again
contradicting the condition ad− bc 6= 0!

It is clear that no permissible combination of complex numbers a, b, c, d will result in T ≡ ∞.
On the other hand we cannot have T ≡ z0 for any z0 ∈ C, since either T (∞) =∞ 6= z0 if c = 0,
or T (−d/c) =∞ 6= z0 if c 6= 0.

Proposition 8.11. A Möbius transformation

T (z) =
az + b

cz + d

is a continuous bijection of C onto C that is analytic on C \ {−d/c}, with a simple pole at −d/c
and a zero of order 1 at −b/a.

Special kinds of Möbius transformations are translations z 7→ z + w for fixed w ∈ C,
rotations z 7→ λz for λ ∈ S, dilations z 7→ ρz for ρ > 1, contractions z 7→ ρz for 0 < ρ < 1,
and the inversion operation z 7→ 1/z. Compositions of these basic transformations can
construct any given Möbius transformation. For instance, for the transformation

T (z) =
z − 2

3z + 1
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let

f1(z) = 3z, f2(z) = z + 1, f3(z) =
1

z
, f4(z) = −7

3
z, f5(z) = z +

1

3
;

then

z
f1−−→ 3z

f2−−→ 3z + 1
f3−−→ 1

3z + 1

f4−−→
−7

3

3z + 1

f5−−→
−7

3

3z + 1
+

1

3
=

z − 2

3z + 1
,

and thus T = f5 ◦ f4 ◦ f3 ◦ f2 ◦ f1.
Recall that a function f is defined to be analytic at ∞ if it has a removable singularity there,

in which case we may set

f(∞) = lim
z→0

f(1/z).

Let f be a function with domain C, and let P (f) denote the set of poles of f in C. Recalling
Definition 7.25, f is meromorphic on C if it is meromorphic on C, and has either a removable
singularity or a pole at ∞. It’s immediate that all Möbius transformations are meromorphic on
C, and some are entire with pole at ∞. No Möbius transformation can be analytic on C, since
Exercise 7.21 would then imply the transformation is a constant function.

Proposition 8.12. Let
S = {z : azz + βz + βz + c = 0},

where a, c ∈ R, β ∈ C, and ββ − ac > 0.

1. If a 6= 0, then S is a circle; and if a = 0, then S is a line.
2. Given any line L or circle C, there exist a, c ∈ R and β ∈ C such that S = L or S = C.

Proposition 8.13. Let T be a Möbius transformation. If L is a line, then T (L) is a line; and
if C is a circle, then T (C) is a circle.

Exercise 8.14 (AN4.5.1). Show that if T1 and T2 are Möbius transformations, then T1 ◦ T2 is
also; and if T is a Möbius transformations, then T−1 is also.

Solution. Let T1 and T2 be Möbius transformations, so that for i ∈ {1, 2} we have Ti : C→ C
given by

Ti(z) =


aiz+bi
ciz+di

, z 6= −di
ci
,∞

ai
ci
, z =∞, ci 6= 0

∞, z =∞, ci = 0

∞, z = −di
ci
, ci 6= 0

for ai, bi, ci, di ∈ C such that aidi − bici 6= 0. If we define

A1 =

[
a1 b1

c1 d1

]
and A2 =

[
a2 b2

c2 d2

]
,

then det(Ai) = aidi − bici 6= 0 for each i, and so

det(A1A2) = det(A1) det(A2) 6= 0.

Letting [
a b
c d

]
=

[
a1a2 + b1c2 a1b2 + b1d2

a2c1 + c2d1 b2c1 + d1d2

]
= A1A2,
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it follows that ad− bc 6= 0. We will need this result soon enough.
Suppose that z ∈ C is such that z 6= −d/c,∞. A little algebra reveals that

z 6= −d
c
⇔ a2z + b2

c2z + d2

6= −d1

c1

⇔ T2(z) 6= −d1

c1

.

If we suppose that z 6= −d2/c2, then T2(z) 6=∞ also, and we obtain

(T1 ◦ T2)(z) =

a1

(
a2z + b2

c2z + d2

)
+ b1

c1

(
a2z + b2

c2z + d2

)
+ d1

=
a1(a2z + b2) + b1(c2z + d2)

c1(a2z + b2) + d1(c2z + d2)
=
az + b

cz + d
.

Suppose that z = −d2/c2. Then c2 6= 0 since z 6=∞, and so T2(z) =∞. We must have c1 6= 0,
since otherwise z 6= −d/c implies z 6= −d2/c2. Hence

(T1 ◦ T2)(z) = T1(∞) =
a1

c1

=
a1(a2d2 − b2c2)

c1(a2d2 − b2c2)
=
a(−d2/c2) + b

c(−d2/c2) + d
=
az + b

cz + d

once again. That is,

T (z) =
az + b

cz + d

whenever z 6= −d/c,∞.
Next, suppose that z =∞ and c 6= 0. Then either c1 6= 0 or c2 6= 0. If c2 6= 0, then

c 6= 0 ⇔ a2c1 + c2d1 6= 0 ⇔ a2

c2

6= −d1

c1

,

and so since a2/c2 6=∞ as well,

(T1 ◦ T2)(z) = T1(T2(∞)) = T1(a2/c2) =
a1(a2/c2) + b1

c1(a2/c2) + d1

=
a1a2 + b1c2

a2c1 + c2d1

=
a

c
.

If c2 = 0, then a = a1a2 and c = a2c1 with a2 6= 0 (otherwise ad− bc = 0 would result), and so

(T1 ◦ T2)(z) = T1(T2(∞)) = T1(∞) =
a1

c1

=
a1a2

a2c1

=
a

c

once again. That is, T (z) = a/c if z =∞ and c 6= 0.
Now suppose that z =∞ and c = 0. If c1, c2 6= 0, then c = 0 implies a2/c2 = −d1/c1, so that

(T1 ◦ T2)(z) = T1(T2(∞)) = T1(a2/c2) = T1(−d1/c1) =∞.

If c1, c2 = 0, then

(T1 ◦ T2)(z) = T1(T2(∞)) = T1(∞) =∞.

The case c1 = 0, c2 6= 0 cannot occur: from c = 0 would come d1 = 0, and then a1d1 − b1c1 = 0
results. Similarly, the case c1 6= 0, c2 = 0 cannot occur: from c = 0 would come a2 = 0, and
then a2d2 − b2c2 = 0 results. Therefore T (z) =∞ if z =∞ and c = 0.

Finally, suppose that z = −d/c and c 6= 0. If d/c = d2/c2 (so that c2 6= 0), then some algebra
leads to c1(a2d2 − b2c2) = 0, whence c1 = 0 obtains and then

(T1 ◦ T2)(z) = T1(T2(−d/c)) = T1(T2(−d2/c2)) = T1(∞) =∞.
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If d/c 6= d2/c2, then we must have c1 6= 0 since otherwise d/c = d1d2/c2d1 = d2/c2. Now,

(T1 ◦ T2)(z) = T1

(
a2(−d/c) + b2

c2(−d/c) + d2

)
= T1(−d1/c1) =∞.

Therefore T (z) =∞ if z =∞ and c 6= 0.
Gathering all our findings, we have:

(T1 ◦ T2)(z) =


az+b
cz+d

, z 6= −d
c
,∞

a
c
, z =∞, c 6= 0

∞, z =∞, c = 0

∞, z = −d
c
, c 6= 0

for a, b, c, d ∈ C such that ad− bc 6= 0. Therefore T1 ◦ T2 is a Möbius transformation.
To show that T−1 is also a Möbius transformation requires much the same drudgery. We’ll

go only as far as finding an expression for T−1(z). Let T be defined as in Definition 8.10. For
all z, w ∈ C we have

T (z) = w ⇔ T−1(w) = z,

and so for z ∈ C \ {−d/c},

T (z) = w ⇒ az + b

cz + d
= w ⇒ z =

dw − b
−cw + a

⇒ T−1(w) =
dw − b
−cw + a

,

from which we may conclude that

T−1(z) =


dz−b
a−cz , z 6= a

c
,∞

−d
c
, z =∞, c 6= 0

∞, z =∞, c = 0

∞, z = a
c
, c 6= 0

for all z ∈ C. Note ∣∣∣∣a b
c d

∣∣∣∣ 6= 0 ⇒
∣∣∣∣ d −b
−c a

∣∣∣∣ 6= 0,

as desired. �

Exercise 8.15 (AN4.5.2a). Find a formula for the inverse of the Möbius transformation

T (z) =
1 + z

1− z
.

Solution. Using the general formula for T−1 near the end of the previous exercise,

T−1(z) =


z−1
z+1

, z 6= −1,∞
1, z =∞
∞, z = −1

For the following exercise we shall let I = {z ∈ C : Re(z) = 0} denote the set of imaginary
numbers, and I = I ∪ {∞}.
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Exercise 8.16 (AN4.5.2b). Consider the Möbius transformation

T (z) =
1 + z

1− z
.

Show that T maps B onto {z : Re(z) > 0}, ∂B onto I, and C \ B onto {z : Re(z) < 0}.

Solution. Let z ∈ B, so that z = u+ iv with u2 + v2 < 1. Now,

T (z) =
(1 + u) + iv

(1− u)− iv
=

1− (u2 + v2)

(1− u)2 + v2
+

2v

(1− u)2 + v2
i,

and since

Re(T (z)) =
1− (u2 + v2)

(1− u)2 + v2
> 0

it is clear that T : B→ {z : Re(z) > 0}. To show the mapping is surjective, let w = r + is such
that r > 0, so w 6= −1,∞. We wish to find z such that T (z) = w, and by the formula for T−1

found in the previous exercise we have

z = T−1(w) =
w − 1

w + 1
.

Since r > 0,

0 < |w − 1|2 = r2 + s2 + 1− 2r < r2 + s2 + 1 + 2r = |w + 1|2,

whence

|z| = |w − 1|
|w + 1|

< 1

obtains and we conclude that z ∈ B. We conclude that

T (B) = {z : Re(z) > 0}.

Next, let z ∈ ∂B, so that z = u+ iv with u2 + v2 = 1. If z = 1, then T (1) =∞; and if z 6= 1,
then

T (z) =
(1 + u) + iv

(1− u)− iv
=

1− (u2 + v2)

(1− u)2 + v2
+

2v

(1− u)2 + v2
i =

2v

(1− u)2 + v2
i =

v

1− u
i,

which shows that Re(z) = 0 and thus T : ∂B→ I. To show the mapping is surjective, let w = is
for some s ∈ R. We must find v ∈ [−1, 1] and u ∈ [−1, 1) such that v/(1 − u) = s. Since
u2 + v2 = 1, this means finding u ∈ [−1, 1) such that

√
1− u2

1− u
= s.

With some algebra this becomes

(s2 + 1)u2 − 2s2u+ (s2 − 1) = 0,

whence

u =
2s2 ±

√
4s4 − 4(s2 + 1)(s2 − 1)

2(s2 + 1)
=
s2 − 1

s2 + 1
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obtains (discounting the alternate solution u = 1). Now we have

z = u+ iv =
s2 − 1

s2 + 1
+ i

√
1−
(
s2 − 1

s2 + 1

)2

,

with |z| = 1 and T (z) = is. We conclude that

T
(
∂B
)

= I.

The function T : C → C is a bijection by Proposition 8.11, and since T maps B onto
{z : Re(z) > 0} and ∂B onto I, it must map C \ B onto {z : Re(z) < 0} (in particular
T (∞) = −1). �

Exercise 8.17 (AN4.5.3). Find a Möbius transformation T such that T (1) = 1, T (i) = 0, and
T (−1) = −1.

Solution. Let

T (z) =
az + b

cz + d
.

Values for a, b, c, and d must be found such that

a+ b

c+ d
= 1,

ai+ b

ci+ d
= 0,

−a+ b

−c+ d
= −1,

whence
a+ b = c+ d, ai+ b = 0, b− a = c− d.

The sum of the first and third equations yields b = c, which together with the first equation
leads to a = d. Since b = −ai by the second equation, the required condition ad− bc 6= 0 implies
that a 6= 0.

Let a = 1, so that b = c = −i and d = 1. Then

T (z) =
z − i
1− iz

is easily verified to be such that T (1) = 1, T (i) = 0, and T (−1) = −1. �

Exercise 8.18 (AN4.5.5). Let f be an injective meromorphic function on C. Show that f is
a Möbius transformation by establishing the following.

1. f has at most one pole in C, and thus ∞ is an isolated singularity of f .
2. f(B) and f(A1,∞(0)) are disjoint open sets in (C, d̄ ).

3. f has a pole or removable singularity at ∞, and thus f is meromorphic on C.
4. f has exactly one pole in C.
5. If ∞ is the pole of f , then f is a degree 1 polynomial; and if zp ∈ C is the pole of f , then

the function g = 1/f , with g(zp) = 0, is analytic at zp with g′(zp) 6= 0.
6. f has a simple pole at zp.
7. There exists some c ∈ C such that

f(z)− res(f, zp)

z − zp
≡ c

on C \ {zp}, and hence f is a Möbius transformation.
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Solution.
Part (1). Suppose f has distinct poles z1, z2 ∈ C, so there exists some r > 0 such that f is
analytic and |f | > 1 on B′r(z1) and B′r(z2). By Proposition 8.8 we can find 0 < δ < r sufficiently
small so that B′δ(z1) ∩ B′δ(z2) = ∅, and there exist α, β > 0 such that Aα,∞(0) ⊆ f(B′δ(z1))
and Aβ,∞(0) ⊆ f(B′δ(z2)). Thus, if w ∈ C with |w| > max{α, β}, then there exist ζ1 ∈ B′δ(z1)
and ζ2 ∈ B′δ(z2) for which f(ζ1) = f(ζ2) = w, violating the hypothesized injectivity of f . We
conclude that f can have at most one pole zp in C, which implies that f (being meromorphic)
is analytic on As,∞(0) for s ≥ |zp|, and therefore f has an isolated singularity at ∞.

Part (2). First, if f has a pole at zp ∈ C, then we define f(zp) =∞ and thereby regard f as a

continuous injective map (C, d)→ (C, d̄ ) that is analytic on C \ {zp}. It is immediate that f(B)

and f(A1,∞(0)) are disjoint sets in C. It remains to show they are open sets in C (with respect
to the chordal metric d̄ of course).

If zp ∈ B, then f is meromorphic on B, and also nonconstant on B by virtue of being injective,
and so by Exercise 8.7 (with P (f) = {zp}, Ω = B, and Ω′ = B \ {zp}) we conclude that f(B) is

open in (C, d̄ ). If zp /∈ B, then f is nonconstant analytic on B, so that f(B) is open in (C, d) by

the Open Mapping Theorem, hence open in (C, d̄ ) by Proposition 6.39. The same arguments
also show f(A1,∞(0)) to be open in (C, d̄ ) whether or not zp is in A1,∞(0).

Part (3). Since f has an isolated singularity at∞, there exists some r > 1 such that f is analytic
on Ar,∞(0). Suppose f has an essential singularity at ∞. By definition h(z) = f(1/z) has an
essential singularity at 0 and is analytic on B′1/r(0), so by the Casorati-Weierstrass Theorem

S := f(Ar,∞(0)) = h(B′1/r(0))

is dense in C.
On the other hand we may choose z0 ∈ B and ε > 0 such that Bε(z0) ⊆ B and f is analytic

on Bε(z0). Now, B ⊆ f(B) and S ⊆ f(A1,∞(0)), so B ∩ S = ∅ by Part (2), and since B is open
in C by the Open Mapping Theorem, we are led to the contradictory conclusion that S is not
dense in C.

It must be that the isolated singularity possessed by f at∞ cannot be an essential singularity,
and therefore f has a pole or removable singularity there. That is, f is either analytic at ∞
or f has a pole at ∞, and since f is meromorphic on C by hypothesis, we conclude that f is
meromorphic on C.

Part (4). Suppose that f has more than one pole in C. In light of Part (1) this can only
occur if f has a pole at ∞ and as some zp ∈ C. By Proposition 8.8 there is some ε1 > 0 such
that, for any 0 < δ < ε1, there exists some α1 > 0 such that Aα1,∞(0) ⊆ f(B′δ(zp)). Also, since
h(z) = f(1/z) has a pole at 0, there is some ε2 > 0 such that, for any 0 < δ < ε2, there exists
some α2 > 0 such that

Aα2,∞(0) ⊆ h(B′δ(0)) = f(A1/δ,∞(0)).

Choose δ > 0 sufficiently small so that δ < min{ε1, ε2} and 1/δ > |zp|+ 1. Then, since δ < 1,

z ∈ A1/δ,∞(0) ⇒ |z| > 1

δ
⇒ |z| > |zp|+ δ ⇒ z /∈ B′δ(zp),
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and

z ∈ B′δ(zp) ⇒ 0 < |z − zp| < δ ⇒ |z| < |zp|+ δ <
1

δ
⇒ z /∈ A1/δ,∞(0),

and hence B′δ(zp) ∩ A1/δ,∞(0) = ∅. Let α = max{α1, α2}, and choose w ∈ C such that |w| > α.
That is, w ∈ Aα,∞(0), and since

Aα,∞(0) ⊆ f(B′δ(zp)) and Aα,∞(0) ⊆ f(A1/δ,∞(0)),

there exist z1 ∈ B′δ(zp) and z2 ∈ A1/δ,∞(0) such that f(z1) = f(z2) = w. This contradicts the

injectivity of f , and therefore f can have at most one pole in C.
Next, suppose that f has no pole in C. Then f is entire with removable singularity at ∞,

which is to say f is analytic on C, and then by Exercise 7.21 we find that f is constant—again
violating injectivity. So f must have at least one pole in C, and therefore f must have exactly
one pole in C.

Part (5). Suppose ∞ is the pole of f . Then f is entire and has nonessential singularity at
∞, and by Exercise 7.23 it follows that f is a polynomial function. Since f is injective, it is
nonconstant, and so deg(f) ≥ 1. By the Fundamental Theorem of Algebra there exists some
z0 ∈ C such that f(z0) = 0, where ord(f, z0) ∈ N by Proposition 5.15. Indeed, the first two
parts of Lemma 8.1 lead to the conclusion that ord(f, z0) = 1, and so there exists some analytic
function q : C→ C such that q(z0) 6= 0 and f(z) = (z − z0)q(z) for all z ∈ C.

It is necessary to confirm that q is a polynomial function. Since deg(f) ≥ 1, we have

q(z) =
f(z)

z − z0

=
anz

n + · · ·+ a1z + a0

z − z0

for all z ∈ C \ {z0}, where n ≥ 1 and an 6= 0. Clearly q has an isolated singularity at ∞, and so
h(z) = q(1/z) has an isolated singularity at 0. If n = 1, then

lim
z→0

h(z) = lim
z→0

a1z
−1 − a0

z−1 − z0

= lim
z→0

a1 + a0z

1− z0z
= a1,

so that h has a removable singularity at 0, and hence q has a removable singularity at ∞ by
Definition 7.8. If n > 1, then

lim
z→0
|h(z)| = lim

z→0

∣∣∣∣anz−n + · · ·+ a1z
−1 + a0

z−1 − z0

∣∣∣∣ = lim
z→0

∣∣∣∣an + an−1z + · · ·+ a1z
n−1 + a0z

n

zn−1(1− z0z)

∣∣∣∣ = +∞

since an 6= 0, so that h has a pole at 0 by Theorem 7.10(2), and hence q has a pole at ∞.
Therefore q has a nonessential singularity at ∞, and since q is entire, Exercise 7.23 implies that
q is a polynomial function.

Now, if q(z1) = 0 for some z1 6= z0, then

f(z1) = (z1 − z0)q(z1) = 0 = f(z0),

which is impossible since f is injective. Therefore q is a polynomial function with no zeros in C,
so by the Fundamental Theorem of Algebra it follows that q is a (nonzero) constant function.
That is, q ≡ c for some c ∈ C∗, so that f(z) = c(z − z0) for all z ∈ C and we conclude that f is
a degree 1 polynomial function.
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Next, suppose zp ∈ C is the pole of f . Since |f(z)| → +∞ as z → zp by Theorem 7.10(1),
there exists some r > 0 such that f is analytic and |f | > 0 on B′r(z0). The function g = 1/f is
thus analytic on B′r(zp), and since

lim
z→zp

g(z) = 0 = g(zp),

it’s seen that g is continuous on Br(zp) and hence analytic there by Corollary 4.22. The
injectivity of f on B′r(zp) implies that g is injective there, and hence g is injective (in particular
nonconstant) on Br(zp). If Ω′ ⊆ Br(zp) and W0 are defined as in Lemma 8.1(2), then the lemma
together with the injectivity of g imply that g : Ω′ → W0 \ {0} is a bijection, whence it follows
that g : Ω′ ∪ {zp} → W0 is a bijection and therefore g′(zp) 6= 0 by Lemma 8.1(3).

Part (6). Suppose ∞ is the pole of f . Then f is a degree 1 polynomial, so that f(z) = az + b
for some a, b ∈ C, a 6= 0. Let h(z) = f(1/z). Then

lim
z→0

zh(z) = lim
z→0

(a+ bz) = a ∈ C∗,

which by Theorem 7.10(1) shows that h has a simple pole at 0, and hence f has a simple pole
at ∞.

Now suppose zp ∈ C is the pole of f , and define function g as in Part (5). Then g is
nonconstant analytic on Br(zp) for some r > 0, and since g′(zp) 6= 0, Proposition 5.11 implies
that ord(g, zp) = 1. Thus there exists some analytic ψ : Br(zp)→ C such that ψ(zp) 6= 0 and
g(z) = (z− zp)ψ(z) for all z ∈ Br(zp). Since g 6= 0 on B′r(zp) implies ψ 6= 0 on B′r(zp), it follows
that

(z − zp)f(z) =
1

ψ(z)

for z ∈ B′r(zp), and so

lim
z→zp

(z − zp)f(z) = lim
z→zp

1

ψ(z)
=

1

ψ(zp)
∈ C∗.

Therefore f has a simple pole at zp.

Part (7). If ∞ is the pole of f , then f is a degree 1 polynomial and therefore a Möbius
transformation. Suppose zp ∈ C is the pole of f , so that f has a removable singularity at ∞
and therefore

lim
z→0

f(1/z) = a

for some a ∈ C. By Theorem 7.3,

f(z) =
∑
n∈Z

an(z − zp)n

for all z ∈ C \ {zp}; but since zp is a simple pole, by Definition 7.7(2) we obtain

f(z) =
res(f, zp)

z − zp
+
∞∑
n=0

an(z − zp)n
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on C \ {zp}, and hence

ϕ(z) := f(z)− res(f, zp)

z − zp
=
∞∑
n=0

an(z − zp)n

on C \ {zp}. Defining ϕ(zp) = a0, it follows by Corollary 4.22 that ϕ is an entire function.
Moreover,

lim
z→0

ϕ(1/z) = lim
z→0

[
f(1/z)− res(f, zp)

z−1 − zp

]
= lim

z→0

[
f(1/z)− z res(f, zp)

1− zpz

]
= a+ 0 = a,

which shows that ϕ has a removable singularity at ∞; that is, ϕ is analytic on C, so ϕ is a
constant function by Exercise 7.21. In fact it is easy to see that ϕ ≡ a = a0. We now have

f(z)− res(f, zp)

z − zp
= a

for all z ∈ C \ {zp}, or equivalently

f(z) =
az + [res(f, zp)− azp]

z − zp
on z ∈ C \ {zp}. Since

(a)(−zp)− [res(f, zp)− azp](1) = − res(f, zp) 6= 0

shows the condition ad−bc 6= 0 to be satisfied, we conclude that f is a Möbius transformation. �
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8.3 – Conformal Mappings

Definition 8.19. An analytic function f : Ω→ C with f ′(z) 6= 0 for all z ∈ Ω is a conformal
mapping (or conformal map).

In some of the literature there is another definition for the term “conformal mapping” that
is stricter: in addition to the properties of f given in Definition 8.19, there is the additional
requirement that f be injective on Ω. The two definitions are not equivalent! However, the next
proposition does at least guarantee that a conformal mapping as defined here is locally injective.

Proposition 8.20. Let f be analytic at z0. Then f ′(z0) 6= 0 if and only if f is injective in a
neighborhood of z0.

Proof. Suppose f ′(z0) 6= 0. Then there exists some r > 0 such that f is analytic on B = Br(z0),
and f must be nonconstant on B (otherwise f ′(z0) = 0). Using Lemma 8.1 we can find a region
Ω ⊆ B containing z0 such that, if S = f(Ω), then f : Ω → S is a bijection. Therefore f is
injective on Ω.

Next, suppose f is injective in a neighborhood Ω of z0. This immediately implies that f is
nonconstant on Ω, which we may take to be a region by passing to an open disc Br(z0) ⊆ Ω if
necessary. The set Ω ∪ {z0} in Lemma 8.1 is an open set in Ω containing z0, with the second
part of the lemma (along with our hypothesis) implying that f : Ω′ ∪ {z0} → W0 is a surjective
one-to-one map, and the third part in turn implying that f ′(z0) 6= 0. �

By the Open Mapping Theorem, local injectivity implies local bijectivity between open sets
in C, and so it follows by the Inverse Function Theorem that a conformal mapping f is locally
a diffeomorphism.

Definition 8.21. Suppose f is defined on Br(z0) such that f(z) 6= f(z0) for all z ∈ B′r(z0). If
there exists some λ ∈ S such that

lim
ε→0+

f(z0 + εeiθ)− f(z0)

|f(z0 + εeiθ)− f(z0)|
= λeiθ,

then f preserves angles at z0.

Theorem 8.22. Suppose f is analytic at z0. Then f preserves angles at z0 if and only if
f ′(z0) 6= 0.

Proof. Suppose that f ′(z0) 6= 0. By Proposition 8.20 there exists some r > 0 such that
f : Br(z0) → C is an injective analytic function, implying f(z) 6= f(z0) for all z ∈ B′r(z0) as
required by Definition 8.21. Fix θ ∈ R, and define the functions

ϕ(ε) =
f(z0 + εeiθ)− f(z0)

|f(z0 + εeiθ)− f(z0)|
, ψ(ε) =

|f(z0 + εeiθ)− f(z0)|
|εeiθ|

, ω(ε) =
|εeiθ|
εeiθ

,

for ε > 0. Observe that both ψ(ε) and ω(ε) are nonzero for 0 < ε < r. Let H = ϕψω. Now,
from

lim
h→0

f(z0 + h)− f(z0)

h
= f ′(z0)
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it follows that

lim
ε→0+

H(ε) = lim
ε→0+

[ϕ(ε)ψ(ε)ω(ε)] = lim
ε→0+

f(z0 + εeiθ)− f(z0)

εeiθ
= f ′(z0),

and also

lim
ε→0+

1

ψ(ε)
=

1

|f ′(z0)|
since f ′(z0) 6= 0. In addition,

lim
ε→0+

1

ω(ε)
= lim

ε→0+

εeiθ

|εeiθ|
= lim

ε→0+
eiθ = eiθ.

Finally,

lim
ε→0+

ϕ(ε) = lim
ε→0+

[
H(ε) · 1

ψ(ε)
· 1

ω(ε)

]
= f ′(z0) · 1

|f ′(z0)|
· eiθ.

That is, for all θ ∈ R,

lim
ε→0+

f(z0 + εeiθ)− f(z0)

|f(z0 + εeiθ)− f(z0)|
=

f ′(z0)

|f ′(z0)|
eiθ,

where λ = f ′(z0)/|f ′(z0)| is unimodular. Therefore f preserves angles at z0. �

By Theorem 8.22 it is immediate that a conformal mapping preserves angles at all points in
its domain.

Example 8.23. The exponential function is clearly a conformal mapping on C. Also, since
Proposition 8.11 makes clear that a Möbius transformation T is injective on C \ P (T ), by
Proposition 8.20 it follows that T is a conformal mapping on C \ P (T ); that is, Möbius
transformations are conformal mappings on their region of analyticity in C. �
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8.4 – Analytic Maps Between Discs

Proposition 8.24. For any a ∈ B define ϕa : C→ C by

ϕa(z) =
z − a
1− az

,

with ϕa(∞) = −1/a and ϕa(−1/a) =∞.8 Then the following hold.

1. ϕa is a Möbius transformation.
2. ϕa is analytic on a region containing B.
3. ϕ−1

a = ϕ−a.
4. ϕa(B) = B and ϕa(∂B) = ∂B.
5. For all z ∈ C \ {1/a},

ϕ′a(z) =
1− |a|2

(1− az)2
.

The following proposition is a generalization of Schwarz’s Lemma, which was introduced in
§5.3 and is instrumental in the proof.

Theorem 8.25 (Schwarz-Pick Theorem). Let f : B→ B be analytic. Then for any a, z ∈ B∣∣∣∣∣ f(z)− f(a)

1− f(a)f(z)

∣∣∣∣∣ ≤ |ϕa(z)| (8.4)

and

|f ′(a)| ≤ 1− |f(a)|2

1− |a|2
. (8.5)

If equality holds in (8.4) for some z 6= a, or if equality holds in (8.5), then f is a Möbius
transformation; in either case, there exists some λ ∈ S such that f = ϕ−f(a) ◦ λϕa, and hence

f(z) =
λϕa(z) + f(a)

1 + f(a)λϕa(z)

for all z ∈ B.

Theorem 8.26. If f : B → B is an analytic bijection, then f = λϕa for some λ ∈ ∂B and
a ∈ B.

Certain aspects of the proof of the following theorem bear a resemblance to the proof of
Proposition 5.7, though the latter includes somewhat more detail.

Theorem 8.27. Suppose f is analytic on B, continuous on B, and |f | = 1 on ∂B. Then either
f ≡ λ for some λ ∈ ∂B, or there exist a1, . . . , an ∈ B, k1, . . . , kn ∈ N, and λ ∈ ∂B such that
f = λϕk1a1 · · ·ϕ

kn
an; that is,

f(z) = λ
n∏
j=1

(
z − aj
1− ajz

)kj
(8.6)

for all z ∈ B.

8By convention we take −1/a =∞ if a = 0.
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Proof. Let Z(f) = {z ∈ B : f(z) = 0}, which in fact equals the set of zeros for f on B. Since f
is continuous on B and f(z) 6= 0 for every z ∈ ∂B, it is clear that Z(f) has no limit point in ∂B
and f is not identically zero on B. The latter observation, together with the Identity Theorem,
implies Z(f) has no limit point in B, so that Z(f) has no limit point on the compact set B and
therefore must be a finite set.

Suppose that Z(f) = ∅. By the Maximum Principle either |f | < 1 on B or f is constant,
and by the Minimum Principle (since f 6= 0 on B) either |f | > 1 on B or f is constant. The
only conclusion is that f is constant on B, and since f is continuous on B and |f | = 1 on ∂B, it
follows that f ≡ λ on B for some λ ∈ ∂B.

Suppose that Z(f) = {a1, . . . , an} for some n ≥ 1. Let ord(f, aj) = kj for each 1 ≤ j ≤ n,
where kj ∈ N by Proposition 5.15. Define ψ : B→ C by

ψ(z) =
n∏
j=1

(
z − aj
1− ajz

)kj
,

which is analytic on B and continuous on B since |aj| < 1 implies 1/aj /∈ B for each j. Now,
f/ψ is analytic on B \ Z(f) and continuous on B \ Z(f), with

(f/ψ)(z) = f(z)
n∏
j=1

(
1− ajz
z − aj

)kj
=

f(z)

ϕk1a1(z) · · ·ϕknan(z)

for all z ∈ B \ Z(f). For each j there exists analytic ψj : B → C with ψj(aj) 6= 0 such that
f(z) = (z − aj)kjψj(z) for all z ∈ B, and so

lim
z→aj

(f/ψ)(z) = lim
z→aj

[
(z − aj)kjψj(z)

n∏
`=1

(
1− a`z
z − a`

)k`]

= lim
z→aj

[
(1− ajz)kjψj(z)

∏
`6=j

(
1− a`z
z − a`

)k`]

= ψj(aj)(1− |aj|2)kj
∏
` 6=j

(
1− |a`|2

aj − a`

)k`
∈ C∗.

Defining

(f/ψ)(aj) = lim
z→aj

(f/ψ)(z) 6= 0

for each j makes f/ψ continuous at each aj—indeed continuous on Br(aj) and analytic on
B′r(aj) for sufficiently small r—and thus f/ψ is analytic at each aj by Corollary 4.22. Now f/ψ
is continuous on B and analytic on B, and also

|(f/ψ)(z)| = |f(z)|
|ϕa1(z)|k1 · · · |ϕan(z)|kn

= 1

for any z ∈ ∂B, since |f | = 1 on ∂B and ϕaj : ∂B → ∂B by Proposition 8.24(4). By the
Maximum Principle either f/ψ < 1 on B or f/ψ is constant. Also, since |f/ψ| 6= 0 on B, by
the Minimum Principle either f/ψ > 1 on B or f/ψ is constant. Therefore f/ψ is constant
such that |f/ψ| = 1 on B; that is, there exists some λ ∈ ∂B such that f/ψ ≡ λ, whence (8.6)
results. �
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Proposition 8.28. Suppose f is analytic on B, continuous on B, and nonvanishing on ∂B. If
Z(f) = {a1, . . . , an} 6= ∅ and ord(f, aj) = kj for each 1 ≤ j ≤ n, then there is a function g that
is analytic on B, continuous on B, and nonvanishing on B such that

f(z) = g(z)
n∏
j=1

(
z − aj
1− ajz

)kj
for all z ∈ B.

Proof. Define ψ : B→ C by

ψ(z) =
n∏
j=1

(
z − aj
1− ajz

)kj
.

As shown in the proof of Theorem 8.27, the function f/ψ : B \ Z(f)→ C can be extended to
include Z(f) so as to construct a function g : B→ C that is analytic on B, continuous on B,
and has no zeros on B. Specifically we define

g(z) =

{
(f/ψ)(z), z ∈ B \ Z(f)

lim
z→aj

(f/ψ)(z), z = aj.

If z ∈ B \ Z(f), then

g(z)ψ(z) =
f(z)

ψ(z)
· ψ(z) = f(z);

and if z = aj for any 1 ≤ j ≤ n, then

g(aj)ψ(aj) = g(aj) · 0 = 0 = f(aj).

Therefore f = gψ on B. �

Exercise 8.29 (AN4.6.3). Show that if f : B→ B is an analytic map with at least two fixed
points, then f(z) = z for all B.

Solution. Suppose that f : B→ B is analytic, and a, b ∈ B are such that a 6= b, f(a) = a, and
f(b) = b. Since ∣∣∣∣∣ f(b)− f(a)

1− f(a)f(b)

∣∣∣∣∣ =

∣∣∣∣ b− a1− ab

∣∣∣∣ = |ϕa(b)|,

by the Schwarz-Pick Theorem there exists some λ ∈ ∂B such that

f = ϕ−f(a) ◦ λϕa = ϕ−a ◦ λϕa

on B; that is, ϕ−a ◦ λϕa is analytic on B, and

f(z) =
λϕa(z) + a

1 + aλϕa(z)
=
λ(z − a) + a(1− az)

(1− az) + λa(z − a)

for all z ∈ B. Now, since f(b) = b, we obtain

λ(b− a) + a(1− ab)
(1− ab) + λa(b− a)

= b,
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which with some algebra (including factoring by grouping) leads to

(λ− 1)(b− a)(1− ab) = 0.

Since a 6= b and |ab| < 1, it follows that λ = 1. Thus f = ϕ−a ◦ϕa on B, and then by Proposition
8.24(3) we obtain f = ϕ−1

a ◦ ϕa on B. That is, f(z) = ϕ−1
a (ϕa(z)) = z for all z ∈ B. �

Exercise 8.30 (AN4.6.4a). Characterize the entire functions f such that |f | = 1 on ∂B.

Solution. Suppose that f is a nonconstant entire function such that |f | = 1 on ∂B. By Theorem
8.27 there exist a1, . . . , an ∈ B, k1, . . . , kn ∈ N, and λ ∈ ∂B such that

f(z) = λ
n∏
j=1

(
z − aj
1− ajz

)kj
for all z ∈ B. Let Ω = C \ {1/aj : 1 ≤ j ≤ n}, and define ω : Ω→ C by

ω(z) = λ
n∏
j=1

(
z − aj
1− ajz

)kj
for all z ∈ Ω. Since ω is analytic on Ω, B ⊆ Ω, and f − ω ≡ 0 on B, by the Identity Theorem it
follows that f − ω ≡ 0 on Ω. That is,

f(z) = λ
n∏
j=1

(
z − aj
1− ajz

)kj
= λϕk1a1(z) · · ·ϕknan(z)

for all z ∈ Ω, where there must be removable singularities at each 1/aj.
9

Fix 1 ≤ j ≤ n. If aj 6= 0,

lim
z→0

ϕaj(1/z) = lim
z→0

1/z − aj
1− aj/z

= lim
z→0

1− ajz
z − aj

= − 1

aj
∈ C∗,

and if aj = 0,

lim
z→0
|ϕaj(1/z)| = lim

z→0

1

|z|
= +∞.

Hence either limz→0 f(1/z) ∈ C∗ if aj 6= 0 for all j, or limz→0 |f(1/z)| = +∞ if aj = 0 for some
j. That is, f has either a removable singularity or a pole at ∞, and so f must be a polynomial
function by Exercise 7.23. In order for

f(z) =
λ(z − a1)k1 · · · (z − an)kn

(1− a1z)k1 · · · (1− anz)kn

to be a polynomial on C, the denominator must be a constant. In fact we must have

(1− a1z)k1 · · · (1− anz)kn = 1 + (higher order terms) ≡ 1,

which requires that n = 1 and a1 = 0. Thus, if f is nonconstant, we have

f(z) = λzk,

where k = k1 ≥ 1. If f is constant, then f ≡ λ for some unimodular λ since |f | = 1 on ∂B.

9It might be noticed that this already presents difficulties if aj 6= 0 for some j.
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Therefore entire functions f such that |f | = 1 on ∂B may be characterized by the formula
f(z) = λzk for some λ ∈ ∂B and k ≥ 0. �

Exercise 8.31 (AN4.6.4b). Characterize the functions f that are meromorphic on C such
that |f | = 1 on ∂B.

Solution. Let z1, . . . , zn be the zeros of f in B, with kj = ord(f, zj) for each 1 ≤ j ≤ n. Also
let w1, . . . , wm be the poles of f in B, with lj = ord(f, wj) for each 1 ≤ j ≤ m, so that

lim
z→wj

(z − wj)ljf(z) = bj ∈ C∗.

It follows that fϕ
lj
wj has a removable singularity at wj:

lim
z→wj

(fϕljwj)(z) = lim
z→wj

(z − wj)ljf(z)

(1− wjz)lj
=

bj
(1− |wj|2)lj

∈ C∗,

where of course |wj| < 1. Define h : B→ C by

h(z) = f(z)
m∏
j=1

ϕljwj(z)

for all z ∈ B, with

h(wj) =
bj

(1− |wj|2)lj

∏
p 6=j

ϕlpwp(wj), 1 ≤ j ≤ m,

in particular. Then h is continuous on B and analytic on B \ {w1, . . . , wm}, hence is analytic
on B by Corollary 4.22. By inspection it is clear that the zeros of h in B are z1, . . . , zn, with
ord(h, zj) = kj for each 1 ≤ j ≤ n. Since ϕwj(∂B) = ∂B by Proposition 8.24(4), and |f | = 1 on
∂B by hypothesis, it follows that |h| = 1 on ∂B as well. Thus, by Theorem 8.27 and its proof,
there exists some unimodular λ ∈ C such that

h(z) = λ
n∏
j=1

(
z − zj
1− zjz

)kj
for all z ∈ B, and hence

f(z)
m∏
j=1

(
z − wj
1− wjz

)lj
= λ

n∏
j=1

(
z − zj
1− zjz

)kj
(8.7)

on B. Letting Ω be the region of analyticity for f , then by the Identity Theorem equation (8.7)
holds on

Ω′ = Ω \
[
{1/zj : 1 ≤ j ≤ n} ∪ {1/wj : 1 ≤ j ≤ m}

]
,

and therefore

f(z) =

λ

n∏
j=1

(
z − zj
1− zjz

)kj
m∏
j=1

(
z − wj
1− wjz

)lj
for all z ∈ Ω′. �
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Exercise 8.32 (AN4.6.6). Suppose f : B → B is continuous on B and analytic on B. Let
Z(f) = {z1, . . . , zn} ⊆ B with ord(f, zj) = kj for 1 ≤ j ≤ n. Show that

|f(z)| ≤
n∏
j=1

∣∣∣∣ z − zj1− zjz

∣∣∣∣kj (8.8)

for all z ∈ B. Find a formula for f(z) if equality holds in (8.8) for some z ∈ B \ Z(f).

Solution. Define g : B→ C by

g(z) =
n∏
j=1

(
z − zj
1− zjz

)kj
,

which is analytic on B and continuous on B. As established in the proof of Theorem 8.27, the
function

(f/g)(z) = f(z)
n∏
j=1

(
1− zjz
z − zj

)kj
=

f(z)

ϕk1z1 (z) · · ·ϕknzn (z)

on B \ Z(f) has a continuous extension to B that is analytic on B. For any z ∈ ∂B,

|(f/g)(z)| = |f(z)|
|ϕz1(z)|k1 · · · |ϕzn(z)|kn

≤ |f(z)| ≤ 1,

since ϕzj(∂B) = ∂B by Proposition 8.24(4). Now,

M = max
z∈∂B
|(f/g)(z)| ≤ 1,

so by the Maximum Principle

max
z∈B
|(f/g)(z)| = max

z∈∂B
|(f/g)(z)| = M ≤ 1,

and therefore

|f(z)| ≤ |g(z)| =
n∏
j=1

∣∣∣∣ z − zj1− zjz

∣∣∣∣kj
for all z ∈ B.

Another consequence of the Maximum Principle is that either |f/g| < M on B or f/g is
constant on B. Thus, if there exists some a ∈ B \ Z(f) such that

|f(a)| =
n∏
j=1

∣∣∣∣ a− zj1− zja

∣∣∣∣kj ,
then |f(a)| = |g(a)| 6= 0, which implies |(f/g)(a)| = 1 ≥M and we conclude that f/g is constant
on B. That is, there exists some µ ∈ C such that |µ| = M ≤ 1 and f/g ≡ µ on B. Therefore

f(z) = µ
n∏
j=1

(
z − zj
1− zjz

)kj
for all z ∈ B. �
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9
The Poisson Integral

9.1 – The Poisson Integral Formula

Theorem 9.1. If f is continuous on B and analytic on B, then˛
∂B
f = 0, (9.1)

and

f(z) =
1

2πi

˛
∂B

f(w)

w − z
dw (9.2)

for all z ∈ B.

Proof. By Cauchy’s Theorem for Starlike Regions f has a primitive on B, and thus˛
Cr(0)

f = 0

for all 0 < r < 1 by the Fundamental Theorem of Path Integrals. Let ε > 0. Since f is uniformly
continuous on B, there exists some δ > 0 such that, for all z, w ∈ B, |z − w| ≤ δ implies
|f(z)− f(w)| < ε. Let 1− δ < r < 1, so that 0 < 1− r < δ. Since |eit − reit| = 1− r < δ for
any t ∈ [0, 2π], ∣∣∣∣˛

∂B
f

∣∣∣∣ =

∣∣∣∣˛
∂B
f − 1

r

˛
Cr(0)

f

∣∣∣∣ =

∣∣∣∣ˆ 2π

0

[
f(eit)− f(reit)

]
ieitdt

∣∣∣∣
≤
ˆ 2π

0

∣∣f(eit)− f(reit)
∣∣dt ≤ ˆ 2π

0

ε dt = 2πε,

and therefore (9.1) obtains.
Next, fix z ∈ B, and define g : B→ C by

g(w) =

{
f(w)−f(z)

w−z , w 6= z

f ′(z), w = z.
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Then g is continuous on B and analytic on B, so we apply (9.1) and Theorem 6.22 to obtain

0 =

˛
∂B
g =

˛
∂B

f(w)

w − z
dw − f(z)

˛
∂B

1

w − z
dw =

˛
∂B

f(w)

w − z
dw − 2πif(z),

which gives (9.2). �

Definition 9.2. The function P : B× R→ R given by

Pz(t) =
1− |z|2

|eit − z|2

for (z, t) ∈ B× R is called the Poisson kernel, and the function Q : B× R→ C given by

Qz(t) =
eit + z

eit − z
for (z, t) ∈ B× R is called the Cauchy kernel.

As the notation suggests, the Poisson kernel (resp. Cauchy kernel) may be regarded as a
family of functions Pz : R→ R (resp. Cz : R→ C) indexed by z ∈ B.

It is straightforward to verify that

Pz(t) = Re[Qz(t)],

and also

Preiθ(t) = Pr(t− θ),
and

Pr(t− θ) =
1− r2

1− 2r cos(t− θ) + r2
(9.3)

for any θ ∈ R and r ∈ [0, 1). Equation (9.3) in particular makes it clear that Pr(t−θ) = Pr(θ− t)
in general, so that each Pr is seen to be an even function on R, and by extension Pz is even for
each z ∈ B. Very generally, a Poisson integral is any integral with a Poisson kernel appearing
as a factor in the (complex-valued) integrand:ˆ b

a

Pz(t)F (t)dt.

In particular, a Poisson integral is an integral of the kind appearing in the Poisson Integral
Formula, which we first present on B, and then give on arbitrary discs Br(z0).

Theorem 9.3 (Poisson Integral Formula). If f : B → C is continuous on B and analytic
on B, then

f(z) =
1

2π

ˆ 2π

0

Pz(t)f(eit)dt

for all z ∈ B.

Corollary 9.4. For all z ∈ B,
1

2π

ˆ 2π

0

Pz(t)dt = 1.
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The Poisson Integral Formula naturally generalizes to an arbitrary disc in C with radius
r > 0 and center z0 as follows.

Theorem 9.5. If f is continuous on Br(z0) and analytic on Br(z0), then

f(z) =
1

2π

ˆ 2π

0

P(z−z0)/r(t)f(z0 + reit)dt

for all z ∈ Br(z0).

Exercise 9.6 (AN4.7.1). Prove that

1

2π

ˆ 2π

0

Qz(t)dt = 1.

Solution. If z = 0, then
1

2π

ˆ 2π

0

Q0(t)dt =
1

2π

ˆ 2π

0

dt = 1

obtains immediately. Suppose that z ∈ B′. Then, applying partial fraction decomposition,

1

2π

ˆ 2π

0

eit + z

eit − z
dt =

1

2π

(ˆ 2π

0

eit

eit − z
dt+

ˆ 2π

0

z

eit − z
dt

)
=

1

2πi

˛
∂B

1

w − z
dw +

1

2πi

˛
∂B

z

w(w − z)
dw

=
1

2πi

˛
∂B

2

w − z
dw − 1

2πi

˛
∂B

1

w
dw

By Theorem 6.22,

1

2π

ˆ 2π

0

Qz(t)dt = 2 wn(∂B, z)− wn(∂B, 0) = 2(1)− 1 = 1,

as desired. �

Exercise 9.7 (AN4.7.5). Let Ω be a bounded open set, let γ : [a, b] → C be a closed path
such that γ∗ = ∂Ω, and for some fixed z0 ∈ Ω let γδ = z0 + δ(γ − z0) for any real δ. Show that
if γ∗δ ⊆ Ω for all δ ∈ [0, 1), f is continuous on Ω, and f is analytic on Ω, then˛

γ

f = 0, (9.4)

and

wn(γ, z)f(z) =
1

2πi

˛
γ

f(w)

w − z
dw (9.5)

for all z ∈ Ω.

Solution. First we show that Ω is starlike with star center z0. Let z ∈ Ω, and consider the
open ray R = (z0, z,∞). Since Ω = Ω ∪ ∂Ω,

R = (R ∩ Ω) ∪ (R ∩ ∂Ω) ∪ (R ∩ C \ Ω),
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where S1 = R ∩ Ω and S2 = R ∩ C \ Ω are nonempty disjoint open sets in the topological
subspace R ⊆ C. (In particular S2 6= ∅ since Ω is given to be bounded.) However, S1 ∪ S2 6= R
since R is a connected set, and therefore R ∩ ∂Ω 6= ∅. Thus there exists some β ∈ R such that
β ∈ ∂Ω = γ∗. By hypothesis z0 + δ(β − z0) ∈ Ω for all δ ∈ [0, 1), which implies that [z0, β) ⊆ Ω.

Now, on the ray R, either β is between z0 and z, or z is between z0 and β. Suppose the
former is the case, so that β ∈ (z0, z) ⊆ R. Let Rβ = (β, z,∞), so that Rβ ⊆ R and

Rβ = (Rβ ∩ Ω) ∪ (Rβ ∩ ∂Ω) ∪ (Rβ ∩ C \ Ω).

The connectedness of Rβ implies that there exists some β 6= b ∈ Rβ such that b ∈ ∂Ω, where
[z0, b) ⊆ Ω since z0 + δ(b− z0) ∈ Ω for all δ ∈ [0, 1). However, [z0, β) ⊆ Ω and [z0, b) ⊆ Ω implies
that either [β, b) ⊆ Ω or [b, β) ⊆ Ω, depending on which of β or b is closer to z0. But either
β ∈ Ω or b ∈ Ω contradicts β, b ∈ ∂Ω. We conclude that z ∈ (z0, β), so [z0, z] ⊆ [z0, β) ⊆ Ω.
Since [z0, z] ⊆ Ω for all z ∈ Ω, it follows that Ω is starlike with star center z0.

By Cauchy’s Theorem for Starlike Regions f has a primitive on Ω, and thus˛
γδ

f = 0

for all 0 ≤ δ < 1 by the Fundamental Theorem of Path Integrals. Set

M = max
t∈[a,b]

|γ′(t)| and N = max
t∈[a,b]

|γ(t)− z0|.

Fix ε > 0. Since f is uniformly continuous on Ω, there exists some 0 < α < N such that, for all
z, w ∈ Ω, |z − w| < α implies

|f(z)− f(w)| < ε

M(b− a)
.

Let 1− α/N < δ < 1, so that

0 < 1− δ < α

N
.

Then for any t ∈ [0, 2π],

|γ(t)− γδ(t)| = |(1− δ)(γ(t)− z0)| = (1− δ)|γ(t)− z0| <
α

N
·N = α,

and so ∣∣∣∣˛
γ

f

∣∣∣∣ =

∣∣∣∣∣
˛
γ

f − 1

δ

˛
γδ

f

∣∣∣∣∣ =

∣∣∣∣ˆ b

a

f(γ(t))γ′(t)dt− 1

δ

ˆ b

a

f(γδ(t)) · δγ′(t)dt
∣∣∣∣

=

∣∣∣∣ˆ b

a

[
f(γ(t))− f(γδ(t))

]
γ′(t)dt

∣∣∣∣ ≤ ˆ b

a

∣∣f(γ(t))− f(γδ(t))
∣∣|γ′(t)|dt

≤
ˆ b

a

(
ε

M(b− a)
·M
)
dt = ε.

Since ε > 0 is arbitrary, we conclude that (9.4) holds.
Next, fix z ∈ Ω, and define g : Ω→ C by

g(w) =

{
f(w)−f(z)

w−z , w 6= z

f ′(z), w = z.
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Then g is continuous on Ω and analytic on Ω, so we apply (9.4) and Theorem 6.22 to obtain

0 =

˛
γ

g =

˛
γ

f(w)

w − z
dw − f(z)

˛
γ

1

w − z
dw =

˛
γ

f(w)

w − z
dw − 2πif(z),

which gives (9.5). �
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9.2 – The Dirichlet Problem

Recall from §3.2 that if a function u : Ω → R having continuous first- and second-order
partial derivatives on Ω satisfies Laplace’s equation uxx + uyy = 0 on Ω, then u is said to be
harmonic on Ω.

The Dirichlet problem is a type of boundary value problem that arises in different guises
in many areas of mathematics. In complex analysis the problem can be stated as follows on a
homologically simply connected bounded region Ω ⊆ C : “Find a continuous function u : Ω→ R
that is harmonic on Ω and satisfies a continuous boundary condition u0 : ∂Ω→ R.” In this
section we will consider the Dirichlet problem for a disc, wherein Ω = Br(z0) for some r > 0 and
z0 ∈ C. First, however, we establish that the solution of a given Dirichlet problem is unique.

Proposition 9.8. Let Ω be a homologically simply connected bounded region. If u1, u2 : Ω→ R
are each solutions to the Dirichlet problem

uxx + uyy = 0, u0 : ∂Ω→ R, (9.6)

then u1 ≡ u2.

Proof. Suppose u : Ω→ R satisfies the boundary value problem uxx + uyy = 0, u0 ≡ 0 on ∂Ω.
Then u is harmonic on Ω, continuous on Ω, and u(z) = u0(z) = 0 for all z ∈ ∂Ω, so that by the
Maximum and Minimum Principles for Harmonic Functions given in §5.4 we have

max
z∈Ω

u(z) = max
z∈∂Ω

u(z) = 0 and min
z∈Ω

u(z) = min
z∈∂Ω

u(z) = 0,

and hence u ≡ 0 on Ω.
Now suppose u1, u2 : Ω→ R satisfy the boundary value problem (9.6), so that u1 and u2 are

harmonic on Ω, continuous on Ω, and u1|∂Ω = u2|∂Ω = u0. It follows that u1 − u2 is harmonic
on Ω, continuous on Ω, and u1 − u2 ≡ 0 on ∂Ω. Hence u1 − u2 satisfies the boundary value
problem uxx + uyy = 0, u0 ≡ 0 on ∂Ω, so that u1 − u2 ≡ 0 on Ω. That is, u1 ≡ u2 on Ω. �

In examining the Dirichlet problem for a disc Br(z0), we start by formulating a solution in
the case when z0 = 0 and r = 1. The solution to the Dirichlet problem for an arbitrary disc
then easily follows.

Theorem 9.9. Suppose u0 : ∂B→ R is continuous, and define u : B→ R by

u(z) =

{
u0(z), z ∈ ∂B
1

2π

´ 2π

0
Pz(t)u0(eit)dt, z ∈ B.

Then u is continuous on B and harmonic on B.

Proof. Let f : B→ C be given by

f(z) =
1

2π

ˆ 2π

0

Qz(t)u0(eit)dt.

It is straightforward to show that u(z) = Re f(z) for z ∈ B. Since f is analytic on B by Lemma
6.26, and the real and imaginary parts of an analytic function are known to be harmonic
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functions, we conclude that u is harmonic on B. It follows immediately that u is continuous on
B as well, and it remains only to show that u is continuous on ∂B.

Let ε > 0. Let M be the maximum value of |u0(z)| for z ∈ ∂B. Since u0 is uniformly
continuous on ∂B, there exists some δ ∈ (0, π) such that∣∣u0(eiθ1)− u0(eiθ2)

∣∣ < ε

2
(9.7)

for any θ1, θ2 ∈ R with |θ1 − θ2| ≤ δ. Now,

Pr(δ) =
1− r2

1− 2r cos δ + r2

for any r ∈ (0, 1), so Pr(δ) → 0 as r → 1−, and there exists some s ∈ (0, 1) such that
Pr(δ) < ε/4M for all r ∈ (s, 1).

Let r ∈ (s, 1) and θ ∈ R be arbitrary. It follows from the Poisson Integral Formula that

1

2π

ˆ 2π

0

Pr(t− θ)dt = 1,

and since reiθ ∈ B with Preiθ(t) = Pr(t− θ),

u(reiθ)− u0(eiθ) =
1

2π

ˆ 2π

0

Pr(t− θ)u0(eit)dt− u0(eit) · 1

2π

ˆ 2π

0

Pr(t− θ)dt

=
1

2π

ˆ 2π

0

Pr(t− θ)
[
u0(eit)− u0(eiθ)

]
dt

=
1

2π

ˆ 2π−θ

−θ
Pr(τ)

[
u0(ei(τ+θ))− u0(eiθ)

]
dτ

=
1

2π

ˆ π

−π
Pr(τ)

[
u0(ei(τ+θ))− u0(eiθ)

]
dτ,

where the third equality follows from the substitution τ = t− θ, and the fourth equality follows
from the fact that the integrand

g(τ) = Pr(τ)
[
u0(ei(τ+θ))− u0(eiθ)

]
is a periodic function with period 2π. Now,∣∣u(reiθ)− u0(eiθ)

∣∣ =
1

2π

∣∣∣∣ˆ −δ
−π

g +

ˆ δ

−δ
g +

ˆ π

δ

g

∣∣∣∣ ≤ 1

2π

(ˆ −δ
−π
|g|+

ˆ δ

−δ
|g|+

ˆ π

δ

|g|
)
. (9.8)

Since Pr is increasing on [−π,−δ] and decreasing on [δ, π], and Pr(−δ) = Pr(δ), we haveˆ −δ
−π
|g| =

ˆ −δ
−π

Pr(τ)
∣∣u0(ei(τ+θ))− u0(eiθ)

∣∣dτ ≤ ˆ −δ
−π

2P (−δ)M dτ = 2M(π − δ)P (δ),

and similarly ˆ π

δ

|g| ≤
ˆ π

δ

2P (δ)M dτ = 2M(π − δ)P (δ).

Also, recalling (9.7) and our choice for δ,ˆ δ

−δ
|g| =

ˆ δ

−δ
Pr(τ)

∣∣u0(ei(τ+θ))− u0(eiθ)
∣∣dτ ≤ ˆ δ

−δ

ε

2
Pr(τ) dτ <

ε

2

ˆ 2π

0

Pr(τ) dτ = πε.
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Returning to (9.8), and recalling that Pr(δ) < ε/4M ,∣∣u(reiθ)− u0(eiθ)
∣∣ < 1

2π

[
4M(π − δ)Pr(δ) + πε

]
<

1

2π

[
(π − δ)ε+ πε

]
< ε.

We have now shown that

∀ε > 0 ∃s ∈ (0, 1) ∀r ∈ (s, 1) ∀θ ∈ R
(∣∣u(reiθ)− u0(eiθ)

∣∣ < ε
)
.

Fix w = eiϕ ∈ ∂B. Choose δ1 > 0 such that∣∣u0(eiθ1)− u0(eiθ2)
∣∣ < ε

2

for any θ1, θ2 ∈ R with |θ1 − θ2| ≤ δ1. Now, there exists some s ∈ (0, 1) such that

∀r ∈ (s, 1) ∀θ ∈ R
(∣∣u(reiθ)− u0(eiθ)

∣∣ < ε

2

)
.

Choose δ2 > 0 such that 1− δ2 > s, and set δ = min{δ1, δ2}. Let z ∈ Bδ(w) ∩ B. Then z = reiθ

for some r ∈ (s, 1] and θ ∈ R. If r = 1, then

|u(z)− u(w)| = |u0(eiθ)− u0(eiϕ)| < ε

2

since |θ − ϕ| < δ ≤ δ1. If r 6= 1, then∣∣u(z)− u0(eiθ)
∣∣ =

∣∣u(reiθ)− u0(eiθ)
∣∣ < ε

2

since

reiθ ∈ Bδ(w) ∩ B ⇒ 1 > r > 1− δ ≥ 1− δ2 > s ⇒ r ∈ (s, 1),

and thus

|u(z)− u(w)| ≤
∣∣u(reiθ)− u0(eiθ)

∣∣+
∣∣u0(eiθ)− u0(eiϕ)

∣∣ < ε

2
+
ε

2
= ε.

We conclude that, for all ε > 0, there exists some δ > 0 such that z ∈ Bδ(w) ∩ B implies
|u(z) − u(w)| < ε. Thus u is continuous at w, and since w ∈ ∂B is arbitrary it follows that
u : B→ R is continuous on ∂B. Therefore u is continuous on B. �

We now are in a position to present and prove a Poisson integral formula for harmonic
functions.

Theorem 9.10. If u : B→ R is continuous on B and harmonic on B, then

u(z) =
1

2π

ˆ 2π

0

Pz(t)u(eit)dt

for all z ∈ B.
More generally if u is continuous on Br(z0) and harmonic on Br(z0), then

u(z) =
1

2π

ˆ 2π

0

P(z−z0)/r(t)u(z0 + reit)dt

for all z ∈ Br(z0).
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Corollary 9.11 (Mean Value Property for Harmonic Functions). If u : Ω → R is
harmonic, z0 ∈ Ω, and Br(z0) ⊆ Ω, then

u(z0) =
1

2π

ˆ π

0

u(z0 + reit)dt.

Exercise 9.12 (AN4.7.2). Prove Harnack’s Inequality: If u : B → R is continuous on B,
nonnegative on B, and harmonic on B, then

1− r
1 + r

u(0) ≤ u(reiθ) ≤ 1 + r

1− r
u(0)

for all r ∈ [0, 1) and θ ∈ R.

Solution. Suppose u : B→ R is continuous on B, nonnegative on B, and harmonic on B. Fix
0 ≤ r < 1 and θ ∈ R. On [0, 2π] we have

Pr(t− θ) ≤
1− r2

1− 2r + r2
=

1 + r

1− r
by (9.3), and also

Pr(t− θ) ≥
1− r2

1 + 2r + r2
=

1− r
1 + r

.

Thus, since

u(0) =
1

2π

ˆ 2π

0

P0(t)u(eit)dt =
1

2π

ˆ 2π

0

u(eit)dt

by Theorem 9.10, and u(0) ≥ 0 by hypothesis, we obtain

u(reiθ) =
1

2π

ˆ 2π

0

Preit(t)u(eit)dt =
1

2π

ˆ 2π

0

Pr(t− θ)u(eit)dt

≤ 1

2π

ˆ 2π

0

1 + r

1− r
u(eit)dt =

1 + r

1− r
u(0),

and also

u(reiθ) =
1

2π

ˆ 2π

0

Pr(t− θ)u(eit)dt ≥ 1

2π

ˆ 2π

0

1− r
1 + r

u(eit)dt =
1− r
1 + r

u(0).

Combining these results yields Harnack’s Inequality. �

Exercise 9.13 (AN4.7.4). Prove that if u : Ω → R is harmonic on Ω, then u has a local
harmonic conjugate at each point of Ω.

Solution. Fix z0 ∈ Ω and let r > 0 such that Br(z0) ⊆ Ω. Then u is continuous on Br(z0) and
harmonic on Br(z0), and so Theorem 9.10 implies that

u(z) =
1

2π

ˆ 2π

0

P(z−z0)/r(t)u(z0 + reit)dt

for all z ∈ Br(z0). Define f : Br(z0)→ C by

f(z) =
1

2π

ˆ 2π

0

Q(z−z0)/r(t)u(z0 + reit)dt,
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which is analytic on Br(z0) by Lemma 6.26, and moreover

f(z) =
1

2π

ˆ 2π

0

Re[Q(z−z0)/r(t)]u(z0 + reit)dt+
i

2π

ˆ 2π

0

Im[Q(z−z0)/r(t)]u(z0 + reit)dt

makes plain that Re[f(z)] = u(z) since ReQw = Pw for any w ∈ B. Define v : Br(z0)→ R by
v(z) = Im[f(z)], so that f = u+ iv. By Theorem 4.28 conclude that v is harmonic on Br(z0),
and therefore v is a harmonic conjugate of u on Br(z0). �

Exercise 9.14 (AN4.7.6). Poisson Integral Formula for a Half Plane. Let f be analytic
on H = {z : Im z > 0} and continuous on H. If u = Re f , and there exists R > 0 and p < 1
such that |f(z)| ≤ |z|p for all z ∈ H ∩ AR,∞(0), then

u(x, y) =
1

π

ˆ ∞
−∞

yu(t, 0)

(t− x)2 + y2
dt

for all (x, y) = x+ iy with y > 0.

Solution. Note that x+ iy is being denoted by (x, y) in the formula, and t by (t, 0), owing to
tradition and also because the formula holds in R2 under appropriately adjusted hypotheses.

For r > 0 define γ1 : [−r, r]→ C by γ1(t) = t, define γ2 : [0, π]→ C by γ2(t) = reit, and let
γ : [0, 1]→ C be the concatenation γ = γ1 ∗ γ2. The path γ is closed, and by Proposition 3.28
we have ˛

γ

f =

ˆ
γ1

f +

ˆ
γ2

f.

Let Ωr = Br(0)∩H, a bounded open set shown in Figure 23. Then ∂Ωr = γ∗, and f is continuous
on Ωr and analytic on Ωr. By Exercise 9.7,

f(z) = wn(γ, z)f(z) =
1

2πi

˛
γ

f(w)

w − z
dw (9.9)

for any z ∈ Ωr. Also, for any z ∈ Ωr, the function

ϕ(w) =
f(w)

w − z
is continuous on Ωr and analytic on Ωr, so that˛

γ

ϕ = 0

γ1

γ2

r−r

Ωr

Figure 23.
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by Exercise 9.7, and hence
1

2πi

˛
γ

f(w)

w − z
dw = 0 (9.10)

for all z ∈ Ωr.
Now, from (9.9) and (9.10) we obtain, for all z = x+ iy ∈ Ωr,

f(z) =
1

2πi

˛
γ

f(w)

w − z
dw − 1

2πi

˛
γ

f(w)

w − z
dw =

1

2πi

[˛
γ

f(w)

w − z
− f(w)

w − z

]
dw

=
1

π

˛
γ

yf(w)

(w − z)(w − z)
dw =

1

π

ˆ
γ1

g(w)dw +
1

π

ˆ
γ2

g(w)dw,

where

g(w) =
yf(w)

(w − z)(w − z)
.

Fix z = x+ iy ∈ H. Let r > max{R, 2|z|} be arbitrary. We have z ∈ Ωr, |f(w)| ≤ |w|p for
all w ∈ γ∗2 , and also |w − z| > r and |w − z| > r for all w ∈ γ∗2 . Thus∣∣∣∣ˆ

γ2

g

∣∣∣∣ ≤ πr sup
w∈γ∗2

y|f(w)|
|w − z||w − z|

≤ πr · yr
p

r2
=

πy

r1−p , (9.11)

and since p < 1 it follows that

lim
r→∞

ˆ
γ2

g = 0,

and hence

lim
r→∞

Re

(ˆ
γ2

g

)
= 0 (9.12)

Next, ˆ
γ1

g =

ˆ r

−r

yf(t)

(t− z)(t− z)
dt =

ˆ r

−r

yu(t, 0)

(t− x)2 + y2
dt+ i

ˆ r

−r

yv(t, 0)

(t− x)2 + y2
dt,

and since ∣∣∣∣ yu(t, 0)

(t− x)2 + y2

∣∣∣∣ , ∣∣∣∣ yv(t, 0)

(t− x)2 + y2

∣∣∣∣ ≤ y|f(t)|
(t− x)2 + y2

≤ ytp

(t− x)2 + y2
≤ ytp

(t− x)2

for all t ∈ (−∞,−ρ] ∪ [ρ,∞) for sufficiently large ρ > max{|x|, R}, where the integralsˆ ∞
ρ

ytp

(t− x)2
dt and

ˆ ρ

−∞

ytp

(t− x)2
dt

converge by the p-Test for Integrals in §8.8 of the Calculus Notes, it follows by the Comparison
Test for Integrals and Proposition 8.36 in the same §8.8 thatˆ ∞

0

yu(t, 0)

(t− x)2 + y2
dt,

ˆ 0

−∞

yu(t, 0)

(t− x)2 + y2
dt,

ˆ ∞
0

yv(t, 0)

(t− x)2 + y2
dt,

ˆ 0

−∞

yv(t, 0)

(t− x)2 + y2
dt

are convergent. Therefore, in particular,

lim
r→∞

Re

(ˆ
γ1

g

)
= lim

r→∞

ˆ r

−r

yu(t, 0)

(t− x)2 + y2
dt =

ˆ ∞
−∞

yu(t, 0)

(t− x)2 + y2
dt ∈ R. (9.13)

http://faculty.bucks.edu/erickson/math242/Calculus.pdf
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From (9.12) and (9.13) we now have

u(x, y) = Re[f(z)] = lim
r→∞

Re[f(z)] = lim
r→∞

[
Re

(
1

π

ˆ
γ1

g

)
+ Re

(
1

π

ˆ
γ2

g

)]
=

1

π
lim
r→∞

Re

(ˆ
γ1

g

)
+

1

π
lim
r→∞

Re

(ˆ
γ2

g

)
=

1

π

ˆ ∞
−∞

yu(t, 0)

(t− x)2 + y2
dt,

as desired. �
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9.3 – The Poisson-Jensen Formula

Lemma 9.15. If f is analytic on Br(0), and continuous and nonvanishing on Br(0), then

ln |f(z)| = 1

2π

ˆ 2π

0

Pz/r(t) ln
∣∣f(reit)

∣∣ dt
for all z ∈ Br(0).

Proof. Suppose f is analytic on Br(0), and continuous and nonvanishing on Br(0). Then f ′/f
is analytic on Br(0), so by Cauchy’s Theorem for Starlike Regions it follows that f ′/f has a
primitive on Br(0), and therefore f ′/f has an analytic logarithm on Br(0) by Theorem 6.11.
Let g : Br(0)→ C such that f = exp(g) on Br(0). By Theorem 4.42(6)

|f(z)| = | exp(g(z))| = eRe g(z)

and so ln |f | = Re g. The function Re g : Br(0)→ R is harmonic by Theorem 4.28, and must
also be continuous on Br(0), so that by Theorem 9.10

ln |f(z)| = 1

2π

ˆ 2π

0

Pz/r(t) ln
∣∣f(reit)

∣∣ dt
for all z ∈ Br(0). �

Theorem 9.16 (Poisson-Jensen Formula). Suppose f : Br(0) → C is analytic on Br(0),
continuous on Br(0), and nonvanishing on Cr(0). If Z(f) = {ζ1, . . . , ζn} with ord(f, ζj) = kj
for 1 ≤ j ≤ n, then

ln |f(z)| =
n∑
j=1

kj ln

∣∣∣∣∣(z − ζj)rr2 − ζjz

∣∣∣∣∣+
1

2π

ˆ 2π

0

Pz/r(t) ln
∣∣f(reit)

∣∣ dt
for all z ∈ Br(0) \ Z(f).

The following result, known as Jensen’s Formula, obtains easily from the Poisson-Jensen
Formula simply by letting z = 0.

Corollary 9.17 (Jensen’s Formula). If f satisfies the hypotheses of the Poisson-Jensen
Formula and f(0) 6= 0, then

ln |f(0)| =
n∑
j=1

kj ln

∣∣∣∣ζjr
∣∣∣∣+

1

2π

ˆ 2π

0

ln
∣∣f(reit)

∣∣ dt.
Theorem 9.18. Suppose f is analytic and nonvanishing on Br(0). If Z(f,Br(0)) = {ζ1, . . . , ζn}
with ord(f, ζj) = kj for 1 ≤ j ≤ n, then

ln |f(z)| =
n∑
j=1

kj ln

∣∣∣∣∣(z − ζj)rr2 − ζjz

∣∣∣∣∣+
1

2π

ˆ 2π

0

Pz/r(t) ln
∣∣f(reit)

∣∣ dt
for all z ∈ Br(0) \ Z(f,Br(0)).
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Theorem 9.19 (Generalized Jensen’s Formula). Let f be analytic and not identically zero
on BR(0), with m = ord(f, 0). If (ζj)j=1 is a sequence consisting of all zeros of f in B′R(0) such
that ζj 6= ζk and |ζj| ≤ |ζk| whenever j < k, then

m ln r + ln

∣∣∣∣f (m)(0)

m!

∣∣∣∣ =

N(r)∑
j=1

kj ln

∣∣∣∣ζjr
∣∣∣∣+

1

2π

ˆ 2π

0

ln
∣∣f(reit)

∣∣ dt (9.14)

for any r ∈ (0, R), where kj = ord(f, ζj) and N(r) = max{j : ζj ∈ Br(0)}.

Proof. Fix r ∈ (0, R), so that Br(0) ⊆ BR(0). The set S = Z(f) ∩Br(0) must be finite, since
otherwise S must have a limit point in the compact set Br(0), and hence in BR(0), and then
the Identity Theorem would imply that f ≡ 0 on BR(0). Now, the finiteness of S implies the
finiteness of Z(f) ∩Br(0), and therefore N(r) ∈ N. In particular,

Z(f) ∩B′r(0) = {ζ1, . . . , ζN(r)}.

By Proposition 5.11, fm(0) 6= 0, and fk(0) = 0 for all 1 ≤ k ≤ m− 1, so that

f(z) =
∞∑
n=m

f (n)(0)

n!
zn (9.15)

for all z ∈ BR(0) by Theorem 4.29. Also there exists some function g that is analytic on BR(0),
with g(0) 6= 0, and such that

f(z) = zmg(z) (9.16)

for all z ∈ BR(0). From (9.15) and (9.16) we obtain, for z ∈ B′R(0),

g(z) = z−mf(z) =
∞∑
n=m

f (n)(0)

n!
zn−m =

f (m)(0)

m!
+

∞∑
n=m+1

f (n)(0)

n!
zn−m,

where we must have

g(0) =
f (m)(0)

m!
since the analyticity of g on BR(0) implies its continuity at 0. We have Z(g) = Z(f) \ {0} by
Proposition 5.8, with ord(g, ζj) = ord(f, ζj) = kj for all j ≥ 1.

We now see that g is analytic and nonvanishing on Br(0), with

Z(g,Br(0)) = Z(g) ∩Br(0) = {ζ1, . . . , ζN(r)}

and ord(g, ζj) = kj for each 1 ≤ j ≤ N(r). By Theorem 9.18,

ln |g(z)| =
N(r)∑
j=1

kj ln

∣∣∣∣∣(z − ζj)rr2 − ζjz

∣∣∣∣∣+
1

2π

ˆ 2π

0

Pz/r(t) ln
∣∣g(reit)

∣∣ dt,
and since P0 ≡ 1,

ln |g(0)| =
N(r)∑
j=1

kj ln

∣∣∣∣ζjr
∣∣∣∣+

1

2π

ˆ 2π

0

ln
∣∣g(reit)

∣∣ dt.
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Now, for t ∈ [0, 2π],

ln
∣∣g(reit)

∣∣ = ln
∣∣(reit)−mf(reit)

∣∣ = ln
(
r−m

∣∣f(reit)
∣∣)= −m ln r + ln

∣∣f(reit)
∣∣

so that

ln

∣∣∣∣f (m)(0)

m!

∣∣∣∣ =

N(r)∑
j=1

kj ln

∣∣∣∣ζjr
∣∣∣∣−m ln r +

1

2π

ˆ 2π

0

ln
∣∣f(reit)

∣∣ dt,
whence (9.14) results. �

Exercise 9.20 (AN4.8.2). Let f have set of poles P (f) = {p1, . . . , pm} ⊆ B′r(0), with
ord(f, pj) = `j. Suppose f is analytic on Br(0) \ P (f), continuous on Br(0) \ P (f), and
nonvanishing on Cr(0). If Z(f) = {ζ1, . . . , ζn} ⊆ B′r(0) with ord(f, ζj) = kj, then

ln |f(0)| =
n∑
j=1

kj ln
∣∣∣ζj
r

∣∣∣− m∑
j=1

`j ln
∣∣∣pj
r

∣∣∣+
1

2π

ˆ 2π

0

ln
∣∣f(reit)

∣∣ dt.
Solution. First suppose that r = 1. The function

g(z) =
m∏
j=1

(z − pj)`jf(z)

has a removable singularity at each pj by Theorem 5.10(1), so that g has continuous extension to
B which, by Corollary 4.22, is analytic on B. Theorem 7.10(1) also indicates that the extended
function is nonvanishing on P (f). Then, since 1/pj /∈ B for each 1 ≤ j ≤ m, we conclude that

h(z) =
m∏
j=1

g(z)

(1− pjz)`j
=

m∏
j=1

(
z − pj
1− pjz

)̀
j

f(z)

is continuous on B, analytic on B, and nonvanishing on ∂B. Also we have Z(h) = Z(f) with
ord(h, ζj) = ord(f, ζj) = kj for each 1 ≤ j ≤ n, and h(0) 6= 0. Therefore, by the Poisson-Jensen
Formula,

ln |h(z)| =
n∑
j=1

kj ln

∣∣∣∣∣ z − ζj1− ζjz

∣∣∣∣∣+
1

2π

ˆ 2π

0

Pz(t) ln
∣∣h(eit)

∣∣ dt
for all z ∈ B \ Z(h), and thus

ln |h(0)| =
n∑
j=1

kj ln |ζj|+
1

2π

ˆ 2π

0

ln
∣∣h(eit)

∣∣ dt. (9.17)

By Proposition 8.24(4), for each 1 ≤ j ≤ m,∣∣∣∣ z − pj1− pjz

∣∣∣∣ =
∣∣ϕpj(z)

∣∣ = 1

for all z ∈ ∂B, and so for all t ∈ [0, 2π],

ln
∣∣h(eit)

∣∣ = ln
∣∣f(eit)

∣∣ .
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Now,

ln |h(0)| = ln

∣∣∣∣∣f(0)
m∏
j=1

p
`j
j

∣∣∣∣∣ = ln |f(0)|+ ln

(
m∏
j=1

|pj|`j
)

= ln |f(0)|+
m∑
j=1

`j ln |pj|,

and so from (9.17) we obtain

ln |f(0)| =
n∑
j=1

kj ln |ζj| −
m∑
j=1

`j ln |pj|+
1

2π

ˆ 2π

0

ln
∣∣f(eit)

∣∣ dt. (9.18)

This proves the statement of the theorem in the case when r = 1.
Next, let the radius r > 0 be arbitrary, let zj = ζj/r for each 1 ≤ j ≤ n, and let qj = pj/r for

each 1 ≤ j ≤ m, so that {q1, . . . , qm} ⊆ B. Define F : B \ {q1, . . . , qm} → C by F (z) = f(rz).
Then

P (F ) = {q1, . . . , qm} ⊆ B \ {0}

with ord(F, qj) = ord(f, pj) = `j for each 1 ≤ j ≤ m. Moreover F is analytic on B \ P (F ),
continuous on B \ P (F ), nonvanishing on ∂B, and

Z(F ) = {z1, . . . , zn} ⊆ B \ {0}

with ord(F, zj) = ord(f, ζj) = kj. All necessary hypotheses are satisfied to permit the employ-
ment of (9.18) to obtain

ln |F (0)| =
n∑
j=1

kj ln |zj| −
m∑
j=1

`j ln |qj|+
1

2π

ˆ 2π

0

ln
∣∣F (eit)

∣∣ dt,
and therefore

ln |f(0)| =
n∑
j=1

kj ln
∣∣∣ζj
r

∣∣∣− m∑
j=1

`j ln
∣∣∣pj
r

∣∣∣+
1

2π

ˆ 2π

0

ln
∣∣f(reit)

∣∣ dt
as desired. �

Exercise 9.21 (AN4.8.3). Let N(r) be defined as in Theorem 9.19, the Generalized Jensen’s
Formula, and let

n(r) =

N(r)∑
j=1

kj,

the sum of the multiplicities of the zeros of f in B′r(0), where we take n(r) = 0 if f has no zeros
in B′r(0).10 Show that

ˆ r

0

n(t)

t
dt =

N(r)∑
j=1

kj ln
r

|ζj|
.

10This is the same definition of n(r) that is given by [AN].
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Solution. Assume N(r) ≥ 2, let S = {1, . . . , N(r)− 1}, and define A ⊆ S by

A = {p ∈ S : |ζp| < |ζp+1|} = {p1, . . . , ps},

where we take pk < p` whenever k < `. Thus,

0 < |ζ1| = · · · = |ζp1| < |ζp1+1| = · · · = |ζp2| < · · · < |ζps+1| = · · · = |ζN(r)| < r

Let r0 = 0, r` = |ζp` | for each 1 ≤ ` ≤ s, rs+1 = |ζps+1|, and rs+2 = r. Also let ps+1 = N(r).
Then

n(t) =


0, t ∈ [0, r1]∑p1

j=1 kj, t ∈ (r1, r2]
...

...∑ps+1

j=1 kj, t ∈ (rs+1, rs+2],

and so ˆ r

0

n(t)

t
dt =

s+1∑
`=0

ˆ r`+1

r`

n(t)

t
dt =

s+1∑
`=1

ˆ r`+1

r`

n(t)

t
dt, (9.19)

the last equality owing toˆ r1

0

n(t)

t
dt = lim

b→0+

ˆ r1

b

n(t)

t
dt = lim

b→0+

ˆ r1

b

(0)dt = 0.

Now,

s+1∑
`=1

ˆ r`+1

r`

n(t)

t
dt =

s+1∑
`=1

ˆ r`+1

r`

(
1

t

p∑̀
j=1

kj

)
dt =

s+1∑
`=1

(
p∑̀
j=1

kj ln
r`+1

r`

)

=

p1∑
j=1

kj ln
r2

r1

+

p2∑
j=1

kj ln
r3

r2

+

p3∑
j=1

kj ln
r4

r3

+ · · ·+
ps+1∑
j=1

kj ln
rs+2

rs+1

=

(
ln
r2

r1

+ ln
r3

r2

+ · · ·+ ln
rs+2

rs+1

) p1∑
j=1

kj +

(
ln
r3

r2

+ ln
r4

r3

+ · · ·+ ln
rs+2

rs+1

) p2∑
j=p1+1

kj

+

(
ln
r4

r3

+ ln
r5

r4

+ · · ·+ ln
rs+2

rs+1

) p3∑
j=p2+1

kj + · · ·+ ln
rs+2

rs+1

ps+1∑
j=ps+1

kj

= ln
rs+2

r1

p1∑
j=1

kj + ln
rs+2

r2

p2∑
j=p1+1

kj + ln
rs+2

r3

p3∑
j=p2+1

kj + · · ·+ ln
rs+2

rs+1

ps+1∑
j=ps+1

kj

=

p1∑
j=1

kj ln
rs+2

|ζj|
+

p2∑
j=p1+1

kj ln
rs+2

|ζj|
+

p3∑
j=p2+1

kj ln
rs+2

|ζj|
+ · · ·+

ps+1∑
j=ps+1

kj ln
rs+2

|ζj|

=

ps+1∑
j=1

kj ln
rs+2

|ζj|
=

N(r)∑
j=1

kj ln
r

|ζj|
,

which together with (9.19) gives the desired result. �
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Exercise 9.22 (AN4.8.4). Let f be as in Theorem 9.19, the Generalized Jensen’s Formula,
and fix r ∈ (0, R). Show that if

M(r) = max{|f(z)| : z ∈ Cr(0)},
then ˆ r

0

n(t)

t
dt ≤ ln

(
M(r)m!

rm|f (m)(0)|

)
(9.20)

Solution. First we observe that 0 < |ζj| < r implies r/|ζj| > 1, and hence

ln
r

|ζj|
> 0

for each j. Now, from the Generalized Jensen’s Formula,

−
N(r)∑
j=1

kj ln

∣∣∣∣ζjr
∣∣∣∣ = −m ln r − ln

∣∣∣∣f (m)(0)

m!

∣∣∣∣+
1

2π

ˆ 2π

0

ln
∣∣f(reit)

∣∣ dt,
and hence

N(r)∑
j=1

kj ln
r

|ζj|
= ln

1

rm
+ ln

∣∣∣∣ m!

f (m)(0)

∣∣∣∣+
1

2π

ˆ 2π

0

ln
∣∣f(reit)

∣∣ dt
≤ ln

1

rm
+ ln

∣∣∣∣ m!

f (m)(0)

∣∣∣∣+
1

2π

ˆ 2π

0

ln[M(r)] dt

= ln
1

rm
+ ln

m!

|f (m)(0)|
+ ln[M(r)] = ln

(
M(r)m!

rm|f (m)(0)|

)
.

This result, together with the result of Exercise 9.21, delivers (9.20). �
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10
Analytic Continuation

10.1 – Natural Boundaries

If f is analytic on Ω, then an analytic extension of f to an open set Ω′ ⊇ Ω is an analytic
function g : Ω′ → C such that f ≡ g on Ω.

Definition 10.1. Let

f(z) =
∞∑
n=0

an(z − z0)n (10.1)

have radius of convergence r ∈ (0,∞). A point z∗ ∈ Cr(z0) is a singular point of f if f does
not have an analytic extension to an open set Ω ⊇ Br(z0) ∪ {z∗}. If every point on Cr(z0) is a
singular point of f , then Cr(z0) is called the natural boundary for f .

Lemma 10.2. Let f given by (10.1) have radius of convergence r ∈ (0,∞), and let r(t) be the
radius of convergence of the power series representation of f about

zt = (1− t)z0 + tz∗

for each t ∈ (0, 1). Then r(t) ≥ (1− t)r for all t ∈ (0, 1).

Proof. Let 0 < t < 1 be arbitrary. Since B(1−t)r(zt) ⊆ Br(z0) and f is analytic on Br(z0)
by Proposition 4.31(1), it follows that f is analytic on B(1−t)r(zt). By Theorem 4.29 f is
representable by power series in B(1−t)r(zt), and in particular

f(z) =
∞∑
n=0

f (n)(zt)

n!
(z − zt)n (10.2)

for all z ∈ B(1−t)r(zt), with the series converging absolutely on B(1−t)r(zt). Since the series at
right in (10.2) is the power series representation of f about zt, Theorem 4.2(1) implies that
r(t) ≥ (1− t)r. �

Proposition 10.3. Let f given by (10.1) have radius of convergence r ∈ (0,∞), let z∗ ∈ Cr(z0),
and let r(t) be the radius of convergence of the power series representation of f about

zt = (1− t)z0 + tz∗
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for each t ∈ (0, 1). Then the following statements are equivalent.

1. z∗ is a singular point of f .
2. r(τ) = (1− τ)r for some τ ∈ (0, 1).
3. r(t) = (1− t)r for all t ∈ (0, 1).

Proof.
(1) → (3): Suppose there exists some τ ∈ (0, 1) such that r(τ) 6= (1− τ)r. Then r(τ) > (1− τ)r
by Lemma 10.2, so there exists some ε > 0 such that r(τ) = (1− τ)r + ε. That is, the power
series representation of f about zτ ,

∞∑
n=0

bn(z − zτ )n,

has radius of convergence r(τ) = (1− τ)r + ε, implying that the series converges absolutely on
Br(τ)(zτ ). Let Ω = Br(z0) ∪Bε(z

∗), and note that Bε(z
∗) ⊆ Br(τ)(zτ ) since

|z∗ − zτ | =
∣∣z∗ − (1− τ)z0 − τz∗

∣∣ = (1− τ)|z∗ − z0| = (1− τ)r,

and so for any z ∈ Bε(z
∗),

|z − zτ | ≤ |z∗ − zτ |+ |z − z∗| < (1− τ)r + ε = r(τ).

Define g : Ω→ C by

g(z) =

{∑∞
n=0 an(z − z0)n, z ∈ Br(z0)∑∞
n=0 bn(z − zτ )n, z ∈ Bε(z

∗)

The function g is well-defined on S = Bε(z
∗) ∩Br(z0) ⊆ Br(τ)(zτ ), since for each z ∈ S,

∞∑
n=0

bn(z − zτ )n = f(z) =
∞∑
n=0

an(z − z0)n.

Also g is analytic on Ω since, by Proposition 3.14(1), it is analytic on Bε(z
∗) and Br(z0). Finally,

it is clear that f ≡ g on Br(z0). Therefore g is an analytic extension of f to an open set
containing Br(z0) ∪ {z∗}, and we conclude that z∗ is not a singular point of f .

(3) → (2): This is obvious.

(2) → (1): Suppose z∗ ∈ Cr(z0) is not a singular point of f . Then there exists an analytic
function g : Ω→ C such that Ω ⊇ Br(z0) ∪ {z∗} and f ≡ g on Br(z0). Fix t ∈ (0, 1). Since Ω
is open, there exists some δ > 0 such that Bδ(z

∗) ⊆ Ω, and consequently there is some ε > 0
sufficiently small that B = B(1−t)r+ε(zt) ⊆ Ω. By Theorem 4.29 there exists a sequence (cn)∞n=0

in C such that

g(z) =
∞∑
n=0

cn(z − zt)n

for all z ∈ B. Let B′ = B(1−t)r(zt). Since B′ ⊆ Br(z0), f ≡ g on B′; so since B′ ⊆ B,

f(z) =
∞∑
n=0

cn(z − zt)n
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for all z ∈ B′. Thus
∑
cn(z− zt)n is the power series representation of f about zt, and its radius

of convergence is seen to be

r(t) ≥ (1− t)r + ε > (1− t)r.

Therefore if z∗ is not a singular point of f , then r(t) > (1 − t)r for all t ∈ (0, 1). The
contrapositive states that if r(τ) ≤ (1− τ)r for some τ ∈ (0, 1), then z∗ is a singular point of f .
Lemma 10.2, of course, makes clear that r(τ) < (1− τ)r is never possible. �

Theorem 10.4. Let f given by (10.1) have radius of convergence r ∈ (0,∞). Then f has at
least one singular point on Cr(z0).

Proof. Suppose that f has no singular point on Cr(z0). Then for each z ∈ Cr(z0) there exists
some δz > 0 and some function gz analytic on Ωz = Br(z0) ∪Bδz(z) such that gz ≡ f on Br(z0).
Let Bz = Bδz(z) for each z. Now, {Bz : z ∈ Cr(z0)} is an open cover for the compact set Cr(z0),
and so there can be found z1, . . . , zm ∈ Cr(z0) such that {Bzk : 1 ≤ k ≤ m} is a finite subcover.
For each 1 ≤ k ≤ m we have analytic gzk : Ωzk → C such that gzk ≡ f on Br(z0).

Let

Ω =
m⋃
k=1

Ωzk = Br(z0) ∪

(
m⋃
k=1

Bzk

)
,

and define g : Ω→ C by

g(z) =

{
f(z), z ∈ Br(z0)

gzk(z), z ∈ Bzk .

For any 1 ≤ k ≤ m and z ∈ Br(z0) ∩ Bzk we have gzk(z) = f(z), and so it is clear that g is
well-defined at least on Br(z0). Suppose 1 ≤ j < k ≤ m are such that Bzj ∩Bzk 6= ∅. For any

z ∈ Sjk := Bzj ∩Bzk ∩Br(z0)

we have

gzj(z) = f(z) = gzk(z),

and since Sjk is a nonempty open set in Bzj ∩ Bzk , we see that Z(gzj − gzk) has a limit point
in Bzj ∩ Bzk , and therefore gzj − gzk ≡ 0 on Bzj ∩ Bzk by the Identity Theorem. That is,
gzj(z) = gzk(z) for all z ∈ Bzj ∩Bzk , and we conclude that g is well-defined throughout Ω.

Now, Br(z0) ⊆ Ω since Cr(z0) is covered by {Bzk : 1 ≤ k ≤ m}, and g is analytic on Ω such
that g ≡ f on Br(z0). By Exercise 2.47 there exists some ε > 0 such that Br+ε(z0) ⊆ Ω, and
since g is analytic on Br+ε(z0) there is a sequence of complex numbers (bn)∞n=0 such that

g(z) =
∞∑
n=0

bn(z − z0)n

for all z ∈ Br+ε(z0). However,

∞∑
n=0

bn(z − z0)n = g(z) = f(z) =
∞∑
n=0

an(z − z0)n



283

for all z ∈ Br(z0), so that an = bn for all n by Corollary 4.33, and therefore

g(z) =
∞∑
n=0

an(z − z0)n

for all z ∈ Br+ε(z0). This implies that
∑
an(z− z0)n has radius of convergence ρ ≥ r+ δ, which

is a contradiction.
Therefore f must have at least one singular point on Cr(z0). �

Lemma 10.5. Let n ∈ N. If

ϕ(z) =
zn + zn+1

2
for all z ∈ C, then the following hold.

1. ϕ(B) ⊆ B.
2. For any ε > 0 there exists some r > 1 such that ϕ(Br(0)) ⊆ B ∪Bε(1).

Theorem 10.6 (Ostrowski-Hadamard Gap Theorem). Let s > 1, let (nk)
∞
k=1 be a sequence

in N such that nk+1/nk ≥ s for all k, and let (ak)
∞
k=1 be a sequence in C. If

f(z) =
∞∑
k=1

akz
nk

and the radius of convergence of the series is 1, then ∂B is the natural boundary for f .

Proof. Suppose 1 is not a singular point of f , so there exists some ε > 0 and analytic function
g : B ∪Bε(1)→ C such that g ≡ f on B. Let p ∈ N be such that 1 < (p+ 1)/p < s, and let ϕ
be defined as in Lemma 10.5. Then ϕ(B) ⊆ B by the same lemma, and there exists some r > 1
such that ϕ(Br(0)) ⊆ B ∪Bε(1). By the Chain Rule the function h = g ◦ ϕ is analytic on Br(0),
and for any z ∈ B,

h(z) = g(ϕ(z)) = f(ϕ(z)) =
∞∑
k=1

ak[ϕ(z)]nk =
∞∑
k=1

ak

(
zp + zp+1

2

)nk
=
∞∑
k=1

ak2
−nk
(
zp + zp+1

)nk =
∞∑
k=1

[
ak2

−nk
nk∑
n=0

(
nk
n

)
zp(nk−n)z(p+1)n

]

=
∞∑
k=1

[
ak2

−nk
nk∑
n=0

(
nk
n

)
zpnk+n

]
, (10.3)

since ϕ(z) ∈ B. We see that the series (10.3) converges on B, and therefore is absolutely
convergent on B by Theorem 4.2.

Now, for any k ∈ N,

p+ 1

p
< s ≤ nk+1

nk
⇒ pnk + nk < pnk+1,

and so because the kth term in (10.3) is

ak2
−nk
[(
nk
0

)
zpnk +

(
nk
1

)
zpnk+1 + · · ·+

(
nk
nk

)
zpnk+nk

]
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whilst the (k + 1)st term is

ak+12−nk+1

[(
nk+1

0

)
zpnk+1 +

(
nk+1

1

)
zpnk+1+1 + · · ·+

(
nk+1

nk+1

)
zpnk+1+nk+1

]
,

it follows that each power of z that appears in (10.3) does so only once. Thus, since (10.3) is
absolutely convergent on B, it can be rearranged as a power series

∑
bnz

n. On the other hand,
by Theorem 4.29, the analyticity of h on Br(0) implies there is a sequence of complex numbers
(cn)∞n=0 such that

h(z) =
∞∑
n=0

cnz
n

for all z ∈ Br(0). But then
∑
bnz

n =
∑
cnz

n = h(z) for all z ∈ B, so by Corollary 4.16 we
conclude that bn = cn for all n ≥ 0, and thus

∑
cnz

n is the series (10.3) rearranged as a power
series. This leads us to conclude that (10.3) converges absolutely on Br(0); that is,

∞∑
n=0

|cn||z|n ∈ C

for all z ∈ Br(0). Reversing the rearrangement then yields

∞∑
k=1

[
|ak|2−nk

nk∑
n=0

(
nk
n

)
|z|pnk+n

]
∈ C,

which, recalling that zn appears at most once in (10.3) for each n ≥ 0, finally gives
∞∑
k=1

|ak|2−nk
(
|z|p + |z|p+1

)nk ∈ C

for all z ∈ Br(0).
Fix w ∈ Br(0) \ B, so 1 < |w| < r, and also

|w|p > 1 and
1 + |w|

2
> 1.

Now,

2−nk
(
|w|p + |w|p+1

)nk =

(
|w|p + |w|p+1

2

)nk
=

[
|w|p

(
1 + |w|

2

)]nk
> 1

for each k ≥ 1, and if we let z ∈ C be such that

|z| = |w|p
(

1 + |w|
2

)
,

then
∞∑
k=1

|ak||z|nk =
∞∑
k=1

|ak|2−nk
(
|w|p + |w|p+1

)nk ∈ C;

that is,
∑
akz

nk converges for some z such that |z| > 1, contradicting the hypothesis that∑
akz

nk has radius of convergence 1. Therefore 1 must be a singular point of f .
Now suppose that some arbitrary z∗ ∈ ∂B is not a singular point of f , so there exists some

ε > 0 and analytic function g : B ∪Bε(e
it)→ C such that g ≡ f on B. Let t ∈ [0, 2π) be such

that z∗ = eit, and define ρ : C→ C to be the rotation ρ(z) = eitz.



285

Since ρ(B) ⊆ B, we may define F = f ◦ ρ, where

F (z) = f(ρ(z)) =
∞∑
k=1

ak(ρ(z))nk =
∞∑
k=1

ak(e
itz)nk =

∞∑
k=1

ake
itnkznk =

∞∑
k=1

αkz
nk (10.4)

for each z ∈ B, setting αk = ake
itnk for each k. Note that |αk| = |ak| implies that the radius of

convergence of
∑
αkz

nk is 1.
Since ρ(B∪Bε(1)) = B∪Bε(e

it), we may define G = g ◦ ρ, which is analytic on B∪Bε(1) by
the Chain Rule. For z ∈ B we have

G(z) = g(ρ(z)) = f(ρ(z)) = F (z),

since ρ(z) ∈ B and g ≡ f on B. It follows that G is an analytic continuation of F to an
open set containing B ∪ {1}, which is to say 1 is not a singular point for F as given by (10.4),
contradicting the foregoing argument involving f and

∑
akz

nk . Therefore z∗ must be a singular
point for f , and we conclude that f has no singular points on ∂B. �

Exercise 10.7 (AN4.9.3). Let

f(z) =
∞∑
n=0

an(z − z0)n (10.5)

have radius of convergence r ∈ (0,∞). If z1 ∈ Br(z0), then for some sufficiently small ρ > 0
the series (10.5) may be rearranged to become a power series with center z1 that is in fact the
power series representation of f at z1. Specifically we obtain

f(z) =
∞∑
k=0

[
∞∑
n=k

(
n

k

)
an(z1 − z0)n−k

]
(z − z1)k (10.6)

for all z ∈ Bρ(z1). Confirm this, and make an argument for why, if (10.6) converges at some
z /∈ Br(z0), it does not then follow that (10.5) converges at z in contradiction to Theorem 4.2(1)
which states that (10.5) must diverge outside of Br(z0).

Solution. To start, we observe that ρ must be such that |z1 − z0| + ρ < r. Then for any
z ∈ Bρ(z1) we have

|z − z0| ≤ |z − z1|+ |z1 − z0| < ρ+ (r − ρ) = r,

and hence Bρ(z1) ⊆ Br(z0). Moreover, since (10.5) converges absolutely on Br(z0) by Theorem
4.2, and |z − z1|+ |z1 − z0| < r, it follows that

∞∑
n=0

|an|
(
|z − z1|+ |z1 − z0|

)n
< +∞.

By the Binomial Theorem,(
|z − z1|+ |z1 − z0|

)n
=

n∑
k=0

(
n

k

)
|z1 − z0|n−k|z − z1|k,
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and so
∞∑
n=0

|an|
n∑
k=0

(
n

k

)
|z1 − z0|n−k|z − z1|k =

∞∑
n=0

n∑
k=0

(
n

k

)
|an||z1 − z0|n−k|z − z1|k < +∞.

We then obtain
∞∑
n=0

∞∑
k=0

(
n

k

)
|an||z1 − z0|n−k|z − z1|k < +∞

since
(
n
k

)
= 0 for all k > n, so the double series

∞∑
n=0

∞∑
k=0

(
n

k

)
an(z1 − z0)n−k(z − z1)k (10.7)

is absolutely convergent on Bρ(z1), and therefore interchanging the order of summation will not
alter its value. That is,

f(z) =
∞∑
n=0

an(z − z0)n =
∞∑
n=0

an
[
(z − z1) + (z1 − z0)

]n
=
∞∑
n=0

n∑
k=0

(
n

k

)
an(z1 − z0)n−k(z − z1)k =

∞∑
n=0

∞∑
k=0

(
n

k

)
an(z1 − z0)n−k(z − z1)k

=
∞∑
k=0

∞∑
n=0

(
n

k

)
an(z1 − z0)n−k(z − z1)k =

∞∑
k=0

[
∞∑
n=0

(
n

k

)
an(z1 − z0)n−k

]
(z − z1)k

=
∞∑
k=0

[
∞∑
n=k

(
n

k

)
an(z1 − z0)n−k

]
(z − z1)k

for all z ∈ Bρ(z1), which confirms (10.6).
Suppose now that (10.6) converges for some z /∈ Br(z0), so that z /∈ Bρ(z1). If the convergence

is conditional, then the interchange of the order of summation done above (the fifth equality)
may not hold since the value of a conditionally convergent series is not necessarily invariant
under rearrangements, and thus we cannot conclude that

∑
an(z − z0)n is convergent. If the

convergence is absolute, then
∞∑
k=0

∣∣∣∣∣
∞∑
n=k

(
n

k

)
an(z1 − z0)n−k

∣∣∣∣∣ |z − z1|k < +∞;

but this does not imply that
∞∑
k=0

[
∞∑
n=k

(
n

k

)
|an||z1 − z0|n−k

]
|z − z1|k < +∞,

which is to say the double series (10.7) is not necessarily absolutely convergent, and once again
interchanging the order of summation to obtain (10.5) cannot be justified. �
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10.2 – Analytic Continuation Along a Curve

Definition 10.8. A function element is an ordered pair (f,B), where B is an open disc and
f is an analytic function on B. If B ⊆ Ω, then (f,B) is called a function element in Ω; and
if z ∈ B, then (f,B) is called a function element at z. Two function elements (f,B) and
(g,D) are direct analytic continuations of each other if B ∩D 6= ∅ and f ≡ g on B ∩D,
in which case we write

(f,B) ` (g,D).

A chain is a finite sequence of function elements C = (fk, Bk)
n
k=1 such that

(fk, Bk) ` (fk+1, Bk+1)

for each 1 ≤ k ≤ n−1, in which case we say (fn, Bn) is the analytic continuation of (f1, B1)
along C. In general, two function elements are analytic continuations of each other if there
exists a chain that starts with one and ends with the other.

A chain in Ω is a chain consisting entirely of function elements in Ω. Two function
elements are analytic Ω-continuations of each other if there exists a chain in Ω that starts
with one and ends with the other.

If (f1, B1) and (f2, B2) are direct analytic continuations of each other, then the function
F : B1 ∪B2 → C given by

F (z) =

{
f1(z), z ∈ B1

f2(z), z ∈ B2

is in fact an analytic continuation of f1 from B1 to B1 ∪B2, and also an analytic continuation of
f2 from B2 to B1 ∪B2. In contrast, if for some n ≥ 3 the function element (fn, Bn) is given to
be an analytic continuation of (f1, B1) along a chain C, and B =

⋃n
k=1Bk, it is not necessarily

the case that F : B → C given by

F (z) =


f1(z), z ∈ B1

...

fn(z), z ∈ Bn

is an analytic extension of f1 to B, even if B1 ∩Bn 6= ∅.11

Definition 10.9. Let (f,B) and (g,D) be function elements, and let γ : [a, b]→ C be a curve
such that γ(a) ∈ B and γ(b) ∈ D. If there is a chain C = (fk, Bk)

n
k=1 with (f1, B1) = (f,B) and

(fn, Bn) = (g,D), and a partition

a = t0 < t1 < · · · < tn = b

with γ([tk−1, tk]) ⊆ Bk for each 1 ≤ k ≤ n, then (g,D) is said to be an analytic continuation
of (f,B) along γ.

If (f,B) and (g,D), the curve γ, and the chain C all lie in Ω, then (g,D) is called an
analytic Ω-continuation of (f,B) along γ.

11See page 324 of Rudin’s Real and Complex Analysis.
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An “analytic continuation of (f,B) along γ” may be referred to as a “continuation of (f,B)
along γ” for brevity.

Given a function element (f,B) and a curve γ : [a, b]→ C such that γ(a) ∈ B, we say that
(f,B) can be continued along γ if there exists a function element (g,D) at γ(b) that is an
analytic continuation of (f,B) along γ. If (f,B) and (g,D), the curve γ, and the relevant chain
C all lie in Ω, then we say (f,B) can be Ω-continued along γ.

Theorem 10.10. If (fn, Bn) and (gm, Dm) are two analytic continuations of (f1, B1) along the
same curve γ : [a, b]→ C, then (fn, Bn) ` (gm, Dm).

Definition 10.11. Let Ω be a region. Function elements (f,B) and (g,D) in Ω are Ω-
equivalent if they are analytic Ω-continuations of each other, and we write

(f,B) Ω∼ (g,D).

The relation Ω∼ is an equivalence relation, and the equivalence class corresponding to a function
element (f,B) is denoted by [f,B]. That is,

[f,B] =
{

(g,D) : (g,D) Ω∼ (f,B)
}
.

If for every z ∈ Ω there is some (g,D) ∈ [f,B] with z ∈ D, then [f,B] is a generalized
analytic function on Ω.

Definition 10.12. Let S ⊆ C, and let γ0, γ1 : [a, b] → S be two curves in S such that
γ0(a) = γ1(a) = α and γ0(b) = γ1(b) = β. Then γ0 and γ1 are homotopic in S (or S-
homotopic) if there exists a continuous transformation H : [a, b]× [0, 1]→ S such that

H(· , 0) ≡ γ0, H( · , 1) ≡ γ1, H(a, ·) ≡ α, H(b, ·) ≡ β.

We call H the homotopy of γ0 and γ1.

By the definition of continuity, if H is a homotopy of γ0 and γ1, then for each (s0, t0) in
[a, b] × [0, 1] the following holds: For each ε > 0 there exists some δ > 0 such that, for all
(s, t) ∈ [a, b]× [0, 1],√

(s− s0)2 + (t− t0)2 < δ ⇒ |H(s, t)−H(s0, t0)| < ε.

Of course H is also uniformly continuous on its domain, a fact used in the proof of the next
theorem.

Theorem 10.13. Let Ω be a region, and let γ0, γ1 be curves that are homotopic in Ω. Let (f,B)
be a function element in Ω at γ0(a) that can be Ω-continued along all curves in Ω with initial
point γ0(a). If (g0, D0) is an Ω-continuation of (f,B) along γ0, and (g1, D1) is an Ω-continuation
of (f,B) along γ1, then (g0, D0) ` (g1, D1).

Proof. Let α = γ0(a), β = γ0(b) and R = [a, b] × [0, 1]. Suppose (g0, D0) and (g1, D1) are
Ω-continuations of (f,B) along γ0 and γ1, respectively. Let H : R→ Ω be a homotopy of γ0 and
γ1. For any t ∈ [0, 1] the function element (f,B) can be Ω-continued along the curve γt = H( · , t),
which is to say there exists a function element (gt, Dt) in Ω at β that is an Ω-continuation of
(f,B) along γt.
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Fix t ∈ [0, 1], and let C = (hk, Ek)
n
k=1 be a chain in Ω with (h1, E1) = (f,B) and (hn, En) =

(gt, Dt), and let
a = s0 < s1 < · · · < sn = b

be a partition of [a, b] with Γk := γt([sk−1, sk]) ⊆ Ek for each 1 ≤ k ≤ n. Each Γk is compact
since [sk−1, sk] is compact and γt continuous, and so since Γk ∩ Ec

k = ∅ it follows by Theorem
2.45 that d(Γk, E

c
k) > 0 for each k, and hence

εt = min
1≤k≤n

d(Γk, E
c
k) > 0.

Now, H is uniformly continuous on R, so there exists δt > 0 such that, for all (σ1, τ1), (σ2, τ2) ∈ R,√
(σ1 − σ2)2 + (τ1 − τ2)2 < δt ⇒ |H(σ1, τ1)−H(σ2, τ2)| < εt.

Thus, for any s ∈ [a, b],

τ ∈ (t− δt, t+ δt) ∩ [0, 1] ⇒ |γt(s)− γτ (s)| = |H(s, t)−H(s, τ)| < εt.

Fix τ ∈ (t− δt, t+ δt) ∩ [0, 1]. The function element (gτ , Dτ ) is the Ω-continuation of (f,B)
along the curve γτ . On the other hand, for any s ∈ [sk−1, sk] we have |γt(s)− γτ (s)| < εt and
γt(s) ∈ Γk ⊆ Ek, and hence γτ (s) ∈ Ek. That is, for each 1 ≤ k ≤ n we have γτ ([sk−1, sk]) ⊆ Ek,
which shows that (gt, Dt) is an Ω-continuation of (f,B) along γτ (by way of the chain C), and
so (gτ , Dτ ) ` (gt, Dt) by Theorem 10.10. Therefore for each t ∈ [0, 1] there exists an interval
(t− δt, t+ δt) such that gτ ≡ gt on Dτ ∩Dt for every τ ∈ (t− δt, t+ δt) ∩ [0, 1]. The collection
of sets

{(t− δt, t+ δt) : t ∈ [0, 1]}

is an open cover for [0, 1], and so there exists a finite subcover{
Ij = (tj − δtj , tj + δtj) : 1 ≤ j ≤ m

}
,

arranged so that 0 ∈ I1 and 1 ∈ Im, and Ij ∩ Ij+1 6= ∅ for each 1 ≤ j ≤ m− 1.
Now, for each 1 ≤ j ≤ m we have gτ ≡ gtj on Dτ ∩Dtj for every τ ∈ Ij, and (gtj , Dtj) is a

function element in Ω at β that is an Ω-continuation of (f,B) along γtj . For each 1 ≤ j ≤ m− 1
choose some τ ∈ Ij ∩ Ij+1. Then gτ ≡ gtj on Dτ ∩Dtj and gτ ≡ gtj+1

on Dτ ∩Dtj+1
, and hence

gtj ≡ gtj+1
on Dτ ∩Dtj ∩Dtj+1

, a nonempty open subset of Dtj ∩Dtj+1
since it contains β. It

follows that Z(gtj−gtj+1
) has a limit point in Dtj ∩Dtj+1

, and therefore gtj ≡ gtj+1
on Dtj ∩Dtj+1

by the Identity Theorem. Also, since 0 ∈ I1 we have g0 ≡ gt1 on D0 ∩Dt1 , and since 1 ∈ Im we
have g1 ≡ gtm on D1 ∩Dtm . So on

D = D0 ∩D1 ∩

(
m⋂
j=1

Dtj

)
we have

g0 ≡ gt1 ≡ gt2 ≡ · · · ≡ gtm ≡ g1.

But D is nonempty since β ∈ D, and it is also an open subset of D0 ∩D1. Since g0 ≡ g1 on
D ⊆ D0 ∩ D1, we find that Z(g0 − g1) has a limit point in D0 ∩ D1, and we conclude that
g0− g1 ≡ 0 on D0 ∩D1 by the Identity Theorem. That is, D0 ∩D1 6= ∅ and g0 ≡ g1 on D0 ∩D1,
and therefore (g0, D0) ` (g1, D1). �
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Exercise 10.14 (AN4.9.2). Let B = B1(1), and let

[Log, B] =
{

(g,D) : (g,D) C∗∼ (Log, B)
}
,

the class of all function elements in C∗ that are analytic C∗-continuations of (Log, B).

(a) Show that [Log, B] is a generalized analytic function on C∗; that is, for all z ∈ C∗ there is
some (g,D) ∈ [Log, B] such that z ∈ D.

(b) Show that there is no function h analytic on C∗ such that for every (g,D) ∈ [Log, B] we
have h ≡ g on D.

Solution.
(a) By Proposition 6.5 the principal logarithm Log is analytic on C \ R−π. Let z ∈ C \ R−π.
The line segment [1, z] is a compact set that does not contain 0, and so d(0, [1, z]) = r > 0. We
may now construct a chain C = (Log, Dk)

n
k=1 with D1 = B, Dn = Br(z), and Dk an open disc

of radius r and center at some point along [1, z] so that Dk−1 ∩ Dk 6= ∅ for 2 ≤ k ≤ n − 1.
Thus (Log, Dn) is an analytic C∗-continuation of (Log, B), which is to say (Log, Dn) ∈ [Log, B],
where z ∈ Dn.

Now suppose that z ∈ R−π with z 6= 0, so that z = re−iπ = −r for some r > 0. We have
log0 = C∗ → H0 analytic on C \R0, and log−π : C∗ → H−π analytic on C \R−π, and hence log0

and log−π are both analytic on C\(R0∪R−π). In fact (see Figure 11 in §6.1) log0 ≡ log−π := Log
on H \ {0}, with analyticity on H. Let C = (gk, Bk)

3
k=1 such that

(g1, D1) = (Log, B), (g2, D2) = (Log, B1(i)), (g3, D3) = (log0, Br(z)).

Then Dk−1 ∩ Dk 6= ∅ for k = 2, 3, and since Log ≡ log0 on B1(i) ⊆ H, we have g1 ≡ g2 on
D1 ∩D2, and g2 ≡ g3 on D2 ∩D3. Thus (log0, Br(z)) is an analytic C∗-continuation of (Log, B),
which is to say (log0, Br(z)) ∈ [Log, B], where z ∈ Br(z).

At this juncture is has been shown that, for each z ∈ C∗, there exists some (g,D) ∈ [f,B]
with z ∈ D. Therefore [f,B] is a generalized analytic function on C∗.

(b) Suppose h is analytic on C∗ such that for every (g,D) ∈ [Log, B] we have h ≡ g on D. In
part (a) we found that, for any z ∈ C \ R−π, there is a chain (Log, Dk)

n
k=1 in C \ R−π with

z ∈ Dn and (Log, Dn) ∈ [Log, B], and thus h ≡ Log on Dn. This implies that h ≡ Log on
C \R−π. Also, for each x ∈ C \R−π we have

h(x) = lim
y→0−

h(x+ iy) = lim
y→0−

Log(x+ iy) = Log(x),

the first equality due to the continuity of h on C∗, and the last equality due to the “one-sided”
continuity of Log on the negative real axis. Thus h ≡ Log on C∗, and we conclude that Log is
analytic on C∗, which is a contradiction. Therefore the hypothesized function h cannot exist. �

Exercise 10.15 (AN4.9.4). Let F : Ck+1 → C be a function for which all first-order partial
derivatives are everywhere continuous.12 Let f1, . . . , fk be analytic on an open disc D ⊆ C, and
assume that

F (z, f1(z), . . . , fk(z)) = 0

12We do not need the hypothesis that F is itself continuous.
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for all z ∈ D. For each 1 ≤ i ≤ k let (fij, Dj)
n
j=1 be a chain such that (fi1, D1) = (fi, D), so

(fin, Dn) is an analytic continuation of (fi, D). Show that

F (z, f1n(z), . . . , fkn(z)) = 0 (10.8)

for all z ∈ Dn.

Solution. Suppose that G(z1, . . . , zm) = w is a function Cm → C with first-order partial
derivatives that are continuous on Cm. By Theorem 14.34 of the Calculus Notes, easily seen to
be applicable to complex-valued variables, it follows that G is differentiable on Cm. Adopting
the notation of the Calculus Notes, let Ω ⊆ C be open, suppose g1, . . . , gm : Ω→ C are analytic
functions, and define r : Ω→ Cm by

r(z) = 〈g1(z), . . . , gm(z)〉
for all z ∈ Ω. Since

r′(z) = 〈g′1(z), . . . , g′m(z)〉,
it is clear that r is differentiable on Ω. Thus, for each w ∈ Ω, r is differentiable at w and
r(w) ∈ Cm, so since G is differentiable on Cm, by Theorem 14.38 of the Calculus Notes (also
easily extended to complex variables) it follows that G ◦ r, which is the map Ω→ C given by

z 7→ G(g1(z), . . . , gm(z)),

is differentiable at w, and therefore G ◦ r is analytic on Ω.
For each 1 ≤ j ≤ n we have that fij is analytic on Dj for all 1 ≤ i ≤ k, and so, recalling

that F has continuous first partials, the same argument as above can be employed to conclude
that hj : Dj → C given by

hj(z) = F (z, f1j(z), . . . , fkj(z))

is analytic on Dj . By hypothesis h1 ≡ 0 on D1, and since fi1 ≡ fi2 on D1∩D2 for each 1 ≤ i ≤ k,
we have

h1(z) = F (z, f11(z), . . . , fk1(z)) = F (z, f12(z), . . . , fk2(z)) = h2(z)

for all z ∈ D1 ∩D2. That is h2 ≡ h1 ≡ 0 on D1 ∩D2 6= ∅, and so h2 ≡ 0 on D2 by the Identity
Theorem. Continuing in this fashion we ultimately obtain hn ≡ hn−1 ≡ 0 on Dn−1 ∩Dn 6= ∅,
and so hn ≡ 0 on Dn. But hn(z) = 0 is precisely equation (10.8), and so we are done. �

Exercise 10.16 (AN4.9.5). Let (g,D) be an analytic continuation of (f,B). Show that (g′, D)
is an analytic continuation of (f ′, B).

Solution. Since (g,D) is a continuation of (f,B), there exists a chain (hk, Bk)
n
k=1 such that

(h1, B1) = (f,B) and (hn, Bn) = (g,D). Since hk ≡ hk+1 on Bk ∩Bk+1 implies that h′k ≡ h′k+1

on Bk ∩ Bk+1 for all 1 ≤ k ≤ n − 1, it is immediate that (h′k, Bk)
n
k=1 is a chain such that

(h′1, B1) = (f ′, B) and (h′n, Bn) = (g′, D), and therefore (g′, D) is an analytic continuation of
(f ′, B). �

http://faculty.bucks.edu/erickson/math242/Calculus.pdf
http://faculty.bucks.edu/erickson/math242/Calculus.pdf
http://faculty.bucks.edu/erickson/math242/Calculus.pdf
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10.3 – Monodromy Theorem

Definition 10.17. An open set Ω ⊆ C is homotopically simply connected if every closed
curve in Ω is Ω-homotopic to a point.

Thus, an open set Ω is homotopically simply connected if and only if every closed curve
γ0 : [a, b] → Ω is Ω-homotopic to the constant curve γ1 ≡ γ0(a), where of course γ0(a) is a
point in Ω. It will be found in the next chapter that an open set in C is homotopically simply
connected if and only if it is homologically simply connected.

Theorem 10.18 (Monodromy Theorem). Let Ω be a homotopically simply connected region
in C. If Φ is a generalized analytic function on Ω such that each element of Φ can be Ω-continued
along all curves in Ω, then there exists an analytic function g : Ω→ C such that for all (f,B) ∈ Φ
we have g ≡ f on B.

Proof. For each z ∈ Ω there exists some (f,B) ∈ Φ such that z ∈ B, and so set g(z) = f(z).
It must be shown that g is a well-defined function. That is, for each z ∈ Ω, if (f,B), (ϕ,D) ∈ Φ
are such that z ∈ B and z ∈ D, then f(z) = ϕ(z).

Fix z ∈ Ω. Since Φ is an equivalence class, we have (f,B) Ω∼ (ϕ,D), which is to say
(ϕ,D) is an analytic Ω-continuation of (f,B). Thus there exists a chain (hk, Bk)

n
k=1 such that

(h1, B1) = (f,B) and (hn, Bn) = (ϕ,D). Let z0 = zn = z, and for each 1 ≤ k ≤ n − 1 choose
some zk ∈ Bk ∩ Bk+1. Define γ1 : [0, 1] → C to be the polygonal path [z0, . . . , zn], which is a
closed curve with base point z. For 1 ≤ k ≤ n we have zk−1, zk ∈ Bk, and since Bk is a convex
set it follows that [zk−1, zk] ⊆ Bk. Letting

0 = t0 < t1 < · · · < tn = 1

be a partition such that γ1([tk−1, tk]) = [zk−1, zk] for each 1 ≤ k ≤ n, we secure (ϕ,D) as an
analytic Ω-continuation of (f,B) along γ1 in particular. Also (f,B) is an analytic Ω-continuation
of itself along the constant curve γ0 ≡ z. Since γ1 is homotopic in Ω to γ0, Theorem 10.13
implies that (f,B) ` (ϕ,D), and hence f ≡ ϕ on B ∩D. Therefore f(z) = ϕ(z).

We now see that g is a well-defined function on Ω, with g ≡ f on B for each (f,B) ∈ Φ.
Moreover g is analytic on Ω since (f,B) ∈ Φ implies that f is analytic on B. �

Corollary 10.19. Let Ω be a homotopically simply connected region. If (f,B) is a function
element in Ω that can be Ω-continued along all curves in Ω with initial point in B, then there
exists an analytic function g : Ω→ C such that f ≡ g on B.

Theorem 10.20. If Ω is a homotopically simply connected region, then every harmonic function
on Ω has a harmonic conjugate.
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11
Families of Analytic Functions

11.1 – Spaces of Analytic and Continuous Functions

Let Ω ⊆ C be open. Define

C(Ω) = {f : Ω→ C | f is continuous},

and

A(Ω) = {f : Ω→ C | f is analytic}.

Both C(Ω) and A(Ω) are easily verified to be linear spaces (i.e. vector spaces) under the usual
operations of function addition and scalar multiplication,

(f + g)(z) = f(z) + g(z) and (cf)(z) = cf(z),

and in fact A(Ω) is a subspace of C(Ω). Recall the uniform metric ‖ · ‖ on B(Ω), the set of
bounded functions Ω→ C, introduced in §2.1. Given f, g ∈ (B(Ω), ‖ · ‖), the distance between
f and g is taken to be

‖f − g‖Ω = sup{|f(z)− g(z)| : z ∈ Ω},

usually denoted simply by ‖f − g‖. As noted in §2.6, a sequence of functions (fn : Ω → C)
converges to f : Ω→ C on Ω with respect to the uniform metric if and only if fn−→u f on Ω.
Now, because Ω is open, not all members of A(Ω) or C(Ω) will be bounded functions, and hence
neither (A(Ω), ‖ · ‖) nor (C(Ω), ‖ · ‖) are in fact metric spaces! If we do not wish to restrict
ourselves to only bounded continuous functions on Ω, then it remains still to find a viable metric
for C(Ω).

Let (Kn)∞n=1 be the sequence of sets such that

Kn = Bn(0) ∩ {z : |z − w| ≥ 1/n for all w ∈ C \ Ω} (11.1)

for each n ∈ N. For each f ∈ C(Ω) define

|||f ||| =
∞∑
n=1

2−n‖f‖Kn
1 + ‖f‖Kn

,
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where

‖f‖Kn =

{
sup{|f(z)| : z ∈ Kn}, Kn 6= ∅
0, Kn = ∅

As will be verified in Theorem 11.2, ||| · ||| defines a norm on C(Ω), and the norm ||| · ||| induces a
metric d on C(Ω) in the usual way: for each f, g ∈ C(Ω) define the distance between f and g
to be

d(f, g) = |||f − g|||.

The metric space (C(Ω), d) is taken to have the topology induced by the metric d.

Lemma 11.1. The sequence (Kn)∞n=1 has the following properties.

1. Kn is compact for each n.
2. Kn ⊆ K◦n+1.
3. If K ⊆ Ω is compact, then there exists some m ≥ 1 such that K ⊆ Kn for all n ≥ m.

Let X (Ω) represent any collection of functions Ω→ C for which (X (Ω), d) is a metric space.
A sequence (fn) in (X (Ω), d) is said to be d-convergent on Ω (or simply d-convergent) if (fn)
is convergent in X (Ω) with respect to the metric d, which is to say there exists some f ∈ X (Ω)
for which the following holds: for every ε > 0, there exists some k such that

d(fn, f) < ε

for all n ≥ k. If such a function f exists, then we may say (fn) is d-convergent (on Ω) to f and
write fn−→d f or d-lim fn = f .13 Another common phrase is to say (fn) is d-convergent in X (Ω).
Finally, a sequence (fn) in (X (Ω), d) is said to be d-Cauchy on Ω (or simply d-Cauchy) if
(fn) is a Cauchy sequence with respect to the metric d.

Theorem 11.2. Let X represent either C or A. The function f 7→ |||f ||| is a norm on X (Ω),
which induces the metric d. Let (fn) be a sequence in the metric space (X (Ω), d).

1. (fn) is d-Cauchy on Ω iff it is uniformly Cauchy on compact subsets of Ω.
2. (fn) is d-convergent on Ω to f ∈ X (Ω) iff it is uniformly convergent on compact subsets of Ω

to f ∈ X (Ω).
3. (X (Ω), d) is a complete metric space.

Proof.
Proof of Part (3). Let (fn) be a d-Cauchy sequence in A(Ω). It follows from Part (1) that (fn)
is uniformly Cauchy on compact subsets of Ω, and so (fn) is uniformly convergent on compact
subsets of Ω by Theorem 2.52. Since uniform convergence on compact subsets of Ω immediately
implies pointwise convergence on Ω, we may define f : Ω→ C by

f(z) = lim
n→∞

fn(z)

for each z ∈ Ω. Thus (fn) converges uniformly to f on compact subsets of Ω (as is demonstrated
in the proof of Theorem 2.37), and Theorem 4.30 implies that f is analytic on Ω. Finally, by
Part (2) we find that (fn) is d-convergent on Ω to the same function f , and since f ∈ A(Ω), we
conclude that (A(Ω), d) is a complete metric space.

13As ever, the synonymous symbols fn → f and lim fn = f are reserved for pointwise convergence in C.
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Next, let (fn) be a d-Cauchy sequence in C(Ω). By Part (1), (fn) is uniformly Cauchy on
compact subsets of Ω, and so by Theorem 2.52 and the same argument as before, there is a
function f : Ω→ C such that (fn) converges uniformly to f on compact subsets of Ω. Theorem
2.54 implies that f is continuous on Ω. Finally, by Part (2) and the details of its proof, we find
that (fn) is d-convergent on Ω to the same function f , and since f ∈ C(Ω), we conclude that
(C(Ω), d) is a complete metric space. �

It shall henceforth be assumed that the symbols A(Ω) and C(Ω) denote the metric spaces
(A(Ω), d) and (C(Ω), d), respectively, unless said otherwise.

Theorem 11.3 (Hurwitz’s Theorem). Suppose (fn) is a sequence in A(Ω) that converges
uniformly to f : Ω → C on compact subsets of Ω. Let Br(z0) ⊆ Ω, with f nonvanishing on
Cr(z0). Then there exists some k ∈ N such that, for all n ≥ k, fn and f have the same number
of zeros in Br(z0) counting multiplicities.

Proof. Observe that f is not identically zero on Ω since it is nonvanishing on Cr(z0). Theorem
4.30 implies that f is analytic on Ω. Let

ε = min{|f(z)| : z ∈ Cr(z0)},

which can be shown to exist in (0,∞) by applying the Extreme Value Theorem to −|f |. Let

γ(t) = z0 + reit

for t ∈ [0, 2π], so γ∗ = Cr(z0) and wn(γ, z) = 0 for z /∈ Ω. Now, since Br(z0) is compact, there
exists some k ∈ N such that

|fn(z)− f(z)| < ε

for all z ∈ Br(z0) and n ≥ k. Thus we have

|f − fn| = |fn − f | < ε ≤ |f |
on γ∗ for all n ≥ k, giving

|f + (−fn)| < |f |+ | − fn|.
By Rouché’s Theorem,∑

z∈Z(f)

ord(f, z) wn(γ, z) =
∑

z∈Z(−fn)

ord(−fn, z) wn(γ, z) =
∑

z∈Z(fn)

ord(fn, z) wn(γ, z)

for all n ≥ k, the last equality owing to Z(−fn) = Z(fn) and ord(−fn, z) = ord(fn, z). Since
wn(γ, z) = 1 for all z ∈ Br(z0) and wn(γ, z) = 0 for all z /∈ Br(z0), we conclude that, for all
n ≥ k, the functions fn and f have the same number of zeros in Br(z0) counting multiplicities. �

Theorem 11.4. Let Ω be a region, and let (fn) be a sequence in A(Ω) that converges uniformly
to f : Ω→ C on compact subsets of Ω.

1. If fn is nonvanishing on Ω for infinitely many n, then either f is nonvanishing or identically
zero on Ω.

2. If fn is injective on Ω for all n, then either f is injective or constant on Ω.



296

Proof.
Proof of Part (1). Suppose fn is nonvanishing on Ω for infinitely many n, and suppose also that
f is not identically zero on Ω. Fix z ∈ Ω. By Theorem 4.30 the function f is analytic on Ω,
and so by the Identity Theorem the set Z(f) has no limit points in Ω, and so there exists some
r > 0 sufficiently small that Br(z) ⊆ Ω and B′r(z) ∩ Z(f) = ∅. In particular f is nonvanishing
on Cr(z). By Hurwitz’s Theorem there exists some k such that, for all n ≥ k, fn and f have
the same number of zeros in Br(z) counting multiplicities. On the other hand there exists some
m ≥ k such that fm is nonvanishing on Ω, so that fm has no zeros in Br(z), and hence f also
has no zeros in Br(z). Therefore f(z) 6= 0, and we conclude that f is nonvanishing on Ω.

Proof of Part (2). Suppose fn is injective on Ω for all n, and suppose also that f is nonconstant
on Ω. Fix z0 ∈ Ω. Let gn = fn− fn(z0) for all n, and let Ω′ = Ω \ {z0}. Since Ω′ is a region, (gn)
is a sequence in A(Ω′) that converges uniformly to g = f − f(z0) on compact subsets of Ω′, and
gn is nonvanishing on Ω′ for infinitely many n (in fact for all n), by Part (1) it follows that g is
either nonvanishing or identically zero on Ω′. But g identically zero on Ω′ implies that f ≡ f(z0)
on Ω, which contradicts the hypothesis that f is nonconstant. Hence g must be nonvanishing
on Ω′; that is, f(z) 6= f(z0) for all z ∈ Ω \ {z0}. Since z0 ∈ Ω is arbitrary, we conclude that f is
injective on Ω. �

Proposition 11.5. The following functions are continuous on their domains.

1. The function D : A(Ω)→ A(Ω) given by D(f) = f ′.
2. For fixed z ∈ Ω, the function Ez : C(Ω)→ C given by Ez(f) = f(z).

Proof.
Proof of Part (1). Fix f ∈ A(Ω). Let (fn) be any sequence in A(Ω) such that d-lim fn = f ,
which is to say (fn) is d-convergent on Ω to f . By Theorem 11.2, (fn) is uniformly convergent
to f on compact subsets of Ω, and thus (f ′n) is uniformly convergent to f ′ on compact subsets
of Ω by Theorem 4.30. Since (f ′n) is itself a sequence in A(Ω), Theorem 11.2 implies that (f ′n)
is d-convergent on Ω to f ′, which is to say d-lim f ′n = f ′, and hence d-limD(fn) = D(f). By
Theorem 2.20 we conclude that D is continuous at f .

Proof of Part (2). Fix f ∈ C(Ω). Let (fn) be any sequence in C(Ω) such that fn−→d f . Then
fn−→u f on compact subsets of Ω by Theorem 11.2, which implies that fn(z) → f(z) since
{z} ⊆ Ω is compact, and hence Ez(fn) → Ez(f). By Theorem 2.20 we conclude that Ez is
continuous at f . �

Proposition 11.6. Suppose F ⊆ A(Ω) is nonempty and compact. For each z ∈ Ω there exists
some h ∈ F such that |h′(z)| ≥ |f ′(z)| for all f ∈ F .

Proof. Fix z ∈ Ω, and let D and Ez be the functions defined in Proposition 11.5. The euclidian
norm z 7→ |z| is of course a continuous function C→ R, and so if we let Φ = |Ez ◦D|, then by
Proposition 11.5 and Theorem 2.21 it follows that Φ : A(Ω)→ R is continuous on A(Ω). Hence
Φ is continuous on the compact set F , and then the Extreme Value Theorem implies that Φ
attains a maximum on F ; that is, there exists some h ∈ F such that Φ(h) ≥ Φ(f) for all f ∈ F .
Since

Φ(f) = |Ez ◦D|(f) = |(Ez ◦D)(f)| = |Ez(D(f))| = |Ez(f ′)| = |f ′(z)|
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for any f ∈ F , the desired conclusion obtains. �

Exercise 11.7 (AN11.1.3a). If F ⊆ C(Ω), show that F is precompact if and only if each
sequence in F has a subsequence that is d-convergent in C(Ω), in which case F is in some texts
referred to as normal.

Solution. This is nothing more than a restatement of Proposition 2.46 with the metric space
(C(Ω), d) being (X, d) and the set F being S. �

Exercise 11.8 (AN11.1.8). Let L : A(Ω)→ C be a multiplicative linear functional, which is
to say for all a, b ∈ C and f, g ∈ A(Ω) we have

L(af + bg) = aL(f) + bL(g) and L(fg) = L(f)L(g).

If L /≡ 0, then show that there exists some w ∈ Ω such that L(f) = f(w) for all f ∈ A(Ω).

Solution. Let κ1 denote the constant function z 7→ 1 on Ω, so that κ2
1 = 1. Then

L(κ1) = L(κ2
1) = L(κ1)L(κ1) = [L(κ1)]2,

which shows that L(κ1) ∈ {0, 1}. If L(κ1) = 0, then for any g ∈ A(Ω) we have

L(g) = L(κ1g) = L(κ1)L(g) = 0 · L(g) = 0,

and thus we arrive at the contradiction L ≡ 0. Therefore L(κ1) = 1.
Next, for any c ∈ C let κc denote the constant function z 7→ c on Ω. Then κc = cκ1, and so

L(κc) = L(cκ1) = cL(κ1) = c · 1 = c.

We make use of these results presently.
Let ι denote the identity function z 7→ z on Ω. Suppose that L(ι) = w /∈ Ω. Then

g(z) =
1

z − w
is a function in A(Ω). Now,(

g(ι− κw)
)
(z) = g(z) · (ι− κw)(z) =

1

z − w
· (z − w) = 1 = κ1(z)

for all z ∈ Ω, and so g(ι− κw) = 1 and we obtain

L
(
g(I − κw)

)
= L(κ1) = 1. (11.2)

On the other hand, since

L(ι− κw) = L(ι)− L(κw) = w − w = 0,

we obtain

L
(
g(ι− κw)

)
= L

(
1

z − w
· (ι− κw)

)
= L

(
1

z − w

)
L(ι− κw) = 0. (11.3)

From equations (11.2) and (11.3) we have a contradiction, and therefore L(ι) = w ∈ Ω must be
the case.
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Finally, let f ∈ A(Ω) be arbitrary, and define h ∈ A(Ω) by

h(z) =


f(z)− f(w)

z − w
, z 6= w

f ′(w), z = w

The analyticity of h on Ω follows from Corollary 4.22. Now,(
h(ι− κw)

)
(z) = h(z) · (ι− κw)(z) = h(z) · (z − w) = f(z)− f(w)

for all z ∈ Ω, including w. Hence h(ι− κw) = f − κf(w), so that

L(f)− f(w) = L(f − κf(w)) = L
(
h(ι− κw)

)
= L(h)L(ι− κw) = L(h)(w − w) = 0,

and therefore L(f) = f(w) as desired. �
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11.2 – Equicontinuity and Boundedness

Definition 11.9. Let F be a family of functions Ω→ C. If z ∈ Ω, then F is equicontinuous
at z if for any ε > 0 there exists some δ > 0 such that

|f(w)− f(z)| < ε

for all w ∈ Bδ(z) and f ∈ F . If F is equicontinuous at each z ∈ Ω, then F is equicontinuous
on Ω.

Definition 11.10. Let F be a family of functions Ω → C. If S ⊆ Ω, then F is uniformly
bounded on S if

sup{‖f‖S : f ∈ F} ∈ R.
F is bounded on S if F is uniformly bounded on each compact K ⊆ S.

A couple remarks. For a family of functions F to be bounded on Ω, it is necessary but not
sufficient that F ⊆ B(Ω). If S ⊆ Ω is compact, then F is uniformly bounded on S if and only if
it is bounded on S.

Henceforth, if F is given to be a family of functions with domain Ω, then to say F is
“bounded” will be taken to mean “bounded on Ω.”

Theorem 11.11. If F ⊆ A(Ω) is bounded, then F is equicontinuous on Ω.

Proof. Suppose F ⊆ A(Ω) is bounded. Let z0 ∈ Ω, and fix ε > 0. Let r > 0 be such that
K = Br(z0) ⊆ Ω. Let M = sup{‖f‖K : f ∈ F}, so M ∈ [0,∞). If M = 0, then all members of
F are identically zero on K, so that F can contain only the zero function on Ω by the Identity
Theorem, and thus the equicontinuity of F on Ω follows trivially. Assume that M > 0.

By Cauchy’s Integral Formula for a Circle, for any z ∈ Br(z0) and f ∈ F ,

|f(z)− f(z0)| = 1

2π

∣∣∣∣˛
Cr(z0)

f(w)

w − z
dw −

˛
Cr(z0)

f(w)

w − z0

dw

∣∣∣∣
=

1

2π

∣∣∣∣˛
Cr(z0)

(z − z0)f(w)

(w − z)(w − z0)
dw

∣∣∣∣ = r sup
w∈Cr(z0)

|z − z0||f(w)|
|w − z||w − z0|

= |z − z0| sup
w∈Cr(z0)

|f(w)|
|w − z|

≤ |z − z0| sup
w∈Cr(z0)

M

|w − z|
.

Since for each z ∈ Br/2(z0) we have |w − z| > r/2 for all w ∈ Cr(z0), and hence

1

|w − z|
<

2

r
,

we obtain

|f(z)− f(z0)| ≤ 2M

r
|z − z0|

for all z ∈ Br/2(z0) and f ∈ F . Choose

δ = min
{r

2
,
rε

2M

}
.
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Then for any z ∈ Bδ(z0) and f ∈ F ,

|f(z)− f(z0)| ≤ 2M

r
|z − z0| <

2M

r
δ ≤ 2M

r
· rε

2M
= ε.

Therefore F is equicontinuous at z0, and since z0 ∈ Ω is arbitrary, we conclude that F is
equicontinuous at each point in Ω. �

Theorem 11.12. Suppose F ⊆ C(Ω) is equicontinuous on Ω, and (fn)n∈N is a sequence in F .

1. If fn → f on Ω, then f ∈ C(Ω) and fn−→u f on compact subsets of Ω.
2. If (fn) is pointwise convergent on a dense subset of Ω, then there exists some f : Ω→ C such

that fn → f on Ω.

Proof.
Proof of Part (1). Suppose fn → f on Ω. Fix z0 ∈ Ω, and let ε > 0. There exists some δ > 0
such that

|fn(z)− f(z0)| < ε

3
for all z ∈ Bδ(z0) and n ∈ N. Now, since there is some k0 ∈ N such that

|fn(z0)− f(z0)| < ε

3
for all n ≥ k0, and also some k1 ∈ N such that

|fn(z)− f(z)| < ε

3
,

for all n ≥ k1, we can choose any n ≥ max{k0, k1} to obtain

|f(z)− f(z0)| ≤ |f(z)− fn(z)|+ |fn(z)− fn(z0)|+ |fn(z0)− f(z0)| < ε.

for all z ∈ Bδ(z0). Therefore f is continuous at z0, and since z0 ∈ Ω is arbitrary, we conclude
that f ∈ C(Ω).

Next, let K ⊆ Ω be compact. Again let ε > 0. Since f is uniformly continuous on K, there
exists some ρ > 0 such that

|z − w| < ρ ⇒ |f(z)− f(w)| < ε

3
for all z, w ∈ K. Also, for each z ∈ K there is a 0 < δz < ρ such that

|fn(w)− fn(z)| < ε

3
(11.4)

for all w ∈ Bδz(z) and n ∈ N. Since {Bδz(z) : z ∈ K} is an open cover for K, there is a finite
subcover {Bδj(zj) : 1 ≤ j ≤ m}, and for each 1 ≤ j ≤ m there exists some kj ∈ N such that

|fn(zj)− f(zj)| <
ε

3
for all n ≥ kj . Let k = max{kj : 1 ≤ j ≤ m}. Fix n ≥ k and z ∈ K. Then z ∈ Bδp(zp) for some
1 ≤ p ≤ m, so that

|fn(z)− fn(zp)| <
ε

3
by (11.4), and hence

|fn(z)− f(z)| ≤ |fn(z)− fn(zp)|+ |fn(zp)− f(zp)|+ |f(zp)− f(z)| < ε,
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observing that |zp − z| < δp < ρ. Therefore (fn) converges uniformly to f on K.

Proof of Part (2). Suppose that (fn) is pointwise convergent on a set S ⊆ Ω that is dense in Ω.
We must show that (fn(z)) converges to a complex number wz for every z ∈ Ω, whereupon we
may simply define f : Ω→ C by f(z) = wz. Fix z0 ∈ Ω \ S, and let ε > 0. There exists some
δ > 0 such that

|fn(z)− fn(z0)| < ε

3
for all z ∈ Bδ(z0) and n ∈ N. Now, z0 is a limit point for S since S is dense in Ω, and so there
exists some z1 ∈ S such that z1 ∈ B′δ(z0). The sequence (fn(z1))n∈N converges in C, and so is a
Cauchy sequence. Let k ∈ N be such that

|fm(z1)− fn(z1)| < ε

3

for all m,n ≥ k. Fix m,n ≥ k. Then

|fm(z0)− fn(z0)| ≤ |fm(z0)− fm(z1)|+ |fm(z1)− fn(z1)|+ |fn(z1)− fn(z0)| < ε,

which shows that (fn(z0))n∈N is a Cauchy sequence in C. Hence (fn(z))n∈N is a Cauchy sequence
for all z ∈ Ω, and therefore converges in C for all z ∈ Ω. Defining f : Ω→ C by

f(z) = lim
n→∞

fn(z)

for each z ∈ Ω, it is immediate that fn → f on Ω. �

Theorem 11.13 (Montel’s Theorem). If F ⊆ A(Ω) is bounded, then each sequence in F
has a subsequence that is uniformly convergent to some f ∈ A(Ω) on compact subsets of Ω.

Proof. Suppose that F ⊆ A(Ω) is bounded, and let (fn)n∈N be a sequence in F . Theorem
11.11 implies that F is equicontinuous at each point in Ω. Define

S = {x+ iy ∈ Ω : x, y ∈ Q},

so S is dense in Ω, and also S is countable so that we may write S = {zj : j ∈ N}. The strategy
will be to show that (fn) converges pointwise on S.

Because F is bounded, for each j ∈ N we have

sup{|fn(zj)| : n ∈ N} = sup{‖fn‖{zj} : n ∈ N} ∈ R,

which is to say the sequence (fn(zj))n∈N is bounded for each j. In particular (fn(z1)) is bounded,
and so there is a convergent subsequence (f1n(z1)); that is, (f1n) converges at z1. Next, (f1n(zj))
is bounded for each j, with (fn(z2)) bounded in particular, and so there is a convergent
subsequence (f2n(z2)); that is, (f2n) converges at z1 and z2. We continue in this fashion for
each m ∈ N, obtaining a subsequence (fmn)n∈N of (fn) that converges at z1, . . . , zm. Now define
the sequence (fnk)k∈N by fnk = fkk. Then (fnk)k∈N is a subsequence of (fn) that converges at
each zj ∈ S. By Theorem 11.12(2) there exists some f : Ω→ C such that fnk → f on Ω, and
then Theorem 11.12(1) implies that fnk −→u f on compact subsets of Ω. That f ∈ A(Ω) is a
consequence of Theorem 4.30. �
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Proposition 11.14. Let F ⊆ X (Ω). Then each sequence in F has a subsequence that is
uniformly convergent to some f ∈ X (Ω) on compact subsets of Ω if and only if F is precompact.

Proof. By Theorem 11.2(2), each sequence in F has a subsequence that is uniformly convergent
to f ∈ X (Ω) on compact subsets of Ω iff each sequence in F has a subsequence that is d-
convergent to some f ∈ X (Ω). Now, by Proposition 2.46, each sequence in F has a subsequence
that is d-convergent to some f ∈ X (Ω) iff F is precompact. �

Theorem 11.15 (Compactness Criterion). Let F ⊆ A(Ω). Then

1. F is compact if and only if F is closed and bounded.
2. F is precompact if and only if F is bounded.

Proof.
Proof of Part (1). The proof is straightforward in the case when F is finite, so assume that F
is infinite. Suppose F is compact. Then F is closed by Proposition 2.38. Moreover, Theorem
2.39 implies that each sequence in F has a subsequence that is d-convergent on Ω to some
f ∈ F , and then by Theorem 11.2(2) it follows that each sequence in F has a subsequence that
is uniformly convergent to some f ∈ F on compact subsets of Ω.

Suppose there exists some compact K ⊆ Ω such that sup{‖f‖K : f ∈ F} /∈ R. By the
Completeness Axiom we conclude that for each n ∈ N there exists some fn ∈ F such that
‖fn‖K > n. Suppose (fnk)k∈N is a subsequence of (fn) that is uniformly convergent to some
function f : Ω→ C on compact subsets of Ω. Then (fnk) is uniformly convergent to f on K in
particular, so that there exists some j such that

|fnk(z)− f(z)| < 1

for all k ≥ j and z ∈ K, whence ∣∣|f(z)| − |fnk(z)|
∣∣ < 1,

and finally
|f(z)| > |fnk(z)| − 1

for all k ≥ j and z ∈ K. But by construction we have ‖fnk‖K > nk for each k, so that for each
k there exists some zk ∈ K such that |fnk(zk)| > nk, and hence

|f(zk)| > |fnk(zk)| − 1 > nk − 1

for all k ≥ j. We see that |f(zk)| → ∞ as k →∞, which shows that f is not a bounded function
on K, and therefore f cannot be continuous on Ω. Thus, if (fn) has any subsequence that is
uniformly convergent to some f : Ω → C on compact subsets of Ω, then f /∈ C(Ω) must be
the case, and hence f /∈ F . It follows that (fn) is a sequence in F that has no subsequence
that is uniformly convergent to some f ∈ F on compact subsets of Ω, which is a contradiction.
Therefore sup{‖f‖K : f ∈ F} ∈ R for all compact K ⊆ Ω, and we conclude that F is bounded.

For the converse, suppose that F is closed and bounded. By Montel’s Theorem each sequence
in F has a subsequence that is uniformly convergent to some f ∈ A(Ω) on compact subsets of
Ω, and thus F is precompact by Proposition 11.14. By definition this means that F is compact,
and since F = F on account of F being closed, we conclude that F is compact.
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Proof of Part (2). Suppose F is precompact. Suppose there exists some compact K ⊆ Ω
such that sup{‖f‖K : f ∈ F} /∈ R. Then, as before, we can construct a sequence (fn) in
F having no subsequence that is uniformly convergent to some f ∈ C(Ω). On the other
hand, Proposition 11.14 implies that each sequence in F has a subsequence that is uniformly
convergent to some f ∈ A(Ω) on compact subsets of Ω. As this is a contradiction, we conclude
that sup{‖f‖K : f ∈ F} ∈ R for all compact K ⊆ Ω, and therefore F is bounded.

For the converse, suppose that F is bounded. Then Montel’s Theorem and Proposition 11.14
imply that F is precompact. �

Remark. A study of the proof of Theorem 11.15(2) shows that, even for F ⊆ C(Ω), the
precompactness of F implies the boundedness of F ; however, the converse requires F ⊆ A(Ω).

Proposition 11.16. Let Ω be a region, z0 ∈ Ω, and ε > 0. Define

F = {f ∈ A(Ω) : f is injective, f(Ω) ⊆ S, and |f ′(z0)| ≥ ε}.

If S = B or S = B, then F compact.

Proof. Suppose S = B. Let f be a limit point for F . Then for each n ∈ N there exists
fn ∈ F such that fn ∈ B′1/n(f), and in this fashion we obtain a sequence (fn) in F such that
d-lim fn = f . It is immediate that f : Ω→ C, and also that (fn) is a Cauchy sequence in A(Ω).
Since (A(Ω), d) is a complete metric space by Theorem 11.2(3), it follows that f ∈ A(Ω), and
then Theorem 11.2(2) implies that (fn) is uniformly convergent to f on compact subsets of Ω.

Now, fn is injective on Ω for all n, so f is either injective or constant on Ω by Theorem
11.4(2). Suppose |f ′(z0)| < ε, so that |f ′(z0)| = ε − δ for some δ > 0. The sequence (f ′n)
converges uniformly to f ′ on compact subsets of Ω by Theorem 4.30, and since {z0} ⊆ Ω is
compact, there is some k such that |f ′n(z0)− f ′(z0)| < δ/2 for all n ≥ k. However,

|f ′k(z0)− f ′(z0)| < δ

2
⇒ |f ′k(z0)| < |f ′(z0)|+ δ

2
⇒ |f ′k(z0)| < ε− δ

2
< ε,

which implies that fk /∈ F , a contradiction. Therefore |f ′(z0)| ≥ ε must be the case, which is to
say f ′(z0) 6= 0 and f cannot be constant on Ω, so f must be injective on Ω.

It remains to verify that f(Ω) ⊆ B, or in other words |f(z)| ≤ 1 for all z ∈ Ω. But if there
were some w ∈ Ω such that |f(w)| > 1, then since fn(w)→ f(w) there would be some k such
that |fn(w)| > 1 for all n ≥ k, implying in particular that fk /∈ F since fk(Ω) ⊆ B would be
false. As this is a contradiction, we conclude that f(Ω) ⊆ B must be the case, and hence f ∈ F .
Therefore F is closed since it contains all of its limit points.

That F is bounded is clear: for any compact K ⊆ Ω we have |f(z)| ≤ 1 for all z ∈ K and
f ∈ F , and thus

sup{‖f‖K : f ∈ F} ∈ R

since 1 is an upper bound for {‖f‖K : f ∈ F}. Since F ⊆ A(Ω) is closed and bounded, the
Compactness Criterion finally implies that F is compact.

Next, suppose S = B. The proof is the same in every regard save the matter of showing that
f(Ω) ⊆ B. For each z ∈ Ω we have fn(z) → f(z), and since |fn(z)| < 1 for all n, it must be
that |f(z)| ≤ 1. Now, since f is not constant on the region Ω, the Maximum Principle implies
that |f | has no local maximum at any point in Ω, and so there can exist no z ∈ Ω such that
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|f(z)| = 1. This shows that f(Ω) ⊆ B, and therefore f ∈ F . We conclude that F is closed if
S = B. �

Theorem 11.17 (Vitali’s Theorem). Let Ω be a region, and let F = {fn : n ∈ N} be a
bounded subset of A(Ω). Suppose the sequence (fn) converges pointwise on S ⊆ Ω, and S has a
limit point in Ω. Then (fn) is uniformly convergent on compact subsets of Ω to some f ∈ A(Ω).

Proof. By Montel’s Theorem there is some subsequence (gn) of (fn) that is compactly convergent
to some g ∈ A(Ω) on Ω. Suppose there exists some compact K ⊆ Ω on which (fn) does not
converge uniformly to g. Thus there exists δ > 0 such that, for each n, there is some k ≥ n
and z ∈ K for which |fk(z)− g(z)| ≥ δ. This implies we may construct a subsequence (fnk)

∞
k=1

of (fn) such that, for every k, there is some z ∈ K for which |fnk(z) − g(z)| ≥ δ. However,
Montel’s Theorem implies that (fnk) itself has a subsequence (hn) that is compactly convergent
to some h ∈ A(Ω) on Ω, and by construction it must be that h 6= g on Ω.

On the other hand since (gn) and (hn) are subsequences of (fn), and (fn) converges pointwise
on S ⊆ Ω, we have

g(z) = lim
n→∞

gn(z) = lim
n→∞

fn(z) = lim
n→∞

hn(z) = h(z)

for all z ∈ S. Thus Z(g− h) ⊇ S, implying Z(g− h) has a limit point in Ω, and therefore g ≡ h
on Ω by the Identity Theorem. As this is a contradiction, we conclude that (fn) converges
uniformly to g on compact subsets of Ω. �

Exercise 11.18 (AN11.1.5a). Suppose f ∈ A(Ω) and BR(a) ⊆ Ω. Prove that

|f(a)|2 ≤ 1

πR2

ˆ 2π

0

ˆ R

0

∣∣f(a+ reit)
∣∣2r drdt.

Proof. Since f 2 ∈ A(Ω) we have, for each r ∈ [0, R],

f 2(a) =
1

2π

ˆ 2π

0

f 2(a+ reit)dt

by Cauchy’s Integral Formula, and so

f 2(a)r =
r

2π

ˆ 2π

0

f 2(a+ reit)dt.

Integrating, ˆ R

0

f 2(a)rdr =

ˆ R

0

[
r

2π

ˆ 2π

0

f 2(a+ reit)dt

]
dr,

whence by Fubini’s Theorem as given in §14.2 of the Calculus Notes we obtain

R2

2
f 2(a) =

1

2π

ˆ R

0

ˆ 2π

0

f 2(a+ reit)rdtdr =
1

2π

ˆ 2π

0

ˆ R

0

f 2(a+ reit)rdrdt,

and then

f 2(a) =
1

πR2

ˆ 2π

0

ˆ R

0

f 2(a+ reit)rdrdt.

http://faculty.bucks.edu/erickson/math242/Calculus.pdf


305

Finally

|f(a)|2 = |f 2(a)| ≤ 1

πR2

ˆ 2π

0

ˆ R

0

∣∣f(a+ reit)
∣∣2rdrdt

as desired. �

Exercise 11.19 (AN11.1.5b). Let M ∈ R+ and define

F =

{
f ∈ A(Ω) :

¨
Ω

|f |2 ≤M

}
.

(Letting ϕ : C→ R2 be the isometry ϕ(x+ iy) = (x, y), we take the integral above to represent¨
ϕ(Ω)

|f ◦ ϕ−1|2

in the interests of brevity.) Show that F is precompact.

Solution. Let K ⊆ Ω be a compact set. Since Ωc = C \ Ω is closed and K ∩ Ωc = ∅, by
Theorem 2.45 there exists some z0 ∈ K and w0 ∈ Ωc such that dist(K,Ωc) = |z0 − w0| ∈ R+.
Let ρ = |z0 − w0|/2, and fix w = a+ ib ∈ K. Then Bρ(w) ⊆ Ω, and so for all f ∈ F

|f(w)|2 ≤ 1

πρ2

ˆ 2π

0

ˆ ρ

0

∣∣f(w + reit)
∣∣2rdrdt (11.5)

by Exercise 11.18 (the integrand is taken to be a function of r, t ∈ R). Defining g(z) = |f(w+z)|2,
letting I denote the integral in (11.5), and setting

S = {(r, t) : 0 ≤ t ≤ 2π and 0 ≤ r ≤ ρ},

we apply Theorem 15.11 in §15.3 of the Calculus Notes to obtain

I =

ˆ 2π

0

ˆ ρ

0

g(reit)rdrdt =

ˆ 2π

0

ˆ ρ

0

(g ◦ ϕ−1)(r cos t, r sin t)rdrdt

=

¨
S

(g ◦ ϕ−1)(r cos t, r sin t)rdA =

¨
Bρ(0)

(g ◦ ϕ−1)(x, y)dA

=

¨
Bρ(a,b)

(g ◦ ϕ−1)(x− a, y − b)dA =

¨
Bρ(w)

∣∣f(x+ iy)
∣∣2dA.

Returning to (11.5),

|f(w)|2 ≤ 1

πρ2

¨
Bρ(w)

∣∣f(x+ iy)
∣∣2dA ≤ 1

πρ2

¨
Ω

∣∣f(x+ iy)
∣∣2dA,

and hence

|f(w)| ≤

√
1

πρ2

¨
Ω

|f |2 ≤

√
M

πρ2

holds for all f ∈ F . Since w ∈ K is arbitrary, it follows that

‖f‖K ≤

√
M

πρ2
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for each f ∈ F , and thus sup{‖f‖K : f ∈ F} ∈ R+. Since K is an arbitrary compact subset of Ω,
we conclude that F is bounded. Therefore F is precompact by the Compactness Criterion. �

The next exercise shows that the hypothesis that F ⊆ A(Ω) in the Compactness Criterion
cannot be relaxed to admit F ⊆ C(Ω), for it is possible for a set in C(Ω) to be closed and
bounded but not compact.

Exercise 11.20 (AN11.1.6). Let D = BR(a) ⊆ Ω, and define

F = {f ∈ C(Ω) : |f | ≤ 1 on D and f ≡ 0 on Ω \D} .

Show that F is a closed and bounded subset of C(Ω), and yet F is not compact.

Solution. Define Ψ : F → R by

Ψ(f) =

¨
D

(1− |f |),

where 1− |f | ≥ 0 on D for any f ∈ F . In general, if g : D → C is continuous on D, then¨
D

|g| = 0 ⇔ g ≡ 0.

Now, continuity of f ∈ F dictates that f ≡ 0 on ∂D (otherwise f ≡ 0 on Ω \D is not possible),
and thus 1− |f | is not identically zero on D and we obtain¨

D

(1− |f |) > 0.

Fix f ∈ F , and let (fn) be a sequence in F such that d-lim fn = f on Ω. Then (fn) converges
uniformly to f on compact subsets of Ω by Theorem 11.2, and so in particular u-lim fn = f on
D. Fix ε > 0. Then there exists some k such that ‖f − fn‖D < ε/πR2 for all n ≥ k, which is to
say |f(z)− fn(z)| < ε/πR2 for all z ∈ D. Now,

|Ψ(fn)−Ψ(f)| =
∣∣∣∣¨

D

(1− |fn|)−
¨
D

(1− |f |)
∣∣∣∣ =

∣∣∣∣¨
D

(|f | − |fn|)
∣∣∣∣

≤
¨
D

∣∣|f | − |fn|∣∣ ≤ ¨
D

|f − fn| ≤
¨
D

ε

πR2
= ε

for each n ≥ k, implying that lim Ψ(fn) = Ψ(f) in R and therefore Ψ is continuous at f by
Theorem 2.20. Define Φ : F → R by Φ(f) = [Ψ(f)]−1. Since Ψ(f) 6= 0 for any f ∈ F , the
function Φ is indeed well-defined on F , and moreover the continuity of Ψ on F implies that Φ
is continuous on F as well.

For each r ∈ (0, R) let Dr = Br(a). Since Dr ⊆ D◦, the sets Dr and C \ D◦ are disjoint
closed sets, and so by Urysohn’s Lemma there exists a continuous function fr : C→ [0, 1] such
that fr ≡ 1 on Dr, fr ≡ 0 on C \D◦, and 0 < fr < 1 on the open annulus Ar,R(a). It follows
that fr|Ω ∈ F , and ¨

D

|fr| ≥
¨
Dr

|fr| =
¨
Dr

(1) = πr2.

Thus

Ψ(fr) =

¨
D

(1− |fr|) = πR2 −
¨
D

|fr| ≤ πR2 − πr2 = π(R2 − r2).
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We see that Ψ(fr)→ 0+ as r → R−, and thus Φ(fr)→ +∞ as r → R−. That is, the set Φ(F)
is unbounded in R, and therefore cannot be compact. Since Φ is continuous we conclude by
Theorem 2.41 that F itself is not compact in C(Ω).

We now show that F is bounded and closed in C(Ω). That F is bounded is clear: for any
compact K ⊆ Ω we have ‖f‖K ≤ 1 for each f ∈ F , and thus

sup{‖f‖K : f ∈ F} ≤ 1.

Now, let f be a limit point for F . It is immediate that f ∈ C(Ω) since (C(Ω), d) is a complete
metric space. For each n ∈ N there exists fn ∈ F such that fn ∈ B′1/n(f), and in this fashion

we obtain a sequence (fn) in F such that d-lim fn = f . By Theorem 11.2(2) it follows that (fn)
is uniformly convergent to f on compact subsets of Ω. Since each {z} ⊆ Ω is compact, we find
that for each z ∈ Ω and ε > 0 there exists some k such that

|fn(z)− f(z)| < ε

for all n ≥ k. Thus

|f(z)| < |fn(z)|+ ε ≤ 1 + ε

for all z ∈ D and ε > 0, implying that |f | ≤ 1 on D. Also, |f(z)| < |fn(z)| + ε = ε for all
z ∈ Ω \D and ε > 0, implying that f ≡ 0 on Ω \D. Since f ∈ C(Ω), |f | ≤ 1 on D, and f ≡ 0
on Ω \D, we conclude that f ∈ F . Therefore F contains all its limits points and must be a
closed set. �

The next proposition is a consequence of the Baire Category Theorem, and it will be used
to complete the exercise that follows.

Proposition 11.21. If (X, d) is a complete metric space and (Sn)n∈N is a sequence of closed
subsets of X such that X =

⋃∞
n=1 Sn, then there is some k ∈ N such that Sk contains a nonempty

open ball in X.

Exercise 11.22 (AN11.1.9). Osgood’s Theorem. Let (fn)n∈N be a sequence in A(Ω) that
converges pointwise to f : Ω→ C on Ω. Show there exists an open set U ⊆ Ω that is dense in
Ω, and such that (fn) converges uniformly to f on compact subsets of U .

Solution. For each k ∈ N let

Aj =
{
z ∈ Ω : ∀n ∈ N

(
|fn(z)| ≤ j

)}
,

so that (Aj)j∈N is a sequence of closed sets such that

Ω =
∞⋃
j=1

Aj.
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Fix w ∈ Ω, and let r > 0 be such that Z = Br(w) ⊆ Ω. The metric space (Z, | · |) is complete
since Z is compact,14 and since each Sj = Aj ∩ Z is closed in Z with

∞⋃
j=1

Sj = Z ∩
∞⋃
j=1

Aj = Z ∩ Ω = Z,

Proposition 11.21 implies there exists some k ∈ N such that Sk contains a nonempty open ball
in Z. Thus there is some a ∈ Z and δ > 0 such that

B = {z ∈ Z : |z − a| < δ} ⊆ Sk.

Since we can obtain an open C-ball Bδ′(a
′) ⊆ Z ′ by taking any point a′ ∈ Z ′ in the interior of

Z and choosing a sufficiently small δ′ > 0, we can assume that B = Bδ(a). Thus B ⊆ Ak ∩ Z.
The set B is a region, (fn)n∈N is a sequence in A(B) that converges pointwise on B to f , and
F = {fn : n ∈ N} is a bounded set in A(B). The last claim follows from the fact that B ⊆ Ak:
for all n ∈ N and z ∈ B we have |fn(z)| ≤ k, whence ‖fn‖B ≤ k, and finally

sup{‖fn‖B : n ∈ N} ≤ k.

By Vitali’s Theorem (fn) converges uniformly to f on compact subset of B.
Let U be the union of all possible open C-balls B ⊆ Ω constructed in the manner above.

Clearly U is an open set, but is it dense in Ω? Assuming U 6= Ω, fix z ∈ Ω \ U and let ε > 0.
We may take ε to be sufficiently small that Bε(z) ⊆ Ω. Let w ∈ B′ε(z), and let r > 0 be such
that Z = Br(w) ⊆ B′ε(z). Now, each set Sj = Aj ∩ Z is a closed subset of the complete metric
space (Z, | · |), and since

⋃∞
j=1 Sj = Z, by Proposition 11.21 and the same argument as before

there is some Sk that contains an open C-ball B. The ball B is among those whose union forms
U , so that B ⊆ U . Now,

B ⊆ Sk = Ak ∩ Z ⊆ Z ⊆ B′ε(z)

makes clear that B ∩ B′ε(z) 6= ∅, and then B′ε(z) ∩ U 6= ∅. Thus for each z ∈ Ω \ U we have
B′ε(z) ∩ U 6= ∅ for all ε > 0, which shows that every point in Ω is either in U or is a limit point
of U , and therefore U is dense in Ω.

Finally, let K ⊆ U be compact. Since U is a union of open C-balls in Ω, a finite number
of these balls, B1, . . . , Bm, must cover K. For each 1 ≤ j ≤ m there must be a compact set
Kj ⊆ Bj such that K =

⋃m
j=1Kj. Since (fn) converges uniformly to f on each Kj, it follows

that (fn) converges uniformly to f on K as a whole. �

One immediate consequence of Osgood’s Theorem is that the function f is analytic on U by
Theorem 4.30.

14It is worth recalling that the subspace topology on Z that is inherited from (C, | · |) is equivalent to the
topology on Z induced by the euclidian metric | · |
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11.3 – Riemann Mapping Theorem

Recall that an analytic nth root of f ∈ A(Ω) is a function g ∈ A(Ω) such that gn = f on Ω.
In particular f is said to have an analytic square root on Ω if there exists some g ∈ A(Ω) such
that f(z) = [g(z)]2 for all z ∈ Ω.

Lemma 11.23. Let Ω /∈ {∅,C} be a region in C such that every nonvanishing function in
A(Ω) has an analytic square root on Ω. Then there exists an injective analytic function Ω→ B.

Proof. Since Ω 6= C there exists some a ∈ C\Ω, so that h(z) = z−a is a nonvanishing function
in A(Ω) and by hypothesis there exists some g ∈ A(Ω) such that g2 = h on Ω. Since h (and
hence g2) is nonvanishing and injective, it is clear that g is also nonvanishing and injective,
and in particular is nonconstant. By the Open Mapping Theorem g(Ω), and hence −g(Ω), is
open in C, with −g(Ω) ∩ g(Ω) = ∅ since 0 /∈ g(Ω). Fix w ∈ −g(Ω), and set r > 0 such that
Br(w) ⊆ −g(Ω), so g(Ω) ∩Br(w) = ∅. Define f : Ω→ C by

f(z) =
r

g(z)− w
.

Since g(z) 6= w for all z ∈ Ω, we have f ∈ A(Ω), and also f is injective. Finally, for each z ∈ Ω
we have g(z) ∈ g(Ω), where

g(z) ∈ g(Ω) ⇒ g(z) /∈ Br(w) ⇒ |g(z)− w| > r ⇒ r

|g(z)− w|
< 1 ⇒ |f(z)| < 1,

and hence f(z) ∈ B. Therefore f is an injective analytic function Ω→ B. �

Theorem 11.24 (Riemann Mapping Theorem). If Ω /∈ {∅,C} is a homologically simply
connected region in C, then there exists an analytic bijection Ω→ B.

Proof. Suppose Ω /∈ {∅,C} is a homologically simply connected region in C. By the Second
Cauchy Theorem in §6.5 it follows that every nonvanishing function in A(Ω) has an analytic
square root on Ω. Let ξ : Ω→ B be an injective analytic function, which exists by Lemma 11.23.
Fix z0 ∈ Ω, and define

F =
{
f ∈ A(Ω) : f is injective, f(Ω) ⊆ B, and |f ′(z0)| ≥ |ξ′(z0)|

}
,

where |ξ′(z0)| > 0 by Proposition 8.20. That F is compact is an immediate consequence of
Proposition 11.16, and because F 6= ∅ on account of it containing ξ, by Proposition 11.6 there
exists some g ∈ F such that |g′(z0)| ≥ |f ′(z0)| for all f ∈ F .

It will be shown that g(Ω) = B. Toward that end, suppose there exists some a ∈ B \ g(Ω),
and define ϕa : B→ B by

ϕa(z) =
z − a
1− az

.

By Proposition 8.24 ϕa is injective and analytic, and thus ϕa ◦ g : Ω → B is injective and
analytic. Also, since a /∈ g(Ω) and ϕa only vanishes at a, we find that ϕa ◦ g is nonvanishing on
Ω. So ϕa ◦ g has an analytic square root; that is, there is some h ∈ A(Ω) such that h2 = ϕa ◦ g,
which immediately implies that h is injective. Moreover, since [h(z)]2 ∈ B for each z ∈ Ω, it is
clear that h(Ω) ⊆ B.
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Let b = h(z0), which is in B, and so

ϕb(z) =
z − b
1− bz

is analytic on B by Proposition 8.24. Since h : Ω→ B and ϕb : B→ B, we may define f : Ω→ B
by f = ϕb ◦ h, which is analytic and also injective on Ω. Recalling from Proposition 8.24 that
ϕ−1
a = ϕ−a and ϕ−1

b = ϕ−b,

g = ϕ−a ◦ h2 = ϕ−a ◦ (ϕ−b ◦ f)2 = ϕ−a ◦ (ϕ2
−b ◦ f) = (ϕ−a ◦ ϕ2

−b) ◦ f.

Now, since f(z0) = ϕb(b) = 0, by the Chain Rule we have

g′(z0) = (ϕ−a ◦ ϕ2
−b)
′(f(z0))f ′(z0) = (ϕ−a ◦ ϕ2

−b)
′(0)f ′(z0), (11.6)

and since ϕ−a ◦ ϕ2
−b : B→ B is analytic,∣∣(ϕ−a ◦ ϕ2

−b)
′(0)
∣∣ ≤ 1−

∣∣(ϕ−a ◦ ϕ2
−b)

2(0)
∣∣ (11.7)

by the Schwarz-Pick Theorem (Theorem 8.24). If equality holds in (11.7), then the Schwarz-Pick
Theorem implies that ϕ−a ◦ϕ2

−b is a Möbius transformation, which in turn implies that ϕ−a ◦ϕ2
−b

is injective by Proposition 8.11. But this is not so, for since ϕ−b(B) = B by Proposition 8.24,
for any nonzero z ∈ B there exist w1 6= w2 in B such that ϕ−b(w1) = z and ϕ−b(w2) = −z,
whereupon we obtain

(ϕ−a ◦ ϕ2
−b)(w1) = ϕ−a(ϕ

2
−b(w1)) = ϕ−a(z

2) = ϕ−a((−z)2)

= ϕ−a(ϕ
2
−b(w2)) = (ϕ−a ◦ ϕ2

−b)(w2),

Therefore ∣∣(ϕ−a ◦ ϕ2
−b)
′(0)
∣∣ < 1−

∣∣(ϕ−a ◦ ϕ2
−b)

2(0)
∣∣, (11.8)

and since f ′(z0) 6= 0 by Proposition 8.20, from (11.6) and (11.8) it follows that

|g′(z0)| =
∣∣(ϕ−a ◦ ϕ2

−b)
′(0)
∣∣|f ′(z0)| <

(
1−

∣∣(ϕ−a ◦ ϕ2
−b)

2(0)
∣∣) |f ′(z0)| ≤ |f ′(z0)|. (11.9)

However, since f ∈ A(Ω) is injective, f(Ω) ⊆ B, and |f ′(z0)| ≥ |ξ′(z0)| (this last because
|g′(z0)| ≥ |ξ′(z0)|), we have f ∈ F , and hence (11.9) contradicts the property of g ∈ F that
|g′(z0)| ≥ |f ′(z0)| for all f ∈ F . Therefore there must exist no a ∈ B \ g(Ω), which is to say
g(Ω) = B and g : Ω→ B is an analytic bijection. �

Two regions Ω1 and Ω2 in C are said to be conformally equivalent if there exists an
analytic bijection f : Ω1 → Ω2, in which case f is called a conformal equivalence. It is
immediate from the Inverse Function Theorem that f−1 : Ω2 → Ω1 is likewise a conformal
equivalence. Moreover, because f is injective, Proposition 8.20 makes clear that f ′(z) 6= 0 for
all z ∈ Ω1, and thus a conformal equivalence is also a conformal map. By Theorem 8.22 a
conformal equivalence is also everywhere angle preserving.

Proposition 11.25. Let Ω be as in the Riemann Mapping Theorem, let z0 ∈ Ω, and let
ξ : Ω→ B be an injective analytic function. Define

F =
{
f ∈ A(Ω) : f is injective, f(Ω) ⊆ B, and |f ′(z0)| ≥ |ξ′(z0)|

}
.

Then the following hold.
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1. If g ∈ F is such that

|g′(z0)| = max{|f ′(z0)| : f ∈ F}, (11.10)

then g(z0) = 0.
2. If f, h : Ω→ B are analytic bijections such that f(z0) = h(z0) = 0 and f ′(z0) = h′(z0), then
f = h.

3. If f : Ω→ B is analytic with f(z0) = 0, and g ∈ F satisfies (11.10), then |f ′(z0)| ≤ |g′(z0)|.
Moreover |f ′(z0)| = |g′(z0)| if and only if f = λg for some λ ∈ ∂B.

4. There exists a unique analytic bijection g : Ω→ B such that g(z0) = 0 and g′(z0) ∈ R+.

Proposition 11.26. Let Ω1,Ω2 /∈ {∅,C} each be a region in C on which every nonvanishing
analytic function has an analytic square root, and let z1 ∈ Ω1 and z2 ∈ Ω2. Then there is a
unique analytic bijection f : Ω1 → Ω2 such that f(z1) = z2 and f ′(z1) ∈ R+.

Proof. By Proposition 11.25(4) there are unique analytic bijections f1 : Ω1 → B and f2 : Ω2 → B
such that f1(z1) = f2(z2) = 0 and f ′1(z1), f

′
2(z2) ∈ R+. By the Inverse Function Theorem

f−1
2 : B→ Ω2 is analytic, and thus f : Ω1 → Ω2 given by f = f−1

2 ◦ f1 is analytic. It is easily
verified that f(z1) = z2, and by the Chain Rule and another application of the Inverse Function
Theorem,

f ′(z1) = (f−1
2 )′(f1(z1))f ′1(z1) = (f−1

2 )′(0)f ′1(z1) =
1

f ′2(f−1
2 (0))

f ′1(z1) =
f ′1(z1)

f ′2(z2)
,

and thus f ′(z1) ∈ R+. This proves existence.
To prove uniqueness, suppose g : Ω1 → Ω2 is an analytic bijection such that g(z1) = z2 and

g′(z1) ∈ R+. There exists an analytic bijection g2 : Ω2 → B such that g2(z2) = 0, and thus
g−1

2 : B→ Ω2 is analytic with g−1
2 (0) = z2. Define g1 : Ω1 → B by g1 = g2 ◦ g, also analytic, with

g1(z1) = g2(g(z1)) = g2(z2) = 0.

Now we have g = g−1
2 ◦ g1, and by the Chain Rule and Inverse Function Theorem

g′(z1) =
g′1(z1)

g′2(z2)
.

Since g′(z1) > 0, either g′1(z1), g
′
2(z2) > 0 or g′1(z1), g

′
2(z2) < 0. Suppose g′1(z1), g

′
2(z2) > 0, so

that for k ∈ {1, 2} we have gk : Ωk → B with gk(zk) = 0 and g′k(zk) ∈ R+. Then by the
uniqueness of fk we must have gk = fk, and thus

g = g−1
2 ◦ g1 = f−1

2 ◦ f1 = f.

Now suppose g′1(z1), g
′
2(z2) < 0. Then −gk : Ωk → B with −gk(zk) = 0 and −g′k(zk) ∈ R+, so

that −gk = fk and we have g = (−f2)−1 ◦ (−f1). For any z ∈ Ω1,

w = g(z) =
(
(−f2)−1 ◦ (−f1)

)
(z) = (−f2)−1(−f1(z)),

and so −f1(z) = −f2(w), whence

f1(z) = f2(w) ⇒ w = f−1
2 (f1(z)) = (f−1

2 ◦ f1)(z) = f(z),

and thus g(z) = f(z) and we once again conclude that g = f . This proves uniqueness. �
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The next proposition, and the one that follows, are called upon in the course of proving
much of Theorem 11.30 below.

Proposition 11.27. Let γ0 and γ1 be closed curves in Ω. If γ0 and γ1 are Ω-homotopic, then
they are Ω-homologous.

Proof. Suppose γ0, γ1 : [a, b]→ C are Ω-homotopic, and let H : R→ Ω be a homotopy of γ0

and γ1, where R = [a, b]× [0, 1]. Fix z ∈ C \ Ω. Then H − z : R → C∗ is continuous, and so
has a continuous logarithm on R by the remark following Exercise 6.16, whereupon Proposition
6.8(1) implies that there is a continuous argument α : R→ R of H − z. Thus

(H − z)(s, t) = |(H − z)(s, t)|eiα(s,t) = |H(s, t)− z|eiα(s,t)

for all (s, t) ∈ R, and for each t ∈ [0, 1] the function αt = α(·, t) : [a, b] → R is a continuous
argument of the closed curve γt = H(·, t)− z on [a, b]. By Definition 6.19

wn(γt, z) =
αt(b)− αt(a)

2π
=
α(b, t)− α(a, t)

2π
,

and so the function t 7→ wn(γt, z) is continuous on [0, 1] since α is continuous on R. However,
wn(γt, z) ∈ Z for all t ∈ [0, 1] by Proposition 6.7(1), and so t 7→ wn(γt, z) must be a constant
function. Therefore wn(γ0, z) = wn(γ1, z), and since z ∈ C \ Ω is arbitrary, we conclude that
wn(γ0, z) = wn(γ1, z) for all z ∈ C \ Ω, which is to say γ0 and γ1 are Ω-homologous. �

Exercise 11.28 (AN5.2.3). Let Ω be a convex open set, and let γ : [a, b] → Ω be a closed
curve. Prove that H : [a, b]× [0, 1]→ C given by

H(s, t) = tγ(a) + (1− t)γ(s)

is an Ω-homotopy of γ to the point γ(a).

Solution. Since Ω is convex and γ(s) ∈ Ω for each s ∈ [a, b], the line segment [γ(a), γ(s)] is a
subset of Ω for each s ∈ [a, b]. By definition

[γ(a), γ(s)] =
{
tγ(a) + (1− t)γ(s) : t ∈ [0, 1]

}
,

and thus it is clear that Ran(H) ⊆ Ω. Moreover, the function (s, t) 7→ γ(s) is continuous since
γ is continuous on [a, b], and since (s, t) 7→ tγ(a) and (s, t) 7→ 1 − t are also continuous, it
follows readily that H is continuous on its domain. Finally, H(·, 0) = γ, H(·, 1) = γ(a), and
H(a, t) = H(b, t) = γ(a) for all t ∈ [0, 1], since γ(a) = γ(b). Therefore H is an Ω-homotopy of γ
to the point γ(a). �

An immediate consequence of Exercise 11.28 is the following proposition, which establishes
in particular that B and any other open disc in C is homotopically simply connected.

Proposition 11.29. Every convex open set in C is homotopically simply connected.

We now gather together the foremost equivalent statements encountered in these notes thus
far, along with a few that will soon be found to be equivalent.
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Theorem 11.30. Let Ω ⊆ C be a nonempty open set. Then the following statements are
equivalent.

1. C \ Ω is connected.
2. Every closed curve in Ω is Ω-homologous to zero.
3. Ω is homologically simply connected.
4. For every closed path γ in Ω and every f ∈ A(Ω),˛

γ

f = 0.

5. Every analytic function on Ω has a primitive on Ω.
6. Every nonvanishing f ∈ A(Ω) has an analytic logarithm.
7. Every nonvanishing f ∈ A(Ω) has an analytic nth root for all n ∈ N.
8. Every nonvanishing f ∈ A(Ω) has an analytic square root.
9. If Ω is connected with Ω 6= C, then Ω is conformally equivalent to B.

10. If Ω is connected, then Ω is homeomorphic to B.
11. Ω is homotopically simply connected.
12. Every closed path in Ω is Ω-homotopic to a point.
13. Every harmonic function on Ω has a harmonic conjugate.
14. Every f ∈ A(Ω) can be uniformly approximated by polynomials on compact subsets of Ω.

Proof. That (1), (2), (3), (4), (5), (6), and (7) are equivalent is the statement of the Second
Cauchy Theorem in §6.5. It is clear that (7) implies (8).

(8) ⇒ (9): Suppose (8). Suppose Ω is connected with Ω 6= C. Since Ω is a nonempty open
subset of C by hypothesis, the Riemann Mapping Theorem implies that there exists an analytic
bijection Ω→ B. Therefore Ω is conformally equivalent to B.

(9) ⇒ (10): Suppose (9). Suppose Ω is connected. If Ω 6= C, then Ω is conformally equivalent
to B, which immediately implies that Ω is homeomorphic to B. If Ω = C, then define h : C→ B
by

h(z) =
z

1 + |z|
.

It is shown in Exercise 11.32 below that h is a homeomorphism. Therefore if Ω is connected,
then it is homeomorphic to B.

(10) ⇒ (11): Suppose (10). Let γ : [a, b] → Ω be a closed curve in Ω. Since γ is continuous,
γ∗ must lie in some component Ω0 of Ω, and since Ω0 is a region in C, by (10) there exists a
homeomorphism h : Ω0 → B. Now, h ◦ γ is a closed curve in B, and since B is homotopically
simply connected by Proposition 11.29, there is a homotopy H : [a, b]× [0, 1]→ B of f ◦ γ to the
point f(γ(a)). Now the function h−1 ◦H : [a, b]× [0, 1]→ Ω0 is continuous, and is easily verified
to be a homotopy in Ω of γ to the point γ(a). Thus every closed curve in Ω is Ω-homotopic to a
point.

(11) ⇒ (12): Suppose (11). Then every closed curve in Ω is Ω-homotopic to a point, which
immediately implies that every closed path in Ω is Ω-homotopic to a point.
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(12) ⇒ (3): Suppose (12). Let γ : [a, b] → Ω be a closed path in Ω, and let z ∈ C \ Ω. By
hypothesis γ is Ω-homotopic to the point γ(a), and so by Proposition 11.27 the constant function
t 7→ γ(a) (which we denote by γ(a)) and γ are Ω-homologous; that is,

wn(γ, z) = wn(γ(a), z) = 0.

We conclude that wn(γ, z) = 0 for every closed path γ in Ω and every z ∈ C \ Ω, and therefore
Ω is homologically simply connected. �

The proof of Theorem 11.30 so far has established the equivalency of the first dozen statements
in the list. The next proposition will bring (13) into the fold, whereas (14) is secured by a
variant of Runge’s Theorem presented in Exercise 11.39 in the next section. At this juncture we
now see that homological and homotopical simple connectedness are equivalent concepts, and
henceforth we will use the term simply connected to reference either.

Proposition 11.31. Let Ω ⊆ C be an open set. Then every harmonic function on Ω has a
harmonic conjugate if and only if Ω is simply connected.

Exercise 11.32 (AN5.2.2). Show that h : C→ B given by

h(z) =
z

1 + |z|
is a homeomorphism.

Solution. It is clear that h is continuous on the basis of the usual laws of limits, and we also
have h(0) = 0. To show that h is surjective, let w ∈ B with w 6= 0, so that w = reiθ for some
r ∈ [0, 1) and θ ∈ R. In general we have

h(ρeiθ) =
ρ

1 + ρ
eiθ,

and so we only need to find ρ such that ρ/(1 + ρ) = r. Solving for ρ gives ρ = r/(1− r), which
is a real number, and hence choosing z = reiθ/(1− r) we obtain

h(z) =
r

1−re
iθ

1 + r
1−r

=
reiθ

(1− r) + r
= reiθ = w.

Next we show that h is injective. Suppose h(z) = h(w), where z = reiα and w = ρeiβ. Then
|h(z)| = |h(w)|, so that

r

1 + r
=

ρ

1 + ρ

and thus r = ρ. Now,

h(z) = h(w) ⇒ reiα

1 + r
=

reiβ

1 + r
⇒ eiα = eiβ,

and therefore z = w.
Finally we find h−1 and verify that it is continuous. For each reiθ ∈ C, where r ∈ [0,∞),

h(reiθ) =
r

1 + r
eiθ ⇔ h−1

(
r

1 + r
eiθ
)

= reiθ ⇔ h−1(ρeiθ) =
ρ

1− ρ
eiθ,
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where ρ ∈ [0, 1). This shows that h−1 : B→ C is given by

h−1(z) =
z

1− |z|
for all z ∈ B, which clearly is continuous on B. Therefore h is a homeomorphism. �
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11.4 – Runge’s Theorem

For any function f , let P (f) denote the set of poles of f that lie in the extended complex
plane C.

Lemma 11.33. Suppose K ⊆ Ω ⊆ C, with K compact and Ω open. If f ∈ A(Ω), then there
exists a sequence (fn) of rational functions such that P (fn) ⊆ Ω \K for each n and u-lim fn = f
on K.

Lemma 11.34. Let U, V ⊆ C be open with V ⊆ U and ∂V ∩ U = ∅. If U0 is a component of
U such that U0 ∩ V 6= ∅, then U0 ⊆ V .

Proof. Suppose that U0 is a component of U such that U0∩V 6= ∅. Define two sets: A = U0∩V
and B = U0 ∩ (C \ V ), which are disjoint. Since the components of an open set in C are open,
the set A is open.

Let z ∈ B, so z ∈ U0 ⊆ U and z /∈ V . Since U ∩ ∂V = ∅, we have z /∈ ∂V in addition to
z /∈ V , so that z /∈ V ∪ ∂V = V , and hence z ∈ U0 ∩ (C \ V ). Conversely,

z ∈ U0 ∩ (C \ V ) ⇒ z ∈ U0 ∩ (C \ V ) ⇒ z ∈ B,

and so we find that B = U0 ∩ (C \ V ), which is also an open set. Thus A and B are disjoint
open sets such that A ∪B = U0, and since U0 is connected either A = ∅ or B = ∅. But A 6= ∅
by hypothesis, so B = ∅ must be the case and therefore U0 ⊆ V . �

Lemma 11.35. Let K ⊆ C be compact, and S ⊆ C\K such that S∩C 6= ∅ for each component
C of C \ K. If ζ ∈ C \ K, then there exists a sequence (fn) of rational functions such that
P (fn) ⊆ S for each n and u-lim fn = (z − ζ)−1 on K.

Theorem 11.36 (Runge’s Theorem). Let K ⊆ C be compact, and S ⊆ C \ K such that
S ∩ C 6= ∅ for each component C of C \K. If Ω ⊇ K is open in C and f ∈ A(Ω), then there
exists a sequence (fn) of rational functions such that P (fn) ⊆ S for each n and u-lim fn = f on
K.

Proof. Suppose Ω ⊇ K is open in C and f ∈ A(Ω). By Lemma 11.33 there exists a sequence
(fn) of rational functions such that P (fn) ⊆ Ω \K for each n and u-lim fn = f on K. Fix n ∈ N.
Since fn has no pole at ∞, its partial fraction decomposition may be written in the form

fn(z) = cn0 +
mn∑
k=1

cnk
z − ζnk

,

for constants cnk, ζnk ∈ C and mn ≥ 0 (if mn = 0 then we take fn ≡ cn0). For each 1 ≤ k ≤ mn,
ζnk is a pole of fn, so that ζnk ∈ Ω \K ⊆ C \K, and so by Lemma 11.35 there is a sequence of
rational functions (fnkj)

∞
j=1 such that P (fnkj) ⊆ S for each j and

u- lim
j→∞

fnkj =
1

z − ζnk
:= fnk
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on K. For each j define

gnj = cn0 +
mn∑
k=1

cnkfnkj.

Then (gnj)
∞
j=1 is a sequence of rational functions such that

P (gnj) =
mn⋃
k=1

P (fnkj) ⊆ S

for each j and

u- lim
j→∞

gnj = cn0 +
mn∑
k=1

cnkfnk = fn

on K.
For each n ∈ N let jn ∈ N be such that∣∣gnjn(z)− fn(z)

∣∣ < 1

n

for all z ∈ K. Now consider the sequence (gnjn)n∈N, which is a sequence of rational functions
such that P (gnjn) ⊆ S for each n. Fix ε > 0. Let M1 ∈ N such that 1/M1 < ε/2. Also let
M2 ∈ N such that

|fn(z)− f(z)| < ε

2
for all n ≥M2 and z ∈ K. Choose N = max{M1,M2}, and let n ≥ N and z ∈ K. Then∣∣gnjn(z)− f(z)

∣∣ ≤ ∣∣gnjn(z)− fn(z)
∣∣+
∣∣fn(z)− f(z)

∣∣ < 1

n
+
ε

2
≤ 1

M1

+
ε

2
< ε.

This shows that u-lim gnjn = f on K, and the proof is finished. �

Exercise 11.37 (AN5.2.5). Let Ω ⊆ C be open, and let (Kn)∞n=1 be the sequence of sets
defined by (11.1). For each n ∈ N, show that each component of C \Kn contains a component
of C \ Ω.

Solution. Let U be a component of C \Kn, so U is a (nonempty) maximal connected set in
the metric space (C \Kn, d̄ ). Letting A = An,∞(0) ∪ {∞} we have

C \Kn = A ∪ {z : |z − w| < 1/n for some w ∈ C \ Ω} = A ∪
⋃

w∈C\Ω

B1/n(w),

and thus
U ⊆ A ∪

⋃
w∈C\Ω

B1/n(w).

Let z ∈ U . Then either z ∈ B1/n(w) for some w ∈ C \ Ω, or z ∈ A. Since B1/n(w) and A are

connected sets in (C \Kn, d̄ ), we have either B1/n(w) ⊆ U or A ⊆ U by Theorem 2.34. In the

former instance we have w ∈ U ∩ (C \ Ω), and in the latter instance we have ∞ ∈ U ∩ (C \ Ω).
In either case U contains a point w in C \Ω. Let V be the component of C \Ω that contains w.
Then V 6= ∅ is a connected set in C \ Ω, and since

V ⊆ C \ Ω ⊆ C \Kn ⊆ (C, d̄ ),
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by the remark following Theorem 2.27 it follows that V is a connected set in C \ Kn. Now,
because U is a component of C \ Kn and U ∩ V 6= ∅, by Theorem 2.34 we conclude that
V ⊆ U . �

Exercise 11.38 (AN5.2.6a). Let Ω ⊆ C be open, and let S ⊆ C be such that S ∩ C 6= ∅ for
each component C of C \ Ω. If f ∈ A(Ω), then there is a sequence (fn) of rational functions
such that P (fn) ⊆ S for each n and u-lim fn = f on compact subsets of Ω.

Solution. Fix n ∈ N. By Exercise 11.37 each component of C \Kn contains a component of
C \ Ω. Thus S ∩ C 6= ∅ for each component C of C \Kn, since C contains a component C ′

of C \ Ω and S ∩ C ′ 6= ∅. Let Sn = S ∩ (C \Kn), so Sn ⊆ C \Kn and Sn ∩ C 6= ∅ for each
component C of C \Kn. Since Kn ⊆ C is compact by Lemma 11.1, Ω ⊇ Kn is open in C, and
f ∈ A(Ω), by Runge’s Theorem there exists a sequence (gnk)

∞
k=1 of rational functions such that

P (gnk) ⊆ Sn ⊆ S for each k, and
u- lim
k→∞

gnk = f

on Kn.
For each n ∈ N choose kn ∈ N such that

|gnkn(z)− f(z)| < 1

n
for all z ∈ Kn. Defining fn = gnkn for each n, we construct a sequence (fn) of rational functions
with P (fn) ⊆ S for each n.

Let K ⊆ Ω be compact. Fix ε > 0. By Lemma 11.1 there is some m1 such that K ⊆ Kn for
all n ≥ m1. Letting m2 be such that 1/m2 < ε, choose m = max{m1,m2}. Fix n ≥ m. For all
z ∈ Kn we have

|fn(z)− f(z)| = |gnkn(z)− f(z)| < 1

n
≤ 1

m
≤ 1

m2

< ε,

and since n ≥ m ≥ m1 implies K ⊆ Kn, it follows that |fn(z) − f(z)| < ε for all z ∈ K.
Therefore u-lim fn = f on compact subsets of Ω. �

Exercise 11.39 (AN5.2.6b). Let Ω ⊆ C be open. Show that Ω is simply connected if and
only if for each f ∈ A(Ω) there is a sequence (fn) of polynomial functions such that u-lim fn = f
on compact subset of Ω.

Solution. Suppose Ω is simply connected, and let f ∈ A(Ω). By Theorem 11.30 C \ Ω is
connected, so S = {∞} is a set in C such that S ∩C 6= ∅ for each component C of C \Ω, since
of necessity C = C \ Ω is the only component. By Exercise 11.38 there is a sequence (fn) of
rational functions such that P (fn) ⊆ {∞} for each n and u-lim fn = f on compact subsets of Ω.
Thus each fn is an entire rational function, so there exist polynomial functions pn and qn such
that fn = pn/qn and qn(z) 6= 0 for all z ∈ C. By the Fundamental Theorem of Algebra qn ≡ cn
for some cn ∈ C∗, whence fn = c−1

n pn obtains and (fn) is seen to be a sequence of polynomial
functions.

Now suppose that for each f ∈ A(Ω) there is a sequence (fn) of polynomial functions such
that u-lim fn = f on compact subset of Ω. Fix f ∈ A(Ω), and let γ be a closed path in Ω. Let
(fn) be a sequence of polynomial functions that converges uniformly to f on compact subsets of
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Ω. Since any polynomial function has a primitive on Ω, by the Fundamental Theorem of Path
Integrals we have ˛

γ

fn = 0

for each n. Now, γ∗ ⊆ Ω is compact and (fn) converges uniformly to f on γ∗, so that˛
γ

f = lim
n→∞

˛
γ

fn = lim
n→∞

(0) = 0

by Proposition 3.37. We conclude that ˛
γ

f = 0

for every f ∈ A(Ω) and closed path γ in Ω, and therefore Ω is simply connected by Theorem
11.30. �
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11.5 – Extending Conformal Maps to the Boundary

Proposition 11.40. Suppose Ω ⊆ C is open, f is a homeomorphism on Ω, and (zn) is a
sequence in Ω. Then (zn) has a limit point in Ω if and only if (f(zn)) has a limit point in f(Ω).

Proposition 11.41. Suppose f : Ω→ B is a conformal equivalence. If (zn) is a sequence in Ω
such that zn → ζ ∈ ∂Ω, then |f(zn)| → 1.

Definition 11.42. A point ζ ∈ ∂Ω is simple if for every sequence (zn) in Ω for which zn → ζ,
there exists a curve γ : [0, 1]→ Ω∪ {ζ} and a strictly increasing sequence (tn) in [0, 1) such that
tn → 1, γ(tn) = zn for each n, and γ([0, 1)) ⊆ Ω.

Theorem 11.43. Let Ω ⊆ C be a bounded simply connected region, and let ζ ∈ ∂Ω be simple.
If f : Ω→ B is a conformal equivalence, then f has continuous extension to Ω ∪ {ζ}.

For the following theorem recall that an analytic function f : Ω→ C is a conformal map if
its derivative is nonvanishing. Such a function is not necessarily a conformal equivalence of Ω
onto f(Ω) even if the set Ω is as specified in the Riemann Mapping Theorem, since it may not
be injective on its domain (though it will be locally injective).

Theorem 11.44. Let Ω ⊆ C be a bounded simply connected region, and let f : Ω → B be
a surjective conformal map. If ζ1, ζ2 ∈ ∂Ω are distinct simple points and f has continuous
extension to Ω ∪ {ζ1, ζ2}, then f(ζ1) 6= f(ζ2).

Theorem 11.45. Let Ω ⊆ C be a bounded simply connected region such that every boundary
point is simple. If f : Ω→ B is a conformal equivalence, then f extends to a homeomorphism
Ω→ B.

Exercise 11.46 (AN5.3.1). Let Ω ⊆ C be a nonempty, bounded, simply connected region
such that every boundary point is simple. Prove that the Dirichlet problem is solvable for Ω;
that is, if u0 : ∂Ω → R is continuous, then u0 has a continuous extension u : Ω → R that is
harmonic on Ω.

Solution. Let u0 : ∂Ω → R be continuous. By Theorem 11.30 the region Ω is conformally
equivalent to B, so there exists an analytic bijection Ω→ B which, by Theorem 11.45, extends
to a homeomorphism Ω→ B. Let ϕ : B → Ω be the inverse of this homeomorphism. Since
ϕ(∂B) = ∂Ω, we see that ϕ0 = ϕ|∂B : ∂B→ ∂Ω is a continuous function, and hence

g0 = u0 ◦ ϕ0 : ∂B→ ∂Ω→ R

is continuous. By Theorem 9.9 there exists a function g : B→ R that is continuous on B and
harmonic on B, with g|∂B = g0. Define u : Ω → R by u = g ◦ ϕ−1, which is continuous on Ω.
Since ϕ−1|∂Ω = ϕ−1

0 and ϕ−1
0 (∂Ω) = ∂B, we find that u|∂Ω = g0 ◦ ϕ−1

0 = u0.
It remains to show that u is harmonic on Ω. Since B is simply connected, by Theorem 11.30

the function g has a harmonic conjugate h on B, so that ψ = g + ih is analytic on B, and then
ψ ◦ ϕ−1 : Ω→ C is analytic. Now, for any z ∈ Ω,(

Re(ψ ◦ ϕ−1)
)
(z) = Re[ψ(ϕ−1(z))] = Re[g(ϕ−1(z)) + ih(ϕ−1(z))] = g(ϕ−1(z)) = u(z),
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which shows that Re(ψ ◦ ϕ−1) = u and therefore u is harmonic on Ω by Theorem 4.28. �

Exercise 11.47 (AN5.3.3). Let Ω ⊆ C be a nonempty, bounded, simply connected region
such that every boundary point is simple. Show that every nonvanishing continuous function on
Ω has a continuous logarithm.

Solution. Let f : Ω→ C be a nonvanishing continuous function, and let

R = {x+ iy : x, y ∈ [0, 1]}.

Since R◦ /∈ {∅,C} is a simply connected region in C, Theorem 11.30 implies that there exists
a conformal equivalence ϕ0 : R◦ → B, and then by Theorem 11.45 the function ϕ0 extends
to a homeomorphism ϕ : R → B. Also by Theorem 11.30 there is a conformal equivalence
ψ0 : Ω→ B which, again by Theorem 11.45, extends to a homeomorphism ψ : Ω→ B. Now,

f ◦ ψ−1 ◦ ϕ : R→ B→ Ω→ C∗

is continuous on the rectangle R, and so has a continuous logarithm h on R by Exercise 6.16.
Thus

(f ◦ ψ−1 ◦ ϕ)(z) = eh(z)

for all z ∈ R. Define ξ : R → Ω by ξ = ψ−1 ◦ ϕ, which is a homeomorphism such that
f(ξ(z)) = eh(z) for all z ∈ R. Let λ = h ◦ ξ−1, which is a continuous function. Then

eλ(z) = eh(ξ−1(z)) = f(ξ(ξ−1(z))) = f(z)

for all z ∈ Ω, and therefore λ is a continuous logarithm for f on Ω. �

If the function f in the solution to Exercise 11.47 is given to be analytic on Ω, then by
Exercise 6.17 it follows that the continuous logarithm for f will likewise be analytic on Ω.
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12
Entire and Meromorphic Functions

12.1 – Infinite Products

Given a sequence (zn)∞n=1 in C, the associated infinite product is the ordered formal
product

∞∏
n=1

zn = z1z2z3 · · · , (12.1)

and the associated sequence of partial products is (pn)∞n=1, where

pn =
n∏
k=1

zk

is called the nth partial product. We say the infinite product (12.1) is convergent if (pn)∞n=1

converges so some p ∈ C, in which case we write

p =
∞∏
n=1

zn;

that is,
∞∏
n=1

zn = lim
n→∞

n∏
k=1

zk,

and thus an ordered formal product is identified with the complex number obtained by “mul-
tiplying all its factors.” If an infinite product is not convergent, then it is divergent. The
symbol

∏
will often be used to represent

∏∞
n=1, just as

∑
represents

∑∞
n=1

Proposition 12.1. Let (zn)∞n=1 be a sequence in C, and let (pn)∞n=1 be the associated sequence
of partial products. If lim pn = p ∈ C∗, then lim zn = 1.

Proof. Suppose lim pn = p ∈ C∗. Then zn 6= 0, and hence pn 6= 0, for all n (otherwise there
exists some k ∈ N such that pk = 0 for all n ≥ k, in which case lim pn = 0). As a result we may
write zn = pn/pn−1 for all n ≥ 2, and therefore

lim
n→∞

zn = lim
n→∞

pn
pn−1

=
p

p
= 1
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as desired. �

Proposition 12.2. Let (zn)∞n=1 be a sequence in C∗. Then
∏∞

n=1 zn converges in C∗ if and only
if
∑∞

n=1 Log(zn) converges in C.

Proof. Suppose
∏
zn converges in C∗, which is to say

∏
zn = p for some p ∈ C∗, and thus

lim pn = p with pn 6= 0 for all n. Choose θ ∈ R such that p ∈ C \Rθ. By Proposition 6.4, logθ
is continuous at p and therefore

lim
n→∞

logθ(pn) = logθ(p)

by Theorem 2.20. For each n ∈ N let

sn =
n∑
k=1

Log(zn).

Since exp(sn) = pn and exp(logθ pn) = pn, we have sn = logθ pn + 2πimn for some mn ∈ Z by
Theorem 4.42(7). Now, Log is continuous on C \ R−π, which contains 1, and since (zn)∞n=1

converges to 1, by Proposition 12.1 it follows that

lim
n→∞

(sn − sn−1) = lim
n→∞

Log(zn) = Log(1) = 0,

and thus

lim
n→∞

[
(logθ pn + 2πimn)− (logθ pn−1 + 2πimn−1)

]
= lim

n→∞

[
(logθ pn − logθ pn−1) + 2πi(mn −mn−1)

]
= 0.

On the other hand,
lim
n→∞

(logθ pn − logθ pn−1) = logθ p− logθ p = 0,

and so
lim
n→∞

2πi(mn −mn−1) = 0.

Since mn ∈ Z for all n, there must be some k such that mn−mn−1 = 0 for all n ≥ k, and hence
there is some m ∈ Z such that mn = m for n ≥ k. Therefore,

∞∑
k=1

Log(zn) = lim
n→∞

sn = lim
n→∞

(logθ pn + 2πim) = logθ p+ 2πim,

and so the infinite series converges in C.
Conversely, suppose that

∑∞
n=1 Log zn converges in C. Thus, letting sn denote the nth partial

sum, limn→∞ sn = s for some s ∈ C. Now, since the exponential function is continuous at s, by
Theorem 4.42(3) and Theorem 2.20,

lim
n→∞

n∏
k=1

zk = lim
n→∞

n∏
k=1

exp
(

Log(zk)
)

= lim
n→∞

exp

(
n∑
k=1

Log(zk)

)
= lim

n→∞
exp(sn) = exp(s).

Thus
∞∏
n=1

zn = es,

which shows that the infinite product converges in C∗. �
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Let f(x) = ex − x− 1 for all x ∈ R, which is increasing on [0,∞) since f ′(x) = ex − 1 ≥ 0
for all x ≥ 0. Noting that f(0) = 0, it follows that f ≥ 0 on [0,∞). That is, x+ 1 ≤ ex for all
x ≥ 0. We use this fact in the proof of the next proposition.

Proposition 12.3. Let an ∈ [0,∞) for all n ∈ N. Then
∏∞

n=1(1 + an) converges if and only if∑∞
n=1 an converges.

Proof. Since an ≥ 0 for each n, we have an + 1 ≤ exp(an) for all n, and hence
n∑
k=1

ak ≤
n∏
k=1

(1 + ak) ≤
n∏
k=1

exp(ak) = exp

(
n∑
k=1

ak

)
(12.2)

for all n. Suppose
∑
an = s for some s ∈ R. Let

pn =
n∏
k=1

(1 + ak).

Since 1 + an ≥ 1 for all n, the sequence (pn) is monotone increasing, and also it is bounded since

pn ≤ exp

(
n∑
k=1

ak

)
≤ exp

(
∞∑
k=1

ak

)
= es

for all n by (12.2). Thus (pn) converges in R by the Monotone Convergence Theorem, which
immediately implies that

∏
(1 + an) converges.

Conversely, suppose that
∏

(1 + an) = p for some p ∈ R. Let

sn =
n∑
k=1

ak.

Since an ≥ 0 for all n, the sequence (sn) is monotone increasing, and also it is bounded since

sn ≤
n∏
k=1

(1 + ak) ≤ p

for all n by (12.2). Therefore (sn) converges in R, which is to say
∑
an converges. �

Definition 12.4. Let (zn)∞n=1 be a sequence in C. The infinite product
∏∞

n=1(1 + zn) is said to
be absolutely convergent if

∏∞
n=1(1 + |zn|) is convergent.

As the next proposition makes clear, an absolutely convergent infinite product is also conver-
gent, and moreover the value of the infinite product is invariant under arbitrary rearrangements.
Recall that a rearrangement of an infinite sum or product is defined to be a permutation of its
terms.

Proposition 12.5. Suppose
∏∞

n=1(1 + zn) is absolutely convergent. Then the following hold.

1.
∏∞

n=1(1 + zn) is convergent.
2. For any permutation σ : N→ N, the rearrangement

∏∞
n=1(1 + zσ(n)) is absolutely convergent

with
∞∏
n=1

(1 + zσ(n)) =
∞∏
n=1

(1 + zn). (12.3)
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Proof.
Proof of Part (1). Suppose that

∏
(1 + zn) is absolutely convergent. By Proposition 12.3 the

series
∑
|zn| is convergent, so that lim |zn| = 0 and hence there exists some n0 such that zn ∈ B

for all n ≥ n0. From Example 6.6 we have

Log(1 + z) =
∞∑
n=1

(−1)n−1

n
zn

for z ∈ B, and thus Log(1 + z) = zh(z) with

h(z) =
∞∑
n=1

(−1)n−1

n
zn−1 (12.4)

for z ∈ B. The set {|h(zn)| : n ∈ N} is bounded since

lim
z→0

h(z) = lim
z→0

(
1− z

2
+
z2

3
− z3

4
+ · · ·

)
= 1

and zn → 0 as n→∞. Let M ∈ (0,∞) be such that |h(zn)| ≤M for all n.
Fix ε > 0. Since

∑
|zn| converges, by the Cauchy Criterion there exists some integer n1 such

that
m∑
k=n

|zk| <
ε

M

for all m ≥ n ≥ n1. Choose N = max{n0, n1}, and suppose m ≥ n ≥ N . Then∣∣∣∣∣
m∑
k=n

Log(1 + zk)

∣∣∣∣∣ =

∣∣∣∣∣
m∑
k=n

zkh(zk)

∣∣∣∣∣ ≤
m∑
k=n

|zk||h(zk)| ≤M
m∑
k=n

|zk| < M · ε
M

= ε,

and therefore the series
∞∑

n=n0

Log(1 + zn) =
∞∑
n=1

Log(1 + zn+n0−1)

converges in C by the Cauchy Criterion. Now, 1 + zn+n0−1 ∈ B1(1) ⊆ C∗ for all n ∈ N, and so
by Proposition 12.2 the infinite product

∞∏
n=1

(1 + zn+n0−1) =
∞∏

n=n0

(1 + zn)

converges in C∗. Since

∞∏
n=1

(1 + zn) =

n0−1∏
n=1

(1 + zn) ·
∞∏

n=n0

(1 + zn),

it follows that
∏

(1 + zn) is convergent.

Proof of Part (2). Let σ : N→ N be a permutation. By hypothesis
∏

(1 + |zn|) converges, and
so
∑
|zn| converges by Proposition 12.3. It is immediate that

∑
|zn| is absolutely convergent,

and so has value that is invariant under rearrangements, and thus
∑
|zσ(n)| converges since∑

|zσ(n)| =
∑
|zn|. Now, Proposition 12.3 implies that

∏
(1 + |zσ(n)|) converges, and therefore∏

(1 + zσ(n)) is absolutely convergent. It remains to verify (12.3), omitted at present. �
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We consider now infinite products of functions. Let S be a subset of C, and let (fn)∞n=1 be a
sequence of complex-valued functions defined on S. Define

pn =
n∏
k=1

fn

for each n. The infinite product
∞∏
n=1

fn,

also written
∏
fn, is said to converge pointwise to p : S → C on S if lim pn(z) = p(z) for all

z ∈ S, which is to say
∞∏
n=1

fn(z) = p(z)

for each z ∈ S. We say
∏
fn converges uniformly to p on S if the sequence (pn)∞n=1 converges

uniformly to p on S.
One last definition is in order before the statement of the next proposition, so as to dispel

any ambiguity.

Definition 12.6. Let (fn)∞n=1 be a sequence of complex-valued functions defined on S ⊆ C. The
infinite product

∏∞
n=1(1 + fn) is said to be absolutely convergent on S if

∏∞
n=1(1 + |fn|) is

pointwise convergent on S.15

Proposition 12.7. Let (gn)∞n=1 be a sequence of bounded complex-valued functions defined on
S ⊆ C. Suppose

∑∞
n=1 |gn| converges uniformly on S. Then the following hold.

1. The infinite product
∏∞

n=1(1+gn) is absolutely convergent on S, and also converges uniformly
on S to the function f : S → C given by

f(z) =
∞∏
n=1

(1 + gn(z)).

2. If z ∈ S, then f(z) = 0 if and only if 1 + gn(z) = 0 for some n ∈ N.

Proof.
Proof of Part (1). Fix z ∈ S. The series

∑
|gn(z)| is convergent since

∑
|gn| is given to

converge uniformly on S, and so
∏

(1 + |gn(z)|) is convergent by Proposition 12.3. It follows
that

∏
(1 + |gn|) is pointwise convergent on S, and therefore

∏
(1 + gn) is absolutely convergent

on S.
Next, let σn denote the nth partial sum of (|gn|)∞n=1:

σn =
n∑
k=1

|gk|.

By hypothesis (|gn|)∞n=1 converges uniformly to some σ : S → C, and so there exists some N
such that |σn(z)− σ(z)| < 1/4 for all n ≥ N − 1 and z ∈ S, and hence

|σ(z)| − 1

4
< σn(z) < |σ(z)|+ 1

4
.

15Another term that may be used is “pointwise absolutely convergent,” but it is unneeded here.
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Fix n ≥ N and z ∈ S. Since σn(z) = σn−1(z) + |gn(z)|, we have

|σ(z)| − 1

4
< σn−1(z) + |gn(z)| < |σ(z)|+ 1

4
; (12.5)

and since n− 1 ≥ N − 1, we have

|σ(z)| − 1

4
< σn−1(z) < |σ(z)|+ 1

4
. (12.6)

Multiplying (12.6) by −1 and adding it to (12.5) then gives |gn(z)| < 1/2 for all n ≥ N and
z ∈ S.

Fix ε > 0. Let function h be as given by (12.4). For n ≥ N and z ∈ S we have, for any
k ≥ 0, ∣∣∣∣(−1)k

k + 1
[gn(z)]k

∣∣∣∣ ≤ |gn(z)|k ≤ 1

2k
,

and since
∑∞

k=0 2−k converges in R, it follows by the Direct Comparison Test that
∞∑
k=0

(−1)k

k + 1
[gn(z)]k

converges absolutely in C, and so also converges. Now, for all n ≥ N and z ∈ S,

|h(gn(z))| =

∣∣∣∣∣
∞∑
k=0

(−1)k

k + 1
[gn(z)]k

∣∣∣∣∣ ≤
∞∑
k=0

1

2k
= 2.

Next, since
∑
|gn(z)| converges uniformly on S, by the Cauchy Criterion for uniform

convergence16 there exists some N ′ such that, for all m > n ≥ N ′ and z ∈ S,
m∑

k=n+1

|gk(z)| < ε

2
.

Choose M = max{N,N ′}, let m,n ≥M with m > n, and let z ∈ S. For all k ≥ n+ 1 we have
gk(z) ∈ B1/2(0) ⊆ B, so that

Log(1 + gk(z)) = gk(z)h(gk(z))

is defined in C, and hence∣∣∣∣∣
m∑

k=n+1

Log(1 + gk(z))

∣∣∣∣∣ =

∣∣∣∣∣
m∑

k=n+1

gk(z)h(gk(z))

∣∣∣∣∣ ≤
m∑

k=n+1

|gk(z)||h(gk(z))|

≤ 2
m∑

k=n+1

|gk(z)| < 2 · ε
2

= ε.

It follows by the Cauchy Criterion for uniform convergence that the series
∞∑
n=N

Log(1 + gn)

is uniformly convergent on S. The remainder of the proof is outlined very scantily in [AN], and
is omitted here.

16See Rudin’s Principles of Mathematical Analysis, page 147.
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Proof of Part (2). Fix z ∈ S, and suppose that f(z) = 0; that is,

∞∏
n=1

(1 + gn(z)) = 0.

Now, from Part (1),

∞∑
n=N

Log(1 + gn(z)) =
∞∑
n=1

Log(1 + gn+N−1(z))

converges in C, and since 1 + gn+N−1(z) 6= 0 for all n ∈ N, by Proposition 12.2

∞∏
n=1

(1 + gn+N−1(z))

converges in C∗, which is to say
∏∞

n=N(1 + gn(z)) is a nonzero complex number. Since

∞∏
n=1

(1 + gn(z)) =
N−1∏
n=1

(1 + gn(z)) ·
∞∏
n=N

(1 + gn(z)),

with
∏∞

n=1 = 0 and
∏∞

n=N 6= 0, it follows that
∏N−1

n=1 = 0. That is, 1 + gn(z) = 0 for some
1 ≤ n ≤ N − 1, and therefore 1 + gn(z) = 0 for some n ∈ N.

The proof of the converse is trivial. �

Theorem 12.8. Let (fn)∞n=1 be a sequence in A(Ω). If
∑∞

n=1 |fn − 1| converges uniformly on
compact subsets of Ω, then

f(z) =
∞∏
n=1

fn(z) (12.7)

defines a function in A(Ω). Moreover, if z ∈ Ω, then f(z) = 0 if and only if fn(z) = 0 for some
n ∈ N.

Proof. Suppose
∑∞

n=1 |fn − 1| converges uniformly on compact subsets of Ω. Let K ⊆ Ω be
compact. For each n, the analyticity of fn − 1 on Ω implies the boundedness of fn − 1 on
K. Thus, since

∑
|fn − 1| converges uniformly on K, by Proposition 12.7(1) it follows that∏

fn converges uniformly on K. That is, if pn is the nth partial product of
∏
fn, then (pn)∞n=1

converges uniformly on compact subsets of Ω to the function Ω→ C given by z 7→ lim pn(z),
which is precisely the function f given by (12.7). By Theorem 4.30 we conclude that f : Ω→ C
is analytic on Ω.

Next, fix z ∈ Ω. Let K ⊆ Ω be any compact set containing z. By Proposition 12.7(1) and
the findings of the preceding paragraph,

∏
fn|K converges uniformly on K to f |K , and then by

Proposition 12.7(2), f |K(z) = 0 iff fn|K(z) = 0 for some n ∈ N. Therefore f(z) = 0 iff fn(z) = 0
for some n ∈ N. �
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Exercise 12.9 (AN6.1.1). Let (fn)∞n=1 be a sequence in A(Ω) such that
∑∞

n=1 |fn−1| converges
uniformly on compact subsets of Ω, and no fn is identically zero on any component of Ω. For f
as defined by (12.7), prove that

ord(f, z) =
∞∑
n=1

ord(fn, z)

for each z ∈ Ω, where as usual we take ord(f, z) = 0 if f(z) 6= 0.

Solution. Fix z ∈ Ω. If f(z) 6= 0, then fn(z) 6= 0 for all n ∈ N by Theorem 12.8, and so
ord(fn, z) = 0 for all n. Hence

∞∑
n=1

ord(fn, z) = 0 = ord(f, z).

Suppose f(z) = 0. We have |fn(z)− 1| → 0 as n→∞ since
∑
|fn(z)− 1| is convergent, so

that fn(z)→ 1 as n→∞, and hence there exists some N such that fn(z) 6= 0 for all n ≥ N + 1.
Since (fN+n)∞n=1 is a sequence in A(Ω) and

∑∞
n=1 |fN+n − 1| converges uniformly on compact

subsets of Ω, by Theorem 12.8

g(w) =
∞∏
n=1

fN+n(w) =
∞∏

n=N+1

fn(w)

defines a function in A(Ω). Also by the same theorem g(z) 6= 0 since fN+n(z) 6= 0 for all n ∈ N.
Now,

f(w) =
∞∏
n=1

fn(w) =
N∏
n=1

fn(w) ·
∞∏

n=N+1

fn(w) = g(w)
N∏
n=1

fn(w). (12.8)

For each 1 ≤ n ≤ N let kn = ord(fn, z), which by Proposition 5.15 is an integer since fn is not
identically zero on the component of Ω containing z, and so

fn(w) = (w − z)knϕn(w)

for some ϕn ∈ A(Ω) with ϕn(z) 6= 0. Setting h(w) = g(w)
∏N

n=1 ϕn(w), from (12.8) we obtain

f(w) = (w − z)k1+···+kNh(w),

where h ∈ A(Ω) with h(z) 6= 0. Therefore

ord(f, z) =
N∑
n=1

kn =
N∑
n=1

ord(fn, z) =
∞∑
n=1

ord(fn, z),

the last equality due to fn(z) 6= 0 for n ≥ N + 1 implying ord(fn, z) = 0 for n ≥ N + 1. �

Exercise 12.10 (AN6.1.2). Show that − ln(1 − x) = x + x2g(x) for all x ∈ (−1, 1), where
g(x)→ 1/2 as x→ 0. Use this to show the following, where (an)∞n=1 is a sequence in R \ {1}.
(a) Suppose

∑
an converges. Then

∏
(1− an) converges to a nonzero limit iff

∑
a2
n converges.

(b) Suppose
∑
a2
n converges. Then

∏
(1− an) converges to a nonzero limit iff

∑
an converges.
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Solution. Fix x ∈ (−1, 1), so that 1− x ∈ (0, 2) ⊆ B1(1). By Proposition 6.2,

Log(1− x) = ln |1− x|+ i arg−π(1− x) = ln(1− x),

and so by Example 6.6,

ln(1− x) = Log(1− x) =
∞∑
n=1

(−1)n−1

n
(−x)n = −

∞∑
n=1

xn

n
.

Thus

− ln(1− x) =
∞∑
n=1

xn

n
= x+ x2

∞∑
n=0

xn

n+ 2
= x+ x2g(x),

where g : B→ C given by

g(z) =
∞∑
n=0

zn

n+ 2
=

1

2
+
∞∑
n=1

zn

n+ 2

is analytic on B by Proposition 4.31(1), so that

lim
z→0

g(z) = g(0) =
1

2

as desired.

Proof of (a). Suppose that
∏

(1 − an) converges to a nonzero limit. Since (1 − an)∞n=1 is a
sequence in C∗, by Proposition 12.2 the series

∑
Log(1− an) converges in C. The convergence

of
∑
an implies that lim an = 0, and so there exists some N ∈ N such that an ∈ (−1, 1) for all

n ≥ N . Then
∞∑
n=N

Log(1− an) =
∞∑
n=N

ln(1− an) =
∞∑
n=N

[
− an − g(an)a2

n

]
, (12.9)

and since
∑∞

n=N an as well as the series at right in (12.9) converge, it follows that
∑∞

n=N g(an)a2
n

also converges. Now, lim g(an) = 1/2, and so we may assume N to be sufficiently large that
g(an) > 1/4 for all n ≥ N , so that

0 ≤ 1

4
a2
n ≤ g(an)a2

n

holds for all n ≥ N , and the Direct Comparison Test implies that
∑∞

n=N a
2
n/4 is convergent.

Therefore
∑
a2
n converges.

For the converse, suppose that
∑
a2
n converges. Taking N to be as before, an application of

the Direct Comparison Test will easily show that
∑∞

n=N g(an)a2
n converges. Then, since

∑∞
n=N an

also converges, it follows that the series in (12.9) converge. Thus
∏∞

n=N (1− an) converges in C∗
by Proposition 12.2, and therefore

∏
(1− an) converges to a nonzero limit.17

Proof of (b). Suppose that
∏

(1− an) converges to a nonzero limit. As before, there exists some
N such that the series in (12.9) converge. Now, the hypothesized convergence of

∑
a2
n may be

17Note that we require the hypothesis that an 6= 1 for all n ∈ N (missing in [AN]) to draw the final desired
conclusion, for otherwise nothing prevents one among a1, . . . , aN−1 equalling 1 so that

∏
(1− an) = 0!
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used to show that
∑

n=N g(an)a2
n also converges, for we may assume N to be sufficiently large

that
0 ≤ g(an)a2

n ≤ a2
n

for all n ≥ N . It follows that
∞∑
n=N

[
g(an)a2

n + (−an − g(an)a2
n)
]

=
∞∑
n=N

(−an)

converges, and therefore so does
∑
an.

The converse, in which we suppose
∑
an and

∑
a2
n converge and show that

∏
(1 − an)

converges to a nonzero limit, has already been done in the proof of (a). �

Exercise 12.11 (AN6.1.3a). Determine whether or not the infinite product
∞∏
n=1

(1− 2−n) (12.10)

is convergent.

Solution. Since the series
∑∞

n=1 2−n is convergent, by Proposition 12.3 the infinite product
∞∏
n=1

(1 + 2−n) =
∞∏
n=1

(
1 + | − 2−n|

)
is convergent, and hence

∞∏
n=1

(1− 2−n) =
∞∏
n=1

(
1 + (−2−n)

)
is absolutely convergent. Therefore (12.10) is convergent by Proposition 12.5. �

Exercise 12.12 (AN6.1.3b). Determine whether or not the infinite product
∞∏
n=1

(
1− 1

n+ 1

)
is convergent.

Solution. For each n ∈ N,
n∏
k=1

(
1− 1

k + 1

)
=

n∏
k=1

k

k + 1
=

1

2
· 2

3
· 3

4
· · · n− 1

n
· n

n+ 1
=

1

n+ 1
,

and so
∞∏
n=1

(
1− 1

n+ 1

)
= lim

n→∞

n∏
k=1

(
1− 1

k + 1

)
= lim

n→∞

1

n+ 1
= 0.

Exercise 12.13 (AN6.1.3c). Determine whether or not the infinite product
∞∏
n=1

(
1 +

(−1)n√
n

)
is convergent.
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Solution. For n = 1 we have

1 +
(−1)n√

n
= 1 +

(−1)1

√
1

= 1 + (−1) = 0,

and therefore the infinite product converges to 0. �

Exercise 12.14 (AN6.1.3d). Determine whether or not the infinite product
∞∏
n=1

(
1− 1

n2

)
(12.11)

is convergent.

Solution. Since the series
∑∞

n=1 n
−2 is convergent, by Proposition 12.3 the infinite product

∞∏
n=1

(1 + n−2) =
∞∏
n=1

(
1 + | − n−2|

)
is convergent, and hence

∞∏
n=1

(1− n−2) =
∞∏
n=1

(
1 + (−n−2)

)
is absolutely convergent. Therefore (12.11) is convergent by Proposition 12.5. �

Exercise 12.15 (AN6.1.5a). Show that the function

f(z) =
∞∏
n=1

(1 + anz)

is entire for any a ∈ B.

Solution. Fix a ∈ B, and let fn(z) = 1 + anz for each n ∈ N, so that (fn)∞n=1 is a sequence in
A(C). Let K ⊆ C be compact, and let α = maxz∈K |z|. For each n,

‖fn − 1‖K = sup
z∈K
|fn(z)− 1| = sup

z∈K
|a|n|z| ≤ α|a|n,

and since the series
∑
α|a|n is convergent, it follows by the Weierstrass M-Test that

∑
|fn − 1|

converges uniformly on K. Since
∑
|fn − 1| converges uniformly on compact subsets of C,

Theorem 12.8 implies that f ∈ A(C). Therefore f is entire. �

For the next exercise we must entertain a new definition. Given a two-tailed sequence (zn)n∈Z
in C, the associated infinite product is the ordered formal product∏

n∈Z

zn = · · · z−3z−2z−1z0z1z2z3 · · · (12.12)

We say (12.12) is convergent if the infinite products
∞∏
n=1

zn and
∞∏
n=0

z−n
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both converge, in which case we define∏
n∈Z

zn =
∞∏
n=0

z−n ·
∞∏
n=1

zn.

Exercise 12.16 (AN6.1.5b). Show that the function

p(z) =
∏

n∈Z,n 6=0

(1− z/n)ez/n

is entire.

Solution. Define

f(z) =
∞∏
n=1

(1− z/n)ez/n and g(z) =
∞∏
n=1

(1 + z/n)e−z/n. (12.13)

We start by showing that f is entire. For each n ∈ N let fn(z) = (1− z/n)ez/n, so that (fn)∞n=1

is a sequence in A(C). Let K ⊆ C be compact, and let α = supz∈K |z|. For n sufficiently large
we have

|ez/n| = eRe(z)/n ≤ 2, (12.14)

and so

‖fn − 1‖K =
∥∥(1− z/n)ez/n − 1

∥∥
K

=
∥∥(1− z/n− e−z/n)ez/n

∥∥
K

≤ sup
z∈K

∣∣∣1− z

n
− e−z/n

∣∣∣ |ez/n| ≤ 2 sup
z∈K

∣∣∣∣∣1− z

n
−
∞∑
k=0

(−z/n)k

k!

∣∣∣∣∣
≤ sup

z∈K

∞∑
k=1

2

(k + 1)!

(
|z|
n

)k+1

≤
∞∑
k=1

(α
n

)k+1

.

Let N ∈ N be sufficiently large that, for all n ≥ N , (12.14) holds and α/n < 1/2. Then for all
n ≥ N ,

‖fn − 1‖K ≤
∞∑
k=1

(α
n

)k+1

=
∞∑
k=0

α2

n2

(α
n

)k
=
α2

n2
· 1

1− α/n
≤ 2α2

n2
,

and since
∞∑
n=N

2α2

n2

is a convergent series, by the Weierstrass M-Test it follows that (|fn−1|)∞n=N converges uniformly
on K, and hence (|fn − 1|)∞n=1 also converges uniformly on K. Therefore f ∈ A(C) by Theorem
12.8. A similar argument will show that g ∈ A(C) as well, and hence both infinite products in
(12.13) are convergent for all z ∈ C. Then, by definition,

p(z) =
∏

n∈Z,n6=0

(1− z/n)ez/n =
∞∏
n=1

(1− z/n)ez/n ·
∞∏
n=1

(1 + z/n)e−z/n = f(z)g(z)

for all z ∈ C, and therefore p = fg is entire. �
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Exercise 12.17 (AN6.1.5c). Show that the function

f(z) =
∞∏
n=2

[
1 +

z

n(lnn)2

]
is entire.

Solution. For n ≥ 2 let

fn(z) = 1 +
z

n(lnn)2
,

so that (fn)∞n=2 is a sequence in A(C). Let K ⊆ C be compact, and let α = maxz∈K |z|. Then

‖fn − 1‖K = sup
z∈K

z

n(lnn)2
≤ M

n(lnn)2

for all n ≥ 2. Now, making the substitution u = lnx, we obtainˆ ∞
2

M

x(lnx)2
dx = lim

t→∞

ˆ ln t

ln 2

M

u2
du = lim

t→∞

[
−M
u

]ln t
ln 2

=
M

ln 2
,

which shows that the integral is convergent, and hence by the Integral Test in §9.4 of the
Calculus Notes we conclude that the series

∞∑
n=2

M

n(lnn)2

is convergent. By the Weierstrass M-Test it follows that
∑∞

n=2 |fn − 1| converges uniformly on
K, and therefore f ∈ A(C) by Theorem 12.8. �

http://faculty.bucks.edu/erickson/math242/Calculus.pdf
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12.2 – The Weierstrass Factorization Theorem

Definition 12.18. Let E0 : C→ C be given by E0(z) = z−1, and for m ∈ N define Em : C→ C
by

Em(z) = (1− z) exp

(
m∑
k=1

zk

k

)
.

Lemma 12.19. For all z ∈ B,
|Em(z)− 1| ≤ |z|m+1.

Definition 12.20. Let (zn)∞n=1 be a sequence in C∗ such that lim |zn| = +∞. The canonical
product associated with (zn)∞n=1 is

E(z) =
∞∏
n=1

Em(z/zn),

where m = min{n ∈W : E ∈ A(C)}.

Not every sequence (zn)∞n=1 of nonzero complex numbers such that lim |zn| → +∞ has a
canonical product.

Proposition 12.21. Let (zn)∞n=1 be a sequence in C∗ such that lim |zn| = +∞, and set

f(z) =
∞∏
n=1

Emn(z/zn).

Then there is a sequence (mn)∞n=1 in W such that f is entire, in which case the following hold.

1. Z(f) = {zn : n ∈ N}.
2. For each z ∈ Z(f), ord(f, z) = card{n ∈ N : zn = z}.
3. If g(z) = zmf(z) for m ∈ N, then g is entire with Z(g) = Z(f) ∪ {0} and ord(g, 0) = m.

Proof. Let mn = n − 1 for all n ∈ N. Let K ⊆ C be compact, and choose r > 0 such that
K ⊆ Br(0). Finally, let N ∈ N be such that r/|zn| < 1/2 for all n ≥ N . Since z/zn ∈ B1/2(0)
for all z ∈ K and n ≥ N , by Lemma 12.19 we obtain

‖Emn(z/zn)− 1‖K = sup
z∈K
|Emn(z/zn)− 1| ≤ sup

z∈K

∣∣∣∣ zzn
∣∣∣∣mn+1

≤
(

r

|zn|

)n
<

1

2n

for all n ≥ N . Since
∑∞

n=N 2−n converges, by the Weierstrass M-Test the series
∞∑
n=N

|Emn(z/zn)− 1|

converges uniformly on K, and hence so too does
∑
|Emn(z/zn)− 1|. Since

∑
|Emn(z/zn)− 1|

converges uniformly on compact subset of C, by Theorem 12.8 we conclude that f ∈ A(C); that
is, f is entire if we choose (mn)∞n=1 = (n− 1)∞n=1.

Also by Theorem 12.8, f(z) = 0 if and only if Emn(z/zn) = 0 for some n ∈ N. It is clear that

Emn(z/zn) = 0 ⇔ z/zn = 1 ⇔ z = zn,
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and therefore Z(f) = {zn : n ∈ N}.
That ord(f, z) equals the cardinality of the set {n ∈ N : zn = z} for each z ∈ Z(f) is

especially easy to verify by use of the formula in Exercise 12.9. (Note that the set must be finite
for any z ∈ C since |zn| → +∞.)

The last part of the proposition is clear. �

The following statement of the Weierstrass Factorization Theorem avoids the “each zn is
repeated as often as its multiplicity” bunkum that is found in the literature. Provision for
multiplicities is built explicitly into the formula for f .

Theorem 12.22 (Weierstrass Factorization Theorem). Let f /≡ 0 be an entire function,
and for n ∈ N ∪ {∞} let Z(f,C∗) = {zj : 1 ≤ j ≤ n and j 6=∞}. Then

f(z) = eg(z)zord(f,0)

n∏
j=1

ord(f,zj)∏
k=1

Emjk(z/zj)


for some entire function g and whole numbers mjk.

Proof. First suppose Z = Z(f,C∗) is finite, so that Z = {z1, . . . , zn} for some n ∈ N. Let
`j = ord(f, zj) and ` = ord(f, 0). We will assume that f(0) = 0 so that ` ∈ N. By Proposition
5.7 there exists some h ∈ A(C) such that h(zj) 6= 0 for each j, h(0) 6= 0, and

f(z) = h(z)z`
n∏
j=1

(z − zj)`j

for all z ∈ C. Since h is nonvanishing on the simply connected set C, Theorem 11.30 implies
that h has an analytic logarithm. Thus there exists some ĝ ∈ A(C) such that h = eĝ. Now, for
each j,

(z − zj)`j = (−zj)`j(1− z/zj)`j = (−zj)`jE
`j
0 (z/zj),

and so

f(z) = eĝ(z)z`
n∏
j=1

(−zj)`j ·
n∏
j=1

E
`j
0 (z/zj).

If α =
∏n

j=1(−zj)`j , then α = eLog(α) since α 6= 0, and so if we define g(z) = ĝ(z) + Log(α) we
obtain

f(z) = eg(z)z`
n∏
j=1

E
`j
0 (z/zj) = eg(z)z`

n∏
j=1

 `j∏
k=1

E0(z/zj)


as desired. The argument is little altered if f(0) 6= 0, in which case ` = 0.

Next suppose that Z is infinite, so that Z = {zj : j ∈ N}. Assume the elements of Z to
be indexed such that |zj| ≤ |zj+1| for all j, and set ` = ord(f, 0). Since f /≡ 0, by the Identity
Theorem Z has no limit point in C, and so Z * Br(0) for all r > 0 by Theorem 2.39. This
implies that (zj)

∞
j=1 is a sequence in C∗ such that lim |zj| = +∞. Consider the sequence (wj)

∞
j=1

that arises from (zj)
∞
j=1 by repeating each zero zj for f according to its order `j, which we may

write as (
(zj)

`j
k=1

)∞
j=1
.
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By Proposition 12.21 there exist whole numbers mj such that the function

ϕ(z) = z`
∞∏
j=1

Emj(z/wj) = z`
∞∏
j=1

 `j∏
k=1

Emjk(z/zj)


is entire, with Z(ϕ) = Z(f), ord(ϕ, zj) = `j for all j ∈ N, and ord(ϕ, 0) = `. (Note that
Z(f) = Z iff ` = 0.) Define

h(z) =
f(z)

ϕ(z)

for all z ∈ C \ Z(ϕ), where Z(ϕ) consists only of isolated points. Fix ζ ∈ Z(ϕ). Since
ord(ϕ, ζ) = p = ord(f, ζ), there exist functions f0, ϕ0 ∈ A(C) that are nonzero at ζ, with

f(z) = (z − ζ)pf0(z) and ϕ(z) = (z − ζ)pϕ0(z);

and then

lim
z→ζ

h(z) = lim
z→ζ

(z − ζ)pf0(z)

(z − ζ)pϕ0(z)
= lim

z→ζ

f0(z)

ϕ0(z)
=
f0(ζ)

ϕ0(ζ)
∈ C∗.

This shows that h has a removable singularity at ζ, and by defining h(ζ) = f0(ζ)/ϕ0(ζ) for each
ζ ∈ Z(ϕ), we find by Corollary 4.22 that h is entire. Also h is nonvanishing on C, so that it
has analytic logarithm g by Theorem 11.30. Now, h(z) = f(z)/ϕ(z) holds for all z ∈ C, with
h(z) = eg(z). We obtain at last

f(z) = eg(z)ϕ(z),

which is the desired result. �

Theorem 12.23. Let Ω be a proper open subset of C, let Z = {ζn : n ∈ N} be a set of distinct
points in Ω having no limit point in Ω, and let (mn)∞n=1 be a sequence in N. Then there exists
some f ∈ A(Ω) such that Z(f) = Z and ord(f, ζn) = mn for each n.

Theorem 12.24. If h is meromorphic on Ω ⊆ C, then there exist f, g ∈ A(Ω) such that
h = f/g.

Proof. Suppose h is meromorphic on Ω ⊆ C. Clearly if P (h) = ∅, so that h ∈ A(Ω), then we
may simply set f = h and g = 1. Suppose P (h) 6= ∅. Each point in P (h) is isolated from the
others, so it is clear that P (h) is a set of distinct points in Ω having no limit points in Ω. For
each ζn ∈ P (h) let mn = ord(h, ζn), so (mn) is a sequence in N. By Theorem 12.23 there exists
g ∈ A(Ω) such that Z(g) = P (h) with ord(g, ζn) = mn for each n. Define f : Ω \ P (h)→ C by
f = gh. At each ζn ∈ P (h) the function h has a pole of order equal to the order of the zero that
h has there, and so f has a removable singularity at ζn. Thus f may be extended to a function
f ∈ A(Ω), and moreover we have f/g = hg/g = h as desired. �

Exercise 12.25 (AN6.2.1a). Find the canonical product associated with (2n)∞n=1.

Solution. We must find the smallest whole number m such that

E(z) =
∞∏
n=1

Em(z/2n) =
∞∏
n=1

(1− z) exp

[
m∑
k=1

(z/2n)k

k

]
defines an entire function.
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For each n ∈ N let fm,n(z) = Em(z/2n). Let K ⊆ C be compact. Choose some r > 0 such
that K ⊆ Br(0), and let N be such that r/2n ≤ 1 for all n ≥ N . Then |z/2n| < r/2n ≤ 1 for all
z ∈ K and n ≥ N , and so by Lemma 12.19 we have

‖fm,n − 1‖K = sup
z∈K
|Em(z/2n)− 1| ≤ sup

z∈K

∣∣∣ z
2n

∣∣∣m+1

≤
( r

2n

)m+1

for all n ≥ N . Thus if we choose m = 0, then for all n ≥ N we have

‖f0,n − 1‖K ≤
r

2n
,

and since
∑∞

n=N r/2
n converges, by the Weierstrass M-Test it follows that

∑∞
n=N |f0,n − 1|

converges uniformly on K, and hence so too does
∑
|f0,n − 1|. Therefore, by Theorem 12.8, the

function

f(z) =
∞∏
n=1

f0,n(z) =
∞∏
n=1

E0(z/2n) =
∞∏
n=1

(1− z/2n)

is entire.
We conclude that the smallest whole number m for which E is entire is m = 0, and so∏

(1− z/2n) is the canonical product associated with (2n)∞n=1. �

Exercise 12.26 (AN6.2.1b). Find the canonical product associated with (nb)∞n=1, where b > 0.

Solution. We must find the smallest whole number m such that

E(z) =
∞∏
n=1

Em(z/nb)

defines an entire function.
For each n ∈ N let fm,n(z) = Em(z/nb). Let K ⊆ C be compact. Choose some r > 0 such

that K ⊆ Br(0), and let N be such that r/nb ≤ 1 for all n ≥ N . Then |z/nb| < r/nb ≤ 1 for all
z ∈ K and n ≥ N , and so by Lemma 12.19 we have

‖fm,n − 1‖K = sup
z∈K
|Em(z/nb)− 1| ≤ sup

z∈K

∣∣∣ z
nb

∣∣∣m+1

≤
( r
nb

)m+1

for all n ≥ N . The series
∑

(r/nb)m+1 converges if and only if b(m+ 1) > 1, and so we choose

m = min{k ∈W : k > 1/b− 1}. (12.15)

Then, since
∑∞

n=N (r/nb)m+1 converges, by the Weierstrass M-Test it follows that
∑∞

n=N |fm,n−1|
converges uniformly on K, and hence so too does

∑
|fm,n − 1|. Therefore

f(z) =
∞∏
n=1

fm,n(z) =
∞∏
n=1

Em(z/nb)

is entire by Theorem 12.8.
We conclude that the smallest whole number m for which E is entire is that given by (12.15),

in which case
∏
Em(z/nb) is the canonical product associated with (nb)∞n=1. �

Exercise 12.27 (AN6.2.1c). Find the canonical product associated with (n ln2 n)∞n=2.



339

Solution. We must find the smallest whole number m such that

E(z) =
∞∏
n=2

Em

(
z

n ln2 n

)
defines an entire function.

For each n ∈ N let fm,n(z) = Em(z/n ln2 n). Let K ⊆ C be compact. Choose some
r > 0 such that K ⊆ Br(0), and let N be such that r/n ln2 n ≤ 1 for all n ≥ N . Then
|z/n ln2 n| < r/n ln2 n ≤ 1 for all z ∈ K and n ≥ N , and so by Lemma 12.19 we have

‖fm,n − 1‖K = sup
z∈K
|Em(z/n ln2 n)− 1| ≤ sup

z∈K

∣∣∣∣ z

n ln2 n

∣∣∣∣m+1

≤
(

r

n ln2 n

)m+1

for all n ≥ N . In Exercise 12.17 it was shown that the series
∞∑
n=2

1

n(lnn)2

converges; thus if we choose m = 0, then for all n ≥ N we have

‖f0,n − 1‖K ≤
r

n ln2 n
,

and by the Weierstrass M-Test it follows that
∑∞

n=N |f0,n − 1| converges uniformly on K, and
hence so too does

∑
|f0,n − 1|. Therefore, by Theorem 12.8, the function

f(z) =
∞∏
n=2

f0,n(z) =
∞∏
n=2

E0

(
z

n ln2 n

)
=
∞∏
n=2

(
1− z

n ln2 n

)
(12.16)

is entire.
We conclude that the smallest whole number m for which E is entire is m = 0, and so the

product at right in (12.16) is the canonical product associated with the given sequence. �

Exercise 12.28 (AN6.2.2). Construct a function f ∈ A(B) such that f has no proper analytic
extension to a region Ω ⊃ B.

Solution. For each n ∈ N let

An =

{(
1− 1

n

)
exp

(
2πi

n
(k − 1)

)
: 1 ≤ k ≤ n

}
,

and define A =
⋃∞
n=1An. Then A is a countably infinite subset of B with no limits points in B,

but such that every point on ∂B is a limit point. By Theorem 12.23 there exists some f ∈ A(B)
such that Z(f) = A, and ord(f, a) = 1 for every a ∈ A. Now, suppose Ω is a region such that
Ω ⊃ B, and suppose there is some f̂ ∈ A(Ω) such that f̂ |B = f . Since Ω is connected it must
contain some point b ∈ ∂B, and then since b is a limit point of Z(f) and Z(f) ⊆ Z(f̂), we
conclude that Z(f̂) has a limit point in Ω and hence f̂ ≡ 0 by the Identity Theorem. This
implies that f ≡ 0, which yields the contradiction Z(f) 6= A. Therefore f has no proper analytic
extension to a region containing B. �
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12.3 – Mittag-Leffler’s Theorem

Theorem 12.29 (Mittag-Leffler’s Theorem). Let Ω ⊆ C be open, and let

P = {pj : j ∈ J} ⊆ Ω

be a set with no limit point in Ω and an at-most countable index set J . For each j ∈ J define
the rational function

Sj(z) =

nj∑
k=1

ajk
(z − pj)k

.

Then there is a function f that is meromorphic on Ω with P (f) = P and, for each j ∈ J , has
Laurent series representation

Sj(z) +
∞∑
k=0

cjk(z − pj)k

on any annulus of analyticity As1,s2(pj).

Theorem 12.30. Let Ω ⊆ C be open, and let P = {pj : j ∈ J} ⊆ Ω be a set with no limit point
in Ω and an at-most countable index set J . For each j ∈ J fix nj ∈W and let a0j, . . . , anjj ∈ C.
Then there exists some f ∈ A(Ω) such that, for each j ∈ J ,

f (k)(bj)

k!
= akj

for all 0 ≤ k ≤ nj.

Given an open set Ω ⊆ C, the set A(Ω) can be shown to be a ring (defined in §1.1 of the
Linear Algebra Notes) under the usual operations of function addition and function multiplication.
Thus, as with any ring, we may entertain some notion of division. If functions f, g ∈ A(Ω) are
such that f = gq on Ω for some q ∈ A(Ω), then we say g divides f and write g|f .

12.4 – The Genus and Order of Entire Functions

12.5 – Hadamard’s Factorization Theorem

12.6 – The Picard Theorems

http://faculty.bucks.edu/erickson/math260/260chap1.pdf
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13
The Fourier Transform

13.1 – Functions of Moderate Decrease

Definition 13.1. The Fourier transform of f : R→ C is the function f̂ : R→ C given by

f̂(ξ) =

ˆ ∞
−∞

f(x)e−2πixξdx,

provided the integral exists for all ξ ∈ R.

The Fourier transform of a function f may be denoted by f ̂ as well as f̂ , as demonstrated
in the statement of the following proposition.

Proposition 13.2. Let a ∈ R∗. If T : R→ R is given by T (x) = ax, then

(f ◦ T )̂ =
1

|a|
(f̂ ◦ T−1)

provided the Fourier transform of f exists.

Proof. Suppose f̂ exists. By Proposition 7.51 and Theorem 3.18,

(f ◦ T )̂ (ξ) =

ˆ ∞
−∞

(f ◦ T )(x)e−2πixξdx = lim
r→∞

ˆ r

−r
f(ax)e−2πixξdx

= lim
r→∞

ˆ ar

−ar

1

a
f(x)e−2πixξ/adx =

1

|a|

ˆ ∞
−∞

f(x)e−2πixξ/adx

=
1

|a|
f̂(ξ/a) =

1

|a|
(f̂ ◦ T−1)(ξ),

noting that ±ar → ±∞ if a > 0, and ±ar → ∓∞ if a < 0. �

Example 13.3. Show that e−πx
2

is its own Fourier transform. That is, if f(x) = e−πx
2

then

f̂(ξ) = e−πξ
2
.
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γr2

γr3

γr4

γr1 r−r

r + iξ−r + iξ

Figure 24.

Solution. Fix ξ ∈ R. Let f : C→ C be given by f(z) = e−πz
2
. From elementary analysis it is

known that ˆ ∞
−∞

e−πt
2

dt = 1.

For r > 0 define the closed rectangular path γr = γr1 ∗ γr2 ∗ γr3 ∗ γr4, where

γr1(t) = t, t ∈ [−r, r]

γr2(t) = r + it, t ∈ [0, ξ]

γr3(t) = iξ − t, t ∈ [−r, r]

γr4(t) = iξ − it− r, t ∈ [0, ξ],

shown in Figure 24. By Proposition 7.51,

lim
r→∞

ˆ
γr1

f = lim
r→∞

ˆ r

−r
e−πt

2

dt =

ˆ ∞
−∞

e−πt
2

dt = 1,

and

lim
r→∞

ˆ
γr3

f = − lim
r→∞

ˆ r

−r
e−π(iξ−t)2dt = −eπξ2 lim

r→∞

ˆ r

−r
e−πt

2

e2πitξdt = −eπξ2
ˆ ∞
−∞

e−πt
2

e2πitξdt.

Next, ˆ
γr2

f = i

ˆ ξ

0

e−π(r+it)2dt = ie−πr
2

ˆ ξ

0

eπt
2

e−2πirtdt,

so ∣∣∣∣ˆ
γr2

f

∣∣∣∣ = e−πr
2

∣∣∣∣ˆ ξ

0

eπt
2

e−2πirtdt

∣∣∣∣ ≤ e−πr
2

ˆ ξ

0

∣∣eπt2e−2πirt
∣∣dt = e−πr

2

ˆ ξ

0

eπt
2

dt ≤ e−πr
2

by Theorem 3.16(5), whereupon the Squeeze Theorem implies that

lim
r→∞

∣∣∣∣ˆ
γr2

f

∣∣∣∣ = 0,

and hence

lim
r→∞

ˆ
γr2

f = 0.
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Finally, ˆ
γr4

f = −i
ˆ ξ

0

e−π(iξ−it−r)2dt = −ie−πr2e2πirξ

ˆ ξ

0

eπ(ξ−t)2e−2πirtdt,

and so

lim
r→∞

ˆ
γr4

f = 0

obtains by another application of the Squeeze Theorem.
Since f is an entire function and γr is a closed path, Theorem 11.30 implies that

›
γr
f = 0

for all r > 0. Thus

0 = lim
r→∞

“
γr

f = lim
r→∞

(ˆ
γr1

f +

ˆ
γr2

f +

ˆ
γr3

f +

ˆ
γr4

f

)
= 1− eπξ2

ˆ ∞
−∞

e−πt
2

e2πitξdt,

and therefore ˆ ∞
−∞

e−πt
2

e2πitξdt = e−πξ
2

.

From this we obtain ˆ ∞
−∞

e−πx
2

e−2πixξdx = e−πξ
2

with the change of variable x = −t, and since ξ ∈ R is arbitrary we are done. �

Example 13.4. We now find the Fourier transform of g(x) = e−πax
2

for any a > 0. Let

f(x) = e−πx
2
, and let T (x) = x

√
a. Then g = f ◦ T , and by Proposition 13.2 and Example 13.3

we have

ĝ(ξ) = (f ◦ T )̂ (ξ) =
1√
a

(f̂ ◦ T−1)(ξ) =
1√
a
f̂
(
ξ/
√
a
)

=
1√
a
e−πξ

2/a.

That is, (
e−πax

2)̂ (ξ) =
1√
a
e−πξ

2/a

for all a > 0 and ξ ∈ R. �

A function f : R→ C is of moderate decrease if f is continuous and there exist constants
ε, A ∈ R+ such that

|f(x)| ≤ A

1 + |x|1+ε
. (13.1)

for all x ∈ R. If (13.1) holds for all x in some unbounded interval I ⊆ R, then we say f is of
moderate decrease on I.

Example 13.5. For fixed c > 1 let f : R→ R be given by

f(x) =


|x|c

e|x| − 1
, x 6= 0

0, x = 0.

Since

lim
x→∞

(x2 + 1)xc

ex − 1
= 0,
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there exists some x0 > 0 such that

|f(x)| = xc

ex − 1
≤ 1

x2 + 1

for all x ≥ x0. Now, by L’Hôpital’s Rule,

lim
x→0+

f(x) = lim
x→0+

xc

ex − 1
= lim

x→0+

cxc−1

ex
= 0

since c− 1 > 0, so f is continuous on [0, x0], and thus so is x 7→ (x2 + 1)f(x). It follows there is
some M > 0 for which (x2 + 1)|f(x)| ≤M for all x ∈ [0, x0], and hence

|f(x)| ≤ M

x2 + 1
.

Letting A = M + 1, we then have |f(x)| ≤ A/(1 + x2) for all x ∈ [0,∞). But f is an even
function, and so |f(x)| ≤ A/(1 + x2) holds for all x ∈ R. This shows that f is of moderate
decrease for any choice of constant c > 1. �

Proposition 13.6. If f : R→ C is of moderate decrease, then f has a Fourier transform.

Proof. Suppose f : R → C is of moderate decrease, so (13.1) holds for some ε, A > 0. Fix
ξ ∈ R. We have ∣∣f(x)e−2πixξ

∣∣ = |f(x)| ≤ A

1 + |x|1+ε

for all x ∈ R, and since ˆ ∞
−∞

A

1 + |x|1+ε
dx

converges by the p-Test for Integrals, the Comparison Test for integrals of real-valued functions
implies that ˆ ∞

−∞

∣∣f(x)e−2πixξ
∣∣dx

converges. Therefore

f̂(ξ) =

ˆ ∞
−∞

f(x)e−2πixξdx

converges by Theorem 7.53. That is, f̂(ξ) exists in C for all ξ ∈ R, and we conclude that f has
a Fourier transform. �

Definition 13.7. For a ∈ R+ let Fa be the collection of functions f that are analytic on

Sa = {z ∈ C : | Im(z)| < a}
and for which there is some A ∈ R+ such that

|f(z)| ≤ A

(Re z)2 + 1

for all z ∈ Sa. Also define

F =
⋃
a∈R+

Fa.



345

γr2

γr1

γr4

γr3

r−r

r − ib−r − ib

Figure 25.

Theorem 13.8. If f ∈ F, then there exists some B ∈ R such that∣∣f̂(ξ)
∣∣ ≤ Be−2πb|ξ| (13.2)

for all ξ ∈ R and b ∈ [0, a).

Proof. Suppose f ∈ F. Then f ∈ Fa for some a ∈ R+, and there exists some A ∈ R+ for which

|f(x+ iy)| ≤ A

x2 + 1
(13.3)

for all x+ iy ∈ Sa. Set B = πA. We first note that∣∣f̂(ξ)
∣∣ =

∣∣∣∣ˆ ∞
−∞

f(x)e−2πixξdx

∣∣∣∣ ≤ ˆ ∞
−∞
|f(x)|dx ≤

ˆ ∞
−∞

A

x2 + 1
dx = πA = Be−2π(0)|ξ|

for any ξ ∈ R, so the statement of the theorem is seen to be true in the special case when b = 0.
Also ∣∣f̂(0)

∣∣ =

∣∣∣∣ˆ ∞
−∞

f(x)dx

∣∣∣∣ ≤ ˆ ∞
−∞
|f(x)|dx ≤

ˆ ∞
−∞

A

x2 + 1
dx = πA = Be−2πb|0|

for any b ∈ [0, a), so the theorem holds when ξ = 0. We henceforth may assume ξ, b 6= 0.
Fix b ∈ (0, a) and ξ ∈ R+. Let g(z) = f(z)e−2πizξ. For r > 0 define the rectangular path

γr = γr1 ∗ γr2 ∗ γr3 ∗ γr4, where

γr1(t) = t, t ∈ [−r, r]

γr2(t) = r − it, t ∈ [0, b]

γr3(t) = −t− ib, t ∈ [−r, r]

γr4(t) = −r − i(b− t), t ∈ [0, b],

shown in Figure 25. We have∣∣∣∣ˆ
γr2

g

∣∣∣∣ =

∣∣∣∣ˆ b

0

−ig(r − it)dt
∣∣∣∣ ≤ ˆ b

0

∣∣f(r − it)e−2πi(r−it)ξ∣∣dt =

ˆ b

0

|f(r − it)|e−2πξtdt

≤
ˆ b

0

A

r2 + 1
e−2πξtdt ≤ A

r2

ˆ b

0

e−2πξtdt =
A

2πξr2

(
1− e−2πbξ

)
,

and so
´
γr2
g → 0 as r →∞. Similarly,

´
γr4
g → 0 as r →∞. It is clear that

lim
r→∞

ˆ
γr1

g = f̂(ξ),
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γr2

γr3

γr4

γr1 r−r

r + ib−r + ib

Figure 26.

and since
›
γr
g = 0 for all r > 0 by Theorem 11.30, we have

0 = lim
r→∞

“
γr

g = lim
r→∞

(ˆ
γr1

g +

ˆ
γr2

g +

ˆ
γr3

g +

ˆ
γr4

g

)
= f̂(ξ) + lim

r→∞

ˆ
γr3

g,

and hence

f̂(ξ) = − lim
r→∞

ˆ
γr3

g = − lim
r→∞

ˆ r

−r
−f(−t− ib)e−2πi(−t−ib)ξdt

= e−2πbξ lim
r→∞

ˆ r

−r
f(−t− ib)e2πitξdt = e−2πbξ

ˆ ∞
−∞

f(−t− ib)e2πitξdt.

The last equality is justified by Proposition 7.51, for with (13.3) the last integral is easily shown
to converge. Finally,

|f̂(ξ)| ≤
ˆ ∞
−∞
|f(−t− ib)|e−2πbξdt ≤

ˆ ∞
−∞

Ae−2πbξ

t2 + 1
dt = πAe−2πbξ = Be−2πb|ξ|.

Now fix ξ ∈ R−. Define γr = γr1 ∗ γr2 ∗ γr3 ∗ γr4, where

γr1(t) = t, t ∈ [−r, r]

γr2(t) = r + it, t ∈ [0, b]

γr3(t) = −t+ ib, t ∈ [−r, r]

γr4(t) = −r + i(b− t), t ∈ [0, b],

shown in Figure 26. As before we find that
´
γr2
g,
´
γr4
g → 0 and

´
γr1
g → f̂(ξ) as r →∞. Then

0 = lim
r→∞

“
γr

g = lim
r→∞

(ˆ
γr1

g +

ˆ
γr2

g +

ˆ
γr3

g +

ˆ
γr4

g

)
= f̂(ξ) + lim

r→∞

ˆ
γr3

g,

and hence

f̂(ξ) = − lim
r→∞

ˆ
γr3

g = e2πbξ

ˆ ∞
−∞

f(−t+ ib)e2πitξdt.

Finally,

|f̂(ξ)| ≤
ˆ ∞
−∞
|f(−t+ ib)|e2πbξdt ≤

ˆ ∞
−∞

Ae2πbξ

t2 + 1
dt = πAe2πbξ = Be−2πb|ξ|.

Thus |f̂(ξ)| ≤ Be−2πb|ξ| for all ξ ∈ R and b ∈ [0, a). �
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In the course of proving Theorem 13.8 we also largely obtained the following result, with
only the ξ = 0 case needing verification in each equation.

Proposition 13.9. If f ∈ Fa and b ∈ (0, a), then

f̂(ξ) = e−2πbξ

ˆ ∞
−∞

f(−t− ib)e2πitξdt = e−2πbξ

ˆ ∞
−∞

f(t− ib)e−2πitξdt (13.4)

for all ξ ≥ 0, and

f̂(ξ) = e2πbξ

ˆ ∞
−∞

f(−t+ ib)e2πitξdt = e2πbξ

ˆ ∞
−∞

f(t+ ib)e−2πitξdt (13.5)

for all ξ ≤ 0.
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13.2 – Fourier Inversion and Poisson Summation Formulas

Theorem 13.10 (Fourier Inversion Formula). If f ∈ F, then

f(x) =

ˆ ∞
−∞

f̂(ξ)e2πixξdξ (13.6)

for all x ∈ R.

Proof. Suppose f ∈ F, so f ∈ Fa for some a ∈ R+. Let b ∈ (0, a). Fix x ∈ R. By Proposition

13.6, f̂(ξ) exists for all ξ ∈ R, with |f̂(ξ)| ≤ Be−2πb|ξ| by Theorem 13.8. This makes it clear that
the integral ˆ ∞

−∞
f̂(ξ)e2πixξdξ

converges, and thusˆ ∞
−∞

f̂(ξ)e2πixξdξ =

ˆ 0

−∞
f̂(ξ)e2πixξdξ +

ˆ ∞
0

f̂(ξ)e2πixξdξ

by Proposition 7.51(1). For ξ > 0 we find f̂(ξ) be to given by (13.4), so that by Fubini’s
Theorem and Example 7.52,ˆ ∞

0

f̂(ξ)e2πixξdξ =

ˆ ∞
0

(
e−2πbξ

ˆ ∞
−∞

f(−t− ib)e2πitξdt

)
e2πixξdξ

=

ˆ ∞
0

ˆ ∞
−∞

f(−t− ib)e[−2πb+2π(t+x)i]ξdtdξ

=

ˆ ∞
−∞

f(−t− ib)
ˆ ∞

0

e−[2πb−2π(t+x)i]ξdξdt

=

ˆ ∞
−∞

f(−t− ib) 1

2πb− 2π(t+ x)i
dt

= − 1

2πi

ˆ ∞
−∞

f(−t− ib)
t+ ib+ x

dt =
1

2πi

ˆ ∞
−∞

f(t− ib)
t− ib− x

dt

=
1

2πi

ˆ
`1

f(z)

z − x
dz, (13.7)

where `1 is the line given by `1(t) = t− ib, t ∈ R.

For ξ < 0, f̂(ξ) is given by (13.5), and soˆ 0

−∞
f̂(ξ)e2πixξdξ =

ˆ ∞
0

(
e2πbξ

ˆ ∞
−∞

f(−t+ ib)e2πitξdt

)
e2πixξdξ

=

ˆ ∞
−∞

f(−t+ ib)

ˆ ∞
0

e[2πb+2π(t+x)i]ξdξdt

=

ˆ ∞
−∞

f(−t+ ib)
−1

2πb+ 2π(t+ x)i
dt

=
1

2πi

ˆ ∞
−∞

f(t+ ib)

t+ ib− x
dt =

1

2πi

ˆ
`2

f(z)

z − x
dz, (13.8)
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αr1

αr2

αr3

αr4

r + ib−r + ib

r − ib−r − ib

x

Figure 27.

where `2 is the line given by `2(t) = −t+ ib, t ∈ R.
Now, let αr = αr1 ∗ αr2 ∗ αr3 ∗ αr4 be the rectangular path

αr1(t) = t− ib, t ∈ [−r, r]

αr2(t) = r + it, t ∈ [−b, b]

αr3(t) = −t+ ib, t ∈ [−r, r]

αr4(t) = −r − it, t ∈ [−b, b]

for r > |x|, as in Figure 27. Let h(z) = f(z)(z − x)−1, which is analytic on Sa \ {x} and has a
simple pole at x. By the Residue Theorem and Proposition 7.33,“

αr

h = 2πi res(h, x) = 2πi lim
z→x

(z − x)h(z) = 2πi lim
z→x

f(z) = 2πif(x).

It is straightforward to show that
´
αr2

h,
´
αr4

h→ 0 as r →∞, and also

lim
r→∞

ˆ
αr1

h =

ˆ
`1

f(z)

z − x
dz and lim

r→∞

ˆ
αr3

h =

ˆ
`2

f(z)

z − x
dz.

From (13.7) and (13.8) it follows that

2πif(x) = lim
r→∞

“
αr

h = lim
r→∞

4∑
k=1

ˆ
αrk

h =

ˆ
`1

f(z)

z − x
dz +

ˆ
`2

f(z)

z − x
dz

= 2πi

ˆ ∞
0

f̂(ξ)e2πixξdξ + 2πi

ˆ 0

−∞
f̂(ξ)e2πixξdξ

= 2πi

ˆ ∞
−∞

f̂(ξ)e2πixξdξ

which readily yields (13.6). �

The following technical lemma arguably has overly stringent hypotheses, nevertheless it will
be well suited to the purpose of helping prove the Poisson Summation Formula below. The
existence of the integrals in (13.9) is part of the conclusion of the lemma.



350

Lemma 13.11. Let γ : R→ C be given by γ(t) = t+ ib for some b ∈ R, and let (hn)n∈N be a
sequence of functions continuous on γ∗. Suppose there exists some A ∈ R+ such that

|hn(z)| ≤ A

(Re z)2 + 1

for all n ∈ N and z ∈ γ∗. If (hn)n∈N converges pointwise on γ∗ to a continuous function
h : γ∗ → C, then

lim
n→∞

ˆ
γ

hn =

ˆ
γ

h. (13.9)

Proof. Suppose (hn)n∈N converges pointwise on γ∗ to a continuous function h : γ∗ → C. Let
un = Rehn and vn = Imhn for each n, and also set u = Reh and v = Imh.

We now operate in the measure space M = (R,B(R), λ), where B(R) is the collection of
Lebesgue measurable sets in R, and λ : B(R) → R is (complete) Lebesgue measure. Each
function un ◦ γ : R → R is continuous, and so (un ◦ γ)n∈N is a sequence of Borel measurable
functions on (R,B(R)). That is, each un◦γ is (B(R),B(R))-measurable. Now, un → u pointwise
on γ∗ by Proposition 2.16, and hence un ◦ γ → u ◦ γ pointwise on R. Of course u ◦ γ : R→ R
is Borel measurable on account of being continuous. Define g : R→ R by g(t) = A(t2 + 1)−1.
Clearly g is Borel measurable, and since g is nonnegative and

´∞
−∞ g converges, Theorem 2.53 in

[MT] implies that g is λ-integrable in M withˆ
R
g dλ =

ˆ ∞
−∞

g.

Moreover, for all n ∈ N and t ∈ R we have

|(un ◦ γ)(t)| = |un(γ(t))| ≤ |hn(γ(t))| = |hn(t+ ib)| ≤ A

t2 + 1
= g(t), (13.10)

which is to say |un ◦ γ| ≤ g for all n. It follows by the Dominated Convergence Theorem in
[MT] that u ◦ γ is λ-integrable with

lim
n→∞

ˆ
R
(un ◦ γ) dλ =

ˆ
R
(u ◦ γ) dλ.

A nearly identical argument, only with every u and un replaced with v and vn, leads to the
conclusion that v ◦ γ is λ-integrable with

lim
n→∞

ˆ
R
(vn ◦ γ) dλ =

ˆ
R
(v ◦ γ) dλ.

Now, by definition,ˆ
R
(hn ◦ γ) dλ :=

ˆ
R

Re(hn ◦ γ) dλ+ i

ˆ
R

Im(hn ◦ γ) dλ =

ˆ
R
(un ◦ γ) dλ+ i

ˆ
R
(vn ◦ γ) dλ,

and so

lim
n→∞

ˆ
R
(hn ◦ γ) dλ =

ˆ
R
(u ◦ γ) dλ+ i

ˆ
R
(v ◦ γ) dλ :=

ˆ
R
(h ◦ γ) dλ. (13.11)

http://faculty.bucks.edu/erickson/MeasureTheoryProbability/MeasureTheoryProbability.pdf
http://faculty.bucks.edu/erickson/MeasureTheoryProbability/MeasureTheoryProbability.pdf
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Next, the last inequality in (13.10) makes clear, by the Comparison Test for integrals of
real-valued functions, that

´∞
−∞ |hn ◦γ| converges, and therefore hn ◦γ is λ-integrable in M, withˆ

R
(hn ◦ γ) dλ =

ˆ ∞
−∞

(hn ◦ γ) =

ˆ
γ

hn (13.12)

by Proposition 2.54 in [MT]. In addition, for each t ∈ R we have

|(h ◦ γ)(t)| =
∣∣∣ lim
n→∞

hn(γ(t))
∣∣∣ = lim

n→∞

∣∣hn(γ(t))
∣∣ = lim

n→∞

∣∣hn(t+ ib)
∣∣ ≤ A

t2 + 1
, (13.13)

and so ˆ
R
(h ◦ γ) dλ =

ˆ ∞
−∞

(h ◦ γ) =

ˆ
γ

h

also obtains by Proposition 2.54 in [MT]. Finally, (13.12) and (13.13), together with (13.11),
yields (13.9). �

Theorem 13.12 (Poisson Summation Formula). If f ∈ F, then∑
n∈Z

f(n) =
∑
n∈Z

f̂(n).

Proof. Suppose f ∈ F, so f ∈ Fa for some a ∈ R+, and there exists some A ∈ R+ such that
|f(x+ iy)| ≤ A(x2 + 1)−1 for all x+ iy ∈ Sa. Let b ∈ (0, a). Define

h(z) =
f(z)

e2πiz − 1
.

For each n ∈ Z we have, by L’Hôpital’s Rule,

lim
z→n

(z − n)h(z) = lim
z→n

(z − n)f(z)

e2πiz − 1
= lim

z→n

(z − n)f ′(z) + f(z)

2πie2πiz
=

f(n)

2πie2πin
=
f(n)

2πi
,

so Theorem 7.10 implies that h has a simple pole at n ∈ Z if f(n) 6= 0, with

res(h, n) =
f(n)

2πi

by Proposition 7.33. If f(n) = 0, then

lim
z→n

h(z) = lim
z→n

f ′(z)

2πie2πiz
=
f ′(n)

2πi

by L’Hôpital’s Rule, showing h has a removable singularity at n by Theorem 7.9, and hence
res(h, n) = 0 by Definition 7.7.

Now, let γm = γm1 ∗ γm2 ∗ γm3 ∗ γm4 be the path

γm1(t) = t− ib, t ∈
[
−m− 1

2
,−m− 1

2

]
γm2(t) = m+ 1

2
+ it, t ∈ [−b, b]

γm3(t) = −t+ ib, t ∈
[
−m− 1

2
,−m− 1

2

]
γm4(t) = −m− 1

2
− it, t ∈ [−b, b]

http://faculty.bucks.edu/erickson/MeasureTheoryProbability/MeasureTheoryProbability.pdf
http://faculty.bucks.edu/erickson/MeasureTheoryProbability/MeasureTheoryProbability.pdf
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for m ∈ N. By the Residue Theorem,
4∑

k=1

ˆ
γm1

h =

“
γm

h = 2πi
∑
z∈S(h)

res(h, z) wn(γm, z) = 2πi
m∑

n=−m

res(h, n) =
m∑

n=−m

f(n). (13.14)

It turns out that
´
γm2

h,
´
γm4

h→ 0 as m→∞. Moreover, we have

lim
m→∞

ˆ
γm1

h =

ˆ
`1

f(z)

e2πiz − 1
dz and lim

m→∞

ˆ
γm3

h =

ˆ
`2

f(z)

e2πiz − 1
dz,

where `1 and `2 are the lines `1(t) = t − ib and `2(t) = −t + ib for t ∈ R. Finally, since
|f(n)| ≤ A(n2 + 1)−1 for all n ∈ Z, Theorem 2.7 shows that the series

∞∑
n=0

f(n) and
∞∑
n=1

f(−n)

both converge, and therefore∑
n∈Z

f(n) =
∞∑
n=0

f(n) +
∞∑
n=1

f(−n) = lim
m→∞

m∑
n=0

f(n) + lim
m→∞

m∑
n=1

f(−n)

= lim
m→∞

[
m∑
n=0

f(n) +
m∑
n=1

f(−n)

]
= lim

m→∞

m∑
n=−m

f(n),

the first equality according with the definition of a two-tailed series given in §7.1. Taking the
limit as m→∞ in (13.14) thus yields∑

n∈Z

f(n) =

ˆ
`1

f(z)

e2πiz − 1
dz +

ˆ
`2

f(z)

e2πiz − 1
dz.

Now, for z ∈ `∗1 we have z = t− ib for some t ∈ R, so that |e2πiz| = e2πb > 1. By Exercise 4.9,ˆ
`1

h =

ˆ
`1

f(z)e−2πiz

∞∑
n=0

e−2πinzdz =

ˆ
`1

lim
k→∞

hk(z) dz,

where

hk(z) =
k∑

n=0

f(z)e−2πi(n+1)z

for each k ∈ N. Setting B =
∑∞

n=0 e
−2π(n+1)b, we also have

|hk(z)| ≤ |f(z)|
k∑

n=0

∣∣e−2πi(n+1)z
∣∣ = |f(z)|

k∑
n=0

e−2π(n+1)b ≤ AB

(Re z)2 + 1

for z ∈ `∗1. Noting that (hk)k∈N converges pointwise on `∗1 to the continuous function h : `∗1 → C,
by Lemma 13.11 and Proposition 13.9 it follows that

ˆ
`1

h = lim
k→∞

ˆ
`1

hk = lim
k→∞

k∑
n=0

ˆ
`1

f(z)e−2πi(n+1)z dz =
∞∑
n=0

ˆ
`1

f(z)e−2πi(n+1)z dz

=
∞∑
n=0

ˆ ∞
−∞

f(t− ib)e−2πi(n+1)(t−ib)dt =
∞∑
n=0

e−2πb(n+1)

ˆ ∞
−∞

f(t− ib)e−2πit(n+1)dt
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=
∞∑
n=0

f̂(n+ 1) =
∞∑
n=1

f̂(n).

Next, z ∈ `∗2 implies z = t + ib for some t ∈ R, so |e2πiz| = e−2πb < 1. By Exercise 4.9,
Lemma 13.11, and Proposition 13.9,ˆ

`2

h = −
ˆ
`2

f(z)
∞∑
n=0

e2πinz dz = −
∞∑
n=0

ˆ
`2

f(z)e2πinz dz

=
∞∑
n=0

ˆ ∞
−∞

f(−t+ ib)e2πin(−t+ib)dt =
∞∑
n=0

f̂(−n).

Therefore ∑
n∈Z

f(n) =

ˆ
`1

h+

ˆ
`2

h =
∞∑
n=1

f̂(n) +
∞∑
n=0

f̂(−n) =
∑
n∈Z

f̂(n)

and the proof is done. �
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13.3 – The Paley-Wiener Theorem

Proposition 13.13. Suppose f̂ is the Fourier transform of a function f : R→ R, with∣∣f̂(ξ)
∣∣ ≤ Ae−2πa|ξ|

for some constants a,A ∈ R+. Then for some b ∈ (0, a) there exists an analytic function
g : Sb → C such that f = g|R.

Theorem 13.14 (Paley-Wiener Theorem). Suppose f : R → R is continuous and of
moderate decrease on R, and let M ∈ R+. Then there is an entire function g such that g|R = f

and |g(z)| ≤ Ae2πM |z| for some A ∈ R+ if and only if f̂ is supported in [−M,M ].
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14
The Gamma and Zeta Functions

14.1 – The Gamma Function

It is convenient to define the right half-plane and left half-plane of C to be the sets

C+ = {z ∈ C : Re z ∈ R+} and C− = {z ∈ C : Re z ∈ R−},
respectively.

The gamma function on C+ is the function Γ : C+ → C defined by

Γ(z) =

ˆ ∞
0

e−ttz−1dt

for all z ∈ C+.

Proposition 14.1. The gamma function on C+ is analytic.

Proposition 14.2. Γ(z + 1) = zΓ(z) for all z ∈ C+, and Γ(n+ 1) = n! for all n ∈W.

Proposition 14.3. There exists an analytic continuation Γ̂ : C \ (Z \ N) → C of Γ that is

meromorphic on C and has simple poles on Z \ N, with res(Γ̂,−n) = (−1)n/n! for each n ∈W.

As is traditional, the analytic extension Γ̂ of the gamma function to the set C \ (Z \ N) is
again denoted by Γ and called the gamma function.

Lemma 14.4. For all a ∈ (0, 1), ˆ ∞
0

xa−1

1 + x
dx =

π

sin πa
.

Proposition 14.5. For all z ∈ C \ Z,

Γ(z)Γ(1− z) =
π

sin πz
,

with both functions having a simple pole at each n ∈ Z.
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Proof. Define f(z) = Γ(z)Γ(1− z) and g(z) = π/ sin(πz). It must be shown that f(z) = g(z)
for all z ∈ C \ Z, and P (f) = P (g) = Z with ord(f, n) = ord(g, n) = 1 for all n ∈ Z. Since f
and g are clearly analytic on C \ Z, to show f = g on C \ Z it is sufficient by Corollary 5.14 to
show that f(s) = g(s) for all s ∈ (0, 1). �

Proposition 14.6. Define the function 1/Γ : C→ C by

(1/Γ)(z) =

{
1/Γ(z), z ∈ C \ (Z \ N)

0, z ∈ Z \ N.

1. 1/Γ is an entire function with Z(1/Γ) = Z \ N and ord(1/Γ, n) = 1 for each n ∈ Z \ N.
2. There exist constants A,B ∈ R+ such that∣∣(1/Γ)(z)

∣∣ ≤ AeB|z| ln |z|

for all z ∈ C, where we define the right-hand expression to be 0 when z = 0.
3. There exists B ∈ R+ such that, for each ε > 0, there is some Aε ∈ R+ for which∣∣(1/Γ)(z)

∣∣ ≤ Aεe
B|z|1+ε

for all z ∈ C, where we define the right-hand expression to be 0 when z = 0.

The real number

γ = lim
n→∞

(
n∑
k=1

1

k
− lnn

)
,

known as Euler’s constant, appears in the following product formula for 1/Γ.

Theorem 14.7. For all z ∈ C,

(1/Γ)(z) = zeγz
∞∏
n=1

(
1 +

z

n

)
e−z/n.

Exercise 14.8 (SS6.3.1). Prove that

Γ(z) = lim
n→∞

nzn!

z(z + 1) · · · (z + n)

for all z /∈ Z \ N.

Solution. Fix z ∈ C \ (Z \ N). We will prove that

(1/Γ)(z) = lim
n→∞

z(z + 1) · · · (z + n)

nzn!
.

For each n ∈ N let

fn(z) =
n∑
k=1

[
ln(1 + z/k)− z/k

]
+ γz and gn(z) =

n∑
k=1

ln(1 + z/k)− z lnn.

By Theorem 14.7,

(1/Γ)(z) = z lim
n→∞

(
eγz

n∏
k=1

(
1 +

z

k

)
e−z/k

)
= z lim

n→∞
exp

(
n∑
k=1

ln
[
(1 + z/k)e−z/k

]
+ γz

)
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= z lim
n→∞

exp

(
n∑
k=1

[
ln(1 + z/k)− z/k

]
+ γz

)
= z lim

n→∞
efn(z),

while

lim
n→∞

z(z + 1) · · · (z + n)

nzn!
= lim

n→∞
exp

(
ln[z(z + 1) · · · (z + n)]− ln(nzn!)

)
= lim

n→∞
exp

(
ln z +

n∑
k=1

ln(z + k)− z lnn− lnn!

)

= lim
n→∞

z exp

(
n∑
k=1

ln(z + k)− z lnn−
n∑
k=1

ln k

)

= z lim
n→∞

exp

(
n∑
k=1

ln(1 + z/k)− z lnn

)
= z lim

n→∞
egn(z).

It remains only to show that limn→∞ fn(z) = limn→∞ gn(z). Since limn→∞ fn(z) exists in C,
this will follow once

lim
n→∞

[fn(z)− gn(z)] = 0

is shown. However,

lim
n→∞

[fn(z)− gn(z)] = 0 ⇔ lim
n→∞

(
γz −

n∑
k=1

z

k
+ z lnn

)
= 0

⇔ lim
n→∞

(
γ −

n∑
k=1

1

k
+ lnn

)
= 0

⇔ lim
n→∞

(
n∑
k=1

1

k
− lnn

)
= γ,

and so we are done. �

Exercise 14.9 (SS6.3.10). The Mellin transform of a function f : [0,∞) → C is the
function M(f) given by

M(f)(z) =

ˆ ∞
0

f(t)tz−1dt.

Prove that

M(cos)(z) =

ˆ ∞
0

cos(t)tz−1dt = Γ(z) cos
(π

2
z
)

(14.1)

and

M(sin)(z) =

ˆ ∞
0

sin(t)tz−1dt = Γ(z) sin
(π

2
z
)

(14.2)

for all z ∈ (0, 1)× R.
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γ2γ3

γ4

γ1 rε

ri

εi

Figure 28.

Solution. Proposition 14.1 makes clear that Γ(z) cos
(
π
2
z
)

and Γ(z) sin
(
π
2
z
)

are analytic on
Ω = (0, 1)× R, and an argument similar to that in the proof of the proposition will show that
M(cos)(z) and M(cos)(z) are analytic on Ω. Thus, in light of the Identity Theorem, to show
(14.1) and (14.2) hold on Ω, it suffices to show the equations hold on the interval (0, 1).

Fix s ∈ (0, 1). Recalling (6.1), define f : C∗ → C by f(z) = e−zzs−1. For 0 < ε < r <∞ let
γ = γ1 ∗ γ2 ∗ γ3 ∗ γ4, where

γ1(t) = t, t ∈ [ε, r]

γ2(t) = reit, t ∈ [0, π/2]

γ3(t) = it, t ∈ [ε, r]

γ4(t) = εeit, t ∈ [0, π/2]

as in Figure 28. Since f is analytic on C \ (−∞, 0] and γ∗ ⊆ C \ (−∞, 0], Theorem 11.30 and
Propositions 3.27 and 3.28 imply that

0 =

˛
γ

f =

ˆ
γ1

f +

ˆ
γ2

f +

ˆ
γ3

f +

ˆ
γ4

f =

ˆ
γ1

f +

ˆ
γ2

f −
ˆ
γ3

f −
ˆ
γ4

f (14.3)

for all 0 < ε < r <∞. As ε→ 0+ and r →∞ is it clear thatˆ
γ1

f =

ˆ r

ε

e−tts−1dt→
ˆ ∞

0

e−tts−1dt = Γ(s).

Making the substitution u = π/2− t and recalling Exercise 7.58, we have∣∣∣∣ˆ
γ2

f

∣∣∣∣ =

∣∣∣∣∣
ˆ π/2

0

e−re
it

(reit)s−1 · ireitdt

∣∣∣∣∣ ≤
ˆ π/2

0

∣∣e−reit(reit)s−1 · ireit
∣∣dt

=

ˆ π/2

0

rse−r cos tdt = rs
ˆ 0

π/2

−e−r sinudu = rs
ˆ π/2

0

e−r sinudu

≤ rs · π
2r

(1− e−r) =
π

2r1−s (1− e−r),

and so
´
γ2
f → 0 as r →∞ since 0 < s < 1.
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Next, ˆ
γ3

f =

ˆ r

ε

e−it(it)s−1 · idt = is
ˆ r

ε

e−itts−1dt

= is
(ˆ r

ε

cos(t)ts−1dt− i
ˆ r

ε

sin(t)ts−1dt

)
,

so ˆ
γ3

f → is
(ˆ ∞

0

cos(t)ts−1dt− i
ˆ ∞

0

sin(t)ts−1dt

)
as ε→ 0+ and r →∞.

Finally,∣∣∣∣ˆ
γ4

f

∣∣∣∣ ≤ L(γ4) sup
z∈γ∗4
|f(z)| = π

ε
sup

t∈[0,π/2]

|f(γ4(t))| = π

2
ε sup
t∈[0,π/2]

∣∣e−εeit(εeit)s−1
∣∣

=
π

2
εs sup

t∈[0,π/2]

(e−ε cos t) =
π

2
εs,

and so
´
γ4
f → 0 as ε→ 0+.

Returning to (14.3), we find

0 = lim
r→∞

lim
ε→0+

ˆ
γ

f = Γ(s)− is
(ˆ ∞

0

cos(t)ts−1dt− i
ˆ ∞

0

sin(t)ts−1dt

)
,

which givesˆ ∞
0

sin(t)ts−1dt+ i

ˆ ∞
0

cos(t)ts−1dt = i1−sΓ(s) = e
π
2

(1−s)iΓ(s)

=
[
cos
(

(1− s)π
2

)
+ i sin

(
(1− s)π

2

)]
Γ(s)

= Γ(s) sin
(π

2
s
)

+ iΓ(s) cos
(π

2
s
)
.

By equating imaginary parts, we see (14.1) holds for all z ∈ (0, 1); and by equating real parts,
we see (14.2) holds for all z ∈ (0, 1). �
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14.2 – The Zeta Function

Define the set

C1 = {z ∈ C : Re(z) > 1}.

The Riemann zeta function on C1 is the function ζ : C1 → C given by

ζ(z) =
∞∑
n=1

1

nz

That the series truly does converge for all z ∈ C with Re z > 1 will be verified along the way to
proving ζ is analytic on C1.

Proposition 14.10. The Riemann zeta function on C1 is analytic.

Proof. Fix z ∈ C1, so z = x+ iy with x > 1. For any n ∈ N,

|n−z| =
∣∣e−z lnn

∣∣ = eRe(−z lnn) = e−x lnn = n−x

by Theorem 4.42, and since
∑∞

n=1 n
−x converges in R, the Direct Comparison Test implies that∑∞

n=1 n
−z converges in C.

Define the sequence of analytic functions (fn : C1 → C)n∈N by fn(z) = n−z for each n.
Clearly

∑∞
n=1 fn converges pointwise to ζ on C1. For 1 < a < b < ∞ let Sa,b ⊆ C1 be the

vertical strip

Sa,b = {z : Re z ∈ [a, b]}.
For each n ∈ N,

‖fn‖Sa,b = sup
z∈Sa,b

|fn(z)| = sup
z∈Sa,b

(
n−Re z

)
≤ 1

na
,

and since
∑∞

n=1 n
−a converges in R, the Weierstrass M-Test implies that

∑∞
n=1 fn converges

uniformly to ζ on Sa,b. Now, any compact set K ⊆ C1 may be contained in some Sa,b, so in fact∑∞
n=1 fn (i.e. the sequence (sn)n∈N of partial sums sn =

∑n
k=1 fk) converges uniformly to ζ on

compact subsets of C1. By Theorem 4.30 it follows that ζ is analytic on C1. �

In the proof of Proposition 14.10, observing that

(n−z)′ =
(
e−z lnn

)′
= (− lnn)e−z lnn = (− lnn)n−z,

it is a further consequence of Theorem 4.30 that

ζ(k)(z) =
∞∑
n=1

(− lnn)k
1

nz

for all k ∈ N and z ∈ C1.

Lemma 14.11. Define the function ϑ by

ϑ(t) =
∑
n∈Z

e−πn
2t.
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Then ϑ : R+ → R with ϑ(t) = t−1/2ϑ(t−1) for all t ∈ R+. Moreover, there exists some ε > 0 and
C > 0 such that

∀t ∈ (0, ε)
[
ϑ(t) ≤ Ct−1/2

]
and ∀t ∈ [1,∞)

[
|ϑ(t)− 1| ≤ Ce−πt

]
.

Proof. Clearly ϑ(t) ∈ R for each t ∈ R+. Now, for each t ∈ R+ define ft : R → R by

ft(x) = e−πx
2t. By Example 13.4,

f̂t(ξ) =
1√
t
e−πξ

2/t,

and so by the Poisson Summation Formula we obtain

ϑ(t) =
∑
n∈Z

e−πn
2t =

∑
n∈Z

ft(n) =
∑
n∈Z

f̂t(n) =
∑
n∈Z

1√
t
e−πn

2/t =
1√
t
ϑ(1/t),

as was to be shown. �

Proposition 14.12. For all z ∈ C1,

π−z/2Γ(z/2)ζ(z) =
1

2

ˆ ∞
0

uz/2−1[ϑ(u)− 1]du.

Proposition 14.13. The function ξ : C1 → C given by

ξ(z) = π−z/2Γ(z/2)ζ(z)

is analytic on C1, and has an analytic continuation ξ : C \ {0, 1} → C with simple poles at 0
and 1. Moreover,

ξ(z) = ξ(1− z)

for all z ∈ C \ {0, 1}.

Theorem 14.14. There exists an analytic continuation ζ̂ : C\{1} → C of ζ that is meromorphic
on C and has a simple pole at 1.

Proposition 14.15.

1. There exists a sequence of entire functions (ηn)n∈N for which |ηn(z)| ≤ |z|/nRe z+1 for all
z ∈ C and n ∈ N, and such that

N−1∑
n=1

1

nz
−
ˆ N

1

1

tz
dt =

N−1∑
n=1

ηn(z)

for any integer N ≥ 2.
2.
∑∞

n=1 ηn is analytic on C+, and moreover

ζ(z) =
∞∑
n=1

ηn(z) +
1

z − 1

for all z ∈ C+.
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Exercise 14.16 (SS6.3.15). Prove that

ζ(z) =
1

Γ(z)

ˆ ∞
0

tz−1

et − 1
dt (14.4)

for all z ∈ C1.

Solution. Fix s ∈ (2,∞). Define hk : R→ R by

hk(t) =

t
s−1

k∑
n=1

e−nt, t > 0

0, t ≤ 0

for all k ∈ N, and define h : R→ R by

h(t) =


ts−1

et − 1
, t > 0

0, t ≤ 0

Since hk(t)→ 0 and h(t)→ 0 as t→ 0, the functions hk and h are continuous on R. Also, for
t ∈ (0,∞),

lim
k→∞

hk(t) = lim
k→∞

ts−1

k∑
n=1

e−nt = ts−1

∞∑
n=1

e−nt =
ts−1

et − 1
= h(t)

by Exercise 4.9, so that the sequence (hk)k∈N converges pointwise to h on R. Now, by Example
13.5 there is some constant A such that

|h(t)| ≤ A

t2 + 1

for all t ∈ R, from which it is clear that |hk(t)| ≤ A(t2 + 1)−1 for all t ∈ R and k ∈ N, and so if
we define γ : R→ R by γ(t) = t, then by Lemma 13.11 it follows that

lim
k→∞

ˆ ∞
0

ts−1

k∑
n=1

e−ntdt = lim
k→∞

ˆ ∞
−∞

hk(t) dt = lim
k→∞

ˆ
γ

hk

=

ˆ
γ

h =

ˆ ∞
−∞

h(t)dt =

ˆ ∞
0

ts−1

et − 1
dt.

Now, making the substitution u = nt, we haveˆ ∞
0

e−ntts−1dt = lim
x→∞

ˆ x

0

e−ntts−1dt = lim
x→∞

ˆ nx

0

e−uus−1

ns
du

=
1

ns

ˆ ∞
0

e−uus−1du =
Γ(s)

ns
,

and henceˆ ∞
0

ts−1

et − 1
dt = lim

k→∞

k∑
n=1

ˆ ∞
0

e−ntts−1dt = lim
k→∞

k∑
n=1

Γ(s)

ns
= Γ(s)

∞∑
n=1

1

ns
= Γ(s)ζ(s).

Thus (14.4) holds for all z ∈ (2,∞).
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Next, let z ∈ C1. Since Re z ∈ (1,∞), by Exercise 4.53 we haveˆ 1

0

∣∣∣∣ tz−1

et − 1

∣∣∣∣ dt =

ˆ 1

0

tRe z−1

et − 1
dt =

∞∑
n=0

Bn

n!(Re z + n− 1)
∈ C.

By Example 13.5 there is some M > 0 such thatˆ ∞
1

∣∣∣∣ tz−1

et − 1

∣∣∣∣ dt ≤ ˆ ∞
1

∣∣∣∣ tz

et − 1

∣∣∣∣ dt =

ˆ ∞
1

tRe z

et − 1
dt ≤

ˆ ∞
1

M

t2 + 1
dt ∈ C.

So by comparison tests analogous to Theorem 7.53 we conclude thatˆ 1

0

tz−1

et − 1
dt and

ˆ ∞
1

tz−1

et − 1
dt

both converge in C, and thus

F (z) :=

ˆ ∞
0

tz−1

et − 1
dt =

ˆ 1

0

tz−1

et − 1
dt+

ˆ ∞
1

tz−1

et − 1
dt (14.5)

converges in C for all z ∈ C1.
Define ϕ : C1 × (0,∞)→ C by

ϕ(z, t) =
tz−1

et − 1
,

and for each n ∈ N let Fn : C1 → C be given by

Fn(z) =

ˆ n

1/n

ϕ(z, t)dt.

Since ϕ is continuous on C1 × [1/n, n], and ϕ(·, t) : C1 → C is analytic for each t ∈ [1/n, n],
Lemma 6.27 implies that Fn is analytic on C1. Fix 1 < a < b <∞, and define Sa,b = [a, b]× R
in C1. Let ε > 0. The integral ˆ ∞

0

tb−1

et − 1
dt

is convergent since b ∈ C1, and so there must exist some k ∈ N such thatˆ 1/k

0

tb−1

et − 1
dt <

ε

2
and

ˆ ∞
k

tb−1

et − 1
dt <

ε

2
.

Let n ≥ k and z ∈ Sa,b be arbitrary, with s = Re z. Since s ≤ b and 1/k ≥ 1/n, we have

|F (z)− Fn(z)| =
∣∣∣∣ˆ ∞

0

tz−1

et − 1
dt−

ˆ n

1/n

tz−1

et − 1
dt

∣∣∣∣ =

∣∣∣∣∣
ˆ 1/n

0

tz−1

et − 1
dt+

ˆ ∞
n

tz−1

et − 1
dt

∣∣∣∣∣
≤
ˆ 1/n

0

∣∣∣∣ tz−1

et − 1

∣∣∣∣ dt+

ˆ ∞
n

∣∣∣∣ tz−1

et − 1

∣∣∣∣ dt =

ˆ 1/n

0

ts−1

et − 1
dt+

ˆ ∞
n

tz−1

et − 1
dt

≤
ˆ 1/k

0

tb−1

et − 1
dt+

ˆ ∞
k

tb−1

et − 1
dt <

ε

2
+
ε

2
= ε,

and thus (Fn)n∈N converges uniformly to F on Sa,b. Now, any compact set K ⊆ C1 may be
contained in some Sa,b, so (Fn)n∈N is a sequence of analytic functions on C1 that converges
uniformly to F : C1 → C on compact subsets of C1. By Theorem 4.30, therefore, F is analytic
on C1, and then by Proposition 14.6 it is clear that the function on the right-hand side of (14.4)
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is also analytic on C1. Recalling that ζ is analytic on C1 by Proposition 14.10, the Identity
Theorem then implies that (14.4) holds for all z ∈ C1. �

Exercise 14.17 (SS6.3.16). Use the result of the previous exercise to show that ζ : C1 → C
has analytic continuation to C \ {1} with simple pole at 1.

Solution. By Exercise 14.16 we have

ζ(z) =
1

Γ(z)

ˆ 1

0

tz−1

et − 1
dt+

1

Γ(z)

ˆ ∞
1

tz−1

et − 1
dt (14.6)

for all z ∈ C1. The second integral in (14.6) is readily seen to be an entire function since 1/Γ is
entire and the function

tz−1

et − 1

is of moderate decrease on [1,∞). By Exercise 4.53,

f(z) :=

ˆ 1

0

tz−1

et − 1
dt =

∞∑
n=0

Bn

n!(z + n− 1)
:= ϕ(z) (14.7)

for z ∈ (1,∞). The same argument that showed F given by (14.5) is analytic on C1 may be
employed to show f is analytic on C1, whereas it is straightforward to show that ϕ is analytic
on C1. Therefore (14.7) holds for all z ∈ C1 by the Identity Theorem. However, ϕ is in fact
analytic on C \ S for S = {1, 0,−1,−2, . . .}, and so serves as an analytic continuation of f to
C \ S. Returning to (14.6), it follows that

ζ(z) =
1

Γ(z)

∞∑
n=0

Bn

n!(z + n− 1)
+

1

Γ(z)

ˆ ∞
1

tz−1

et − 1
dt (14.8)

is an analytic continuation of ζ to C \ S. That the function at right in (14.8) has isolated
singularities at each point in S is clear, and it remains only to show the points in S \ {1} are
removable singularities while there is a simple pole at 1.

We consider first the singularity at 1. Let A = B′1/2(1) ⊆ S, and define gn : A→ C by

gn(z) =
(z − 1)Bn

n!(z + n− 1)

for each n ≥ 0. For n ≥ 2, since

z ∈ A ⇒ z + n− 1 ∈ B′1/2(n) ⇒ |z + n− 1| > n− 1

2

⇒ 1

|z + n− 1|
<

2

2n− 1
< 1,

we have

‖gn‖A = sup
z∈A

(
|z − 1||Bn|
n!|z + n− 1|

)
≤ |Bn|

2(n!)
sup
z∈A

1

|z + n− 1|
≤ |Bn|

n!
.

In the remarks before Definition 4.49 it was determined that the series
∑∞

n=0(Bn/n!)zn converges
on B2π(0), and in fact is absolutely convergent on B2π(0) by Proposition 4.3. Letting z = 1, it
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follows that
∑∞

n=0 |Bn/n!| converges in R, and therefore

∞∑
n=0

gn(z) =
∞∑
n=0

(z − 1)Bn

n!(z + n− 1)

converges uniformly on A by the Weierstrass M-Test. Letting sn =
∑n

k=0 gk for n ≥ 0, it follows
that the sequence (sn)n∈W converges uniformly on A. Now, 1 is a limit point of A, and

lim
z→1

sn(z) = lim
z→1

n∑
k=0

(z − 1)Bk

k!(z + k − 1)
= lim

z→1

[
1 +

n∑
k=1

(z − 1)Bk

k!(z + k − 1)

]
= 1

for each n ≥ 0. By Theorem 2.55,

lim
z→1

∞∑
k=0

(z − 1)Bk

k!(z + k − 1)
= lim

z→1
lim
n→∞

sn(z) = lim
n→∞

lim
z→1

sn(z) = lim
n→∞

(1) = 1,

and therefore

lim
z→1

(z − 1)ϕ(z)

Γ(z)
= lim

z→1

1

Γ(z)

∞∑
n=0

(z − 1)Bn

n!(z + n− 1)
=

1

Γ(1)
.

Since 1/Γ(1) ∈ C∗ by Proposition 14.6, we conclude by Theorem 7.10 that ϕ/Γ has a simple
pole at 1.

Now let k ∈ {0,−1,−2, . . .}. By Proposition 14.6 the function 1/Γ has a simple zero at k,
so there exists some analytic function g such that (1/Γ)(z) = (z − k)g(z) for all z near k, with
g(k) 6= 0. By another application of Theorem 2.55,

lim
z→k

ϕ(z)

Γ(z)
= lim

z→k
(z − k)g(z)

∞∑
n=0

Bn

n!(z + n− 1)

= lim
z→k

g(z)

[
B1−k

(1− k)!
+
∑
n6=1−k

(z − k)Bn

n!(z + n− 1)

]
=
B1−kg(k)

(1− k)!
∈ C,

and so ϕ/Γ has a removable singularity at k by Theorem 7.9. Defining

ζ(k) = lim
z→k

1

Γ(z)

(
ϕ(z) +

ˆ ∞
1

tz−1

et − 1
dt

)
for each k ∈ {0,−1,−2, . . .}, we conclude that (14.8) is an analytic continuation of ζ to C \ {1},
with a simple pole at 1. �

Exercise 14.18 (SS6.4.2). Prove that

ζ(z) =
z

z − 1
− z
ˆ ∞

1

t− JtK
tz+1

dt (14.9)

for all z ∈ C+ \ {1}, where J·K is the greatest integer function.

Solution. Let Ω = C+ \ {1}. For any z ∈ Ω and t ∈ [1,∞),∣∣∣∣t− JtK
tz+1

∣∣∣∣ =
|t− JtK|
tRe z+1

≤ 1

tRe z+1
,
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and since Re z + 1 > 1 implies that
´∞
−∞ t

−(Re z+1)dt converges in R, it follows by Theorem 7.53
that

F (z) =

ˆ ∞
1

t− JtK
tz+1

dt

converges in C. Thus F is a complex-valued function on Ω.
For each k ∈ N define ψk : Ω× [k, k + 1]→ C by

ψk(t) =

{
t− JtK, t ∈ [k, k + 1)

1, t = k + 1.

Since t− JtK is the fractional part of t, we find that ψk is continuous on [k, k + 1], and hence

ϕk(z, t) :=
ψk(t)

tz+1

is continuous on Ω× [k, k + 1]. Now, for each n ∈ N let Gn : Ω→ C be given by

Gn(z) =
n∑
k=1

ˆ k+1

k

ϕk(z, t)dt.

Because ϕk(·, t) : Ω→ C is analytic for each t ∈ [k, k + 1], Lemma 6.27 implies the function

z 7→
ˆ k+1

k

ϕk(z, t)dt

is analytic on Ω for each k, and hence Gn itself is analytic on Ω. Now, define Fn : Ω→ C by

Fn(z) =
n∑
k=1

ˆ k+1

k

t− JtK
tz+1

dt.

In general
´ b
a
f =
´ b
a
g for functions f, g ∈ R[a, b] such that f(x) = g(x) for all but finitely many

x ∈ [a, b], so Fn = Gn for all n, and hence (Fn) is likewise a sequence of analytic functions. With
arguments similar to those employed in Example 14.16, we find that (Fn) converges uniformly
to F on compact subsets of Ω. By Theorem 4.30, therefore, F is analytic on Ω, and then it is
clear that the function at right in (14.9) is analytic on Ω.

It is already known that ζ is analytic on Ω, and so by the Identity Theorem the analysis will
be finished if it can be shown that ζ equals the function at right in (14.9) on, say, the interval
(1,∞). Fix s ∈ (1,∞). We haveˆ ∞

1

1

ts
dt = lim

τ→∞

ˆ τ

1

t−sdt = lim
τ→∞

[
1

1− s
t1−s

]τ
1

=
1

s− 1
. (14.10)

For each k ∈ N set Ik =
´ k+1

k
t−sdt. Then

ˆ k

1

1

ts
dt =

k∑
n=1

ˆ n+1

n

t

ts+1
dt− Ik =

k∑
n=1

ˆ n+1

n

JtK + (t− JtK)
ts+1

dt− Ik

=
k∑

n=1

ˆ n+1

n

JtK
ts+1

dt+
k∑

n=1

ˆ n+1

n

t− JtK
ts+1

dt− Ik
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=
k∑

n=1

ˆ n+1

n

n

ts+1
dt+

ˆ k+1

1

t− JtK
ts+1

dt− Ik

= −
k∑

n=1

n

s

[
1

(n+ 1)s
− 1

ns

]
+

ˆ k+1

1

t− JtK
ts+1

dt− Ik,

whereupon Proposition 1.6 with zn = n/s and wn = 1/ns yields
ˆ k

1

1

ts
dt = −

[
1

s(k + 1)s−1
− 1

s
− 1

s

k∑
n=1

1

(n+ 1)s

]
+

ˆ k+1

1

t− JtK
ts+1

dt− Ik.

Recalling s > 1, letting k →∞ next givesˆ ∞
1

1

ts
dt =

1

s
+

1

s

∞∑
n=1

1

(n+ 1)s
+

ˆ ∞
1

t− JtK
ts+1

dt =
ζ(s)

s
+

ˆ ∞
1

t− JtK
ts+1

dt,

noting in particular that Ik → 0 as k →∞. Putting this into (14.10), we obtain

ζ(s)

s
+

ˆ ∞
1

t− JtK
ts+1

dt =
1

s− 1
,

which in turn becomes (14.9) with z = s. �
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14.3 – The Zeros and Reciprocal of the Zeta Function

We start with a new expression for the Riemann zeta function ζ : C1 → C that connects it
to the set P = {2, 3, 5, 7, 11, . . .} of prime numbers.

Theorem 14.19. For all z ∈ C1,

ζ(z) =
∏
p∈P

1

1− p−z
.

The zeros of the zeta function ζ : C \ {1} → C is a matter of great interest, with the
Riemann hypothesis being but the foremost example. The strip

[0, 1]× R = {x+ iy : x ∈ [0, 1] and y ∈ R}

mentioned in the hypothesis is known as the critical strip.

Conjecture (Riemann Hypothesis). If z ∈ [0, 1]×R is such that ζ(z) = 0, then Re(z) = 1
2
.

In proving the second part of the next lemma we make use of the trigonometric identity

3 + 4 cos θ + cos 2θ ≥ 0 (14.11)

The verification is straightforward:

3 + 4 cos θ + cos 2θ = 3 + 4 cos θ + (2 cos2 θ − 1) = 2(cos θ + 1)2 ≥ 0

for all θ ∈ R.

Lemma 14.20.

1. If z ∈ C1, then there exists a sequence (cn)n∈N in [0,∞) such that

Log ζ(z) =
∞∑
`=1

∞∑
m=1

`−mz

m
=
∞∑
n=1

cn
nz
.

2. If s > 1 and t ∈ R, then

Log
∣∣ζ3(s)ζ4(s+ it)ζ(s+ 2it)

∣∣ ≥ 0.

Proposition 14.21. Let Z(ζ) be the set of zeros of ζ : C \ {1} → C. The following hold.

1. Z(ζ) \ ([0, 1]× R) = {−2n : n ∈ N}.
2. Z(ζ) ∩ ({1} × R) = ∅.

14.4 – The Chebyshev Functions

14.5 – The Prime Number Theorem
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